首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
A previously reported cDNA clone encoding 34 kDa antigenic polypeptide of Dirofilaria immitis (lambda cD34) was studied to elucidate the mechanism of stage-specific gene expression. The 34 kDa polypeptide was a larva-specific antigen and the mRNA was detectable in microfilariae but not in adult worms and eggs. The lambda cD34 gene was not sex linked and was contained in the genome of D. immitis at each stage. The stage-specific expression of the developmentally regulated gene in D. immitis may be controlled primarily at the mRNA level.  相似文献   

2.
3.
Cortical progenitor cells give rise to neurons during embryonic development and to glia after birth. While lineage studies indicate that multipotent progenitor cells are capable of generating both neurons and glia, the role of extracellular signals in regulating the sequential differentiation of these cells is poorly understood. To investigate how factors in the developing cortex might influence cell fate, we developed a cortical slice overlay assay in which cortical progenitor cells are cultured over cortical slices from different developmental stages. We find that embryonic cortical progenitors cultured over embryonic cortical slices differentiate into neurons and those cultured over postnatal cortical slices differentiate into glia, suggesting that the fate of embryonic progenitors can be influenced by developmentally regulated signals. In contrast, postnatal progenitor cells differentiate into glial cells when cultured over either embryonic or postnatal cortical slices. Clonal analysis indicates that the postnatal cortex produces a diffusible factor that induces progenitor cells to adopt glial fates at the expense of neuronal fates. The effects of the postnatal cortical signals on glial cell differentiation are mimicked by FGF2 and CNTF, which induce glial fate specification and terminal glial differentiation respectively. These observations indicate that cell fate specification and terminal differentiation can be independently regulated and suggest that the sequential generation of neurons and glia in the cortex is regulated by a developmental increase in gliogenic signals.  相似文献   

4.
The spatial and temporal distribution of sucrose synthase (RSuS) in rice (Oryza sativa L.) was studied by Western and immunohistochemical analyses using the monospecific antibodies for three RSuS isoforms. In leaf tissues, RSuS1 was localized in the mesophyll while RSuS2 was in the phloem in addition to the mesophyll. In the roots, only RSuS1 was found in the phloem. No RSuS3 could be detected in any parts of etiolated seedlings. The expression of each RSus gene is closely linked to the seed development. RSuS1 was present in the aleurone layers of developing seeds, and at a low level in endosperm cells. RSuS2 was evenly distributed in seed tissues other than the endosperm. RSuS3 was localized predominantly in the endosperm cells. The tissue specific localizations of the three gene products suggest that RSuS1 plays a role in sugar transport into endosperm cells where the reaction catalyzed by RSuS3 provides the precursor of starch synthesis. RSus2, which is ubiquitously expressed, may play a housekeeping role.  相似文献   

5.
Recently, we and others reported that the doublecortin gene is responsible for X-linked lissencephaly and subcortical laminar heterotopia. Here, we show that Doublecortin is expressed in the brain throughout the period of corticogenesis in migrating and differentiating neurons. Immunohistochemical studies show its localization in the soma and leading processes of tangentially migrating neurons, and a strong axonal labeling is observed in differentiating neurons. In cultured neurons, Doublecortin expression is highest in the distal parts of developing processes. We demonstrate by sedimentation and microscopy studies that Doublecortin is associated with microtubules (MTs) and postulate that it is a novel MAP. Our data suggest that the cortical dysgeneses associated with the loss of Doublecortin function might result from abnormal cytoskeletal dynamics in neuronal cell development.  相似文献   

6.
A chimeric plasmid containing about 2/3 of the rat skeletal muscle actin gene plus 730 base pairs of its 5' flanking sequences fused to the 3' end of a human embryonic globin gene (D. Melloul, B. Aloni, J. Calvo, D. Yaffe, and U. Nudel, EMBO J. 3:983-990, 1984) was inserted into mice by microinjection into fertilized eggs. Eleven transgenic mice carrying the chimeric gene with or without plasmid pBR322 DNA sequences were identified. The majority of these mice transmitted the injected DNA to about 50% of their progeny. However, in transgenic mouse CV1, transmission to progeny was associated with amplification or deletion of the injected DNA sequences, while in transgenic mouse CV4 transmission was distorted, probably as a result of insertional mutagenesis. Tissue-specific expression was dependent on the removal of the vector DNA sequences from the chimeric gene sequences prior to microinjection. None of the transgenic mice carrying the chimeric gene together with plasmid pBR322 sequences expressed the introduced gene in striated muscles. In contrast, the six transgenic mice carrying the chimeric gene sequences alone expressed the inserted gene specifically in skeletal and cardiac muscles. Moreover, expression of the chimeric gene was not only tissue specific, but also developmentally regulated. Similar to the endogenous skeletal muscle actin gene, the chimeric gene was expressed at a relatively high level in cardiac muscle of neonatal mice and at a significantly lower level in adult cardiac muscle. These results indicate that the injected DNA included sufficient cis-acting control elements for its tissue-specific and developmentally regulated expression in transgenic mice.  相似文献   

