首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Studies were made on the genetic consequences of methotrexate-directed thymidylate stress, focusing attention on a human thymidylate synthase gene that was introduced as a heterologous genetic marker into mouse thymidylate synthase-negative mutant cells. Thymidylate stress induced thymidylate synthase-negative segregants with concomitant loss of human thymidylate synthase activity with frequencies 1 to 2 orders of magnitude higher than the uninduced spontaneous level in some but not all transformant lines. Induction of the segregants was suppressed almost completely by cycloheximide and partially by caffeine. Thymidylate stress did not, however, induce mutations, as determined by measuring resistance to ouabain or 6-thioguanine. Thymidylate synthase-negative segregants were also induced by other means such as bromodeoxyuridine treatment and X-ray irradiation. In each of the synthase-negative segregants induced by thymidylate stress, a DNA segment including almost the whole coding region of the transferred human thymidylate synthase gene was deleted in a very specific manner, as shown by Southern blot analysis with a human Alu sequence and a human thymidylate synthase cDNA as probes. In the segregants that emerged spontaneously at low frequency, the entire transferred genetic marker was lost. In the segregants induced by X-ray irradiation, structural alterations of the genetic marker were random. These results show that thymidylate stress is a physiological factor that provokes the instability of this exogenously incorporated DNA in some specific manner and produces nonrandom genetic recombination in mammalian cells.  相似文献   

2.
The environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) elicits numerous biological responses including carcinogenicity. The molecular mechanism by which TCDD exerts its tumorigenic effects is unclear, since it does not directly damage DNA. TCDD-initiated toxicity can be mediated by the aryl hydrocarbon receptor (AhR) pathway and/or via increased oxidative stress. DNA damage, including DNA oxidation, can induce DNA double-strand breaks, which can be repaired through homologous recombination. Excessive DNA double-strand breaks may promote aberrant DNA recombination, which can lead to detrimental genetic changes and ultimately to carcinogenesis. TCDD has been shown to induce homologous recombination but the molecular mechanism mediating these events are unknown. To investigate the role of the AhR and oxidative DNA damage in mediating TCDD-induced homologous recombination we used a Chinese hamster ovary (CHO) cell line containing a neo direct repeat recombination substrate (CHO 3-6). CHO 3-6 cells were exposed to TCDD (50, 500 or 1000 pM) in the presence or absence of an AhR antagonists (0.1 microM alpha-naphthoflavone (alpha-NF)) for 6 or 24 h and 2 weeks later homologous recombination frequencies were determined by counting the number of neo expressing, G418-resistant colonies per live cells plated. TCDD-initiated DNA oxidation was determined by measuring the formation of 8-hydroxy-2'-deoxyguanosine via HPLC and electrochemical detection. Exposure to 500 pM TCDD for 24 h significantly increased the frequency of homologous recombination. Southern blot analysis on G418-resistant colonies determined that TCDD induced both conservative gene conversion events and deletion events. DNA oxidation was not increased in cells exposed to TCDD for either 6 or 24 h. However, alpha-naphthoflavone exposure resulted in a significant decrease in TCDD-induced homologous recombination frequency. These results suggest that TCDD-initiated homologous recombination in CHO 3-6 cells is mediated by the AhR and not via increased oxidative stress.  相似文献   

3.
Thymidylate deprivation brings about "thymineless death" in prokaryotes and eukaryotes. Although the precise mechanism for thymineless death has remained elusive, inhibition of the enzyme thymidylate synthase (TS), which catalyzes the de novo synthesis of TMP, has served for many years as a basis for chemotherapeutic strategies. Numerous studies have identified a variety of cellular responses to thymidylate deprivation, including disruption of DNA replication and induction of DNA breaks. Since stalled or collapsed replication forks and strand breaks are generally viewed as being recombinogenic, it is not surprising that a link has been demonstrated between recombination induction and thymidylate deprivation in bacteria and lower eukaryotes. A similar connection between recombination and TS inhibition has been suggested by studies done in mammalian cells, but the relationship between recombination and TS inhibition in mammalian cells had not been demonstrated rigorously. To gain insight into the mechanism of thymineless death in mammalian cells, in this work we undertook a direct investigation of recombination in human cells treated with raltitrexed (RTX), a folate analog that is a specific inhibitor of TS. Using a model system to study intrachromosomal homologous recombination in cultured fibroblasts, we provide definitive evidence that treatment with RTX can stimulate accurate recombination events in human cells. Gene conversions not associated with crossovers were specifically enhanced several-fold by RTX. Additional experiments demonstrated that recombination events provoked by a double-strand break (DSB) were not impacted by treatment with RTX, nor was error-prone DSB repair via nonhomologous end-joining. Our work provides evidence that thymineless death in human cells is not mediated by corruption of DSB repair processes and suggests that an increase in chromosomal recombination may be an important element of cellular responses leading to thymineless death.  相似文献   