7.
8.
9.
Vascular endothelial growth factor (VEGF) is a potent angiogenic factor working as an endothelial cell-specific mitogen and exerting a trophic effect on neurons and glial cells, both these activities being essential during central nervous system vascularisation, development and repair. The vascularisation of human telencephalon takes place by means of an angiogenic mechanism, which starts at the beginning of corticogenesis and actively proceeds up to the last neuronal migration, when the basic scheme of the vascular network has been drawn. Our study focused on VEGF during this critical developmental period with the aim of identifying the cells that express VEGF and of correlating the events of angiogenesis with the main events of cerebral cortex formation. The results show that in fetal human brain VEGF protein is located on multiple cell types, cells proper to the nervous tissue, neuroepithelial cells, neuroblasts and radial glia cells, and non-neuronal cells, endothelial and periendothelial cells. In these cells VEGF expression appears developmentally regulated and is correlated with angiogenesis, which in turn responds to the high metabolic demands of the differentiating neocortex.  相似文献   

10.
11.
12.
13.
14.
Sage BT  Wu MD  Csink AK 《Genetics》2008,178(2):749-759
The brown(Dominant) (bw(D)) allele of Drosophila contains a heterochromatic block that causes the locus to interact with centric heterochromatin. This association silences bw(+) in heterozygotes (trans-inactivation) and is dependent on nuclear organizational changes later in development, suggesting that trans-inactivation may not be possible until later in development. To study this, a P element containing an upstream activating sequence (UAS)-GFP reporter was inserted 5 kb from the bw(D) insertion site. Seven different GAL4 driver lines were used and GFP fluorescence was compared in the presence or the absence of bw(D). We measured silencing in different tissues and stages of development and found variable silencing of GFP expression driven by the same driver. When UAS-GFP was not expressed until differentiation in the eye imaginal disc it was more easily trans-inactivated than when it was expressed earlier in undifferentiated cells. In contrast to some studies by other workers on silencing in cis, we did not find consistent correlation of silencing with level of expression or evidence of relaxation of silencing with terminal differentiation. We suggest that such contrasting results may be attributed to a potentially different role played by nuclear organization in cis and trans position-effect variegation.  相似文献   

15.
16.
Based on the surmise that a variety of genes might play important roles in embryonic development and tissue differentiation, and that some of them are likely to be expressed in undifferentiated ES cells, we attempted to identify new genes from the ES cell cDNA library. The modified method of expressed sequence tags (ESTs) and the examination of the expression patterns in adult tissues and in vitro differentiated ES cells were utilized in this study. We have isolated and identified several novel cDNA clones with interesting developmental expression pattern. Among the 83 clones randomly chosen, 23 clones (27.7%) have no homology to any sequences in public databases. The rest contain limited or complete sequence homology to the previously reported mammalian genes or ESTs, yet some clones have not been previously identified in the mouse. To examine the expression profile of clones during development and differentiation, sets of slot blots were hybridized with developmental stage specific or tissue specific probes. Out of 40 novel clones tested (21 totally unknown clones and 19 unidentified clones in mouse), most of them were up- or down-regulated as differentiation proceeded, and some clones showed differentiation-stage specific expression profiles. Surprisingly, a majority of genes were also expressed in adult tissues, and some clones even revealed tissue specific expression. These results demonstrate that not only was the strategy we employed in this study quite efficient for screening novel genes, but that the information gained by such studies would also be a useful guide for further analysis of these genes. It also suggests the feasibility of this approach to explore the genomewide network of gene expression during complicated biological processes, such as embryonic development and tissue differentiation.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号