4.
The radioprotective effect in vitro of 5-hydroxytryptamine (5-HT) and 5-hydroxytryptophan (k-HTP) was studied with cultured mammalian cells of three cell lines: 5-HT-synthesizing FMA and 5-HT-non-synthesizing FM3A and B16-C2W. In these cells, the addition of 5-HT to the suspending medium induced only a weak protection or no protection at all. The increase in the 5-HT content of these cells at the time of irradiation was negligible. Pre-incubation of cells for 40 min in a 5-HTP-containing medium resulted in an elevation of the 5-HT content concomitantly with an increase in the radioresistance of FMA cells, where the DRF at 1 per cent was 1 x 8. In FM3A and B16-C2W cells such an effect was not observed. The same relationship between 5-HT content and radioresistance was also observed in FMA cells which were cultured in different densities or with reserpine. These results strongly suggest that the substance playing the main role in the induction of radioresistance in cells in vitro is the 5-HT that exists in the cells.  相似文献   

5.
Homologous DNA recombination levels were measured in normal and spontaneously immortalized murine and human fibroblasts, and in a number of primate and murine established fibroblast cell lines. Immortal cell lines and tumor-derived clones homologously recombined extrachromosomal plasmid substrates at frequencies approximately 100-fold higher than did normal cells. To further explore the mechanism responsible for this phenotype, homologous recombination frequency was measured using nuclear extracts derived from normal and immortalized murine and human fibroblasts. Extracts prepared from immortal cells catalyzed high levels of homologous recombination, whereas very little recombination activity was detected in extracts prepared from normal fibroblasts. Similarly, only extracts derived from immortal cells contained strand-transferase activity as measured by the recently described pairing-on-membrane assay. Mixing experiments indicated that a recombination enhancing factor or factors present in immortal cells, rather than a recombination inhibitor in normal cells, was responsible for the enhanced homologous recombination activity observed using extracts derived from the former.  相似文献   

6.
T Sasaki  M Shintani  K Kihara 《In vitro》1984,20(5):369-375
Mechanisms of the inhibition of growth of mammalian cell cultures caused by mycoplasmal infection were investigated by using cell-free extracts of 14 species of mycoplasmas. In four mammalian cell lines tested, the growth of two cell lines, FM3A and MDCK, was inhibited by the extracts of arginine-utilizing mycoplasmas, whereas that of the other two cell lines, Vero and LLC-MK2, was not inhibited by extracts of either arginine- or glucose-utilizing mycoplasmas. These results suggest that there are two types of cell cultures, one susceptible and the other insusceptible to arginine-utilizing mycoplasmas. In a series of experiments using FM3A cells, it was found that the growth inhibition caused by the extracts of arginine-utilizing mycoplasmas was due to removal of arginine from the medium by the action of arginine deiminase present in the extracts and that none of the metabolic products of arginine had any effect on the growth. A highly positive correlation (r = 0.96, P less than 0.01) was observed between the activity of arginine deiminase and the growth-inhibiting activity of extracts of arginine-utilizing mycoplasmas.  相似文献   

7.
Homologous recombination is vital to repair fatal DNA damage during DNA replication. However, very little is known about the substrates or repair pathways for homologous recombination in mammalian cells. Here, we have compared the recombination products produced spontaneously with those produced following induction of DNA double-strand breaks (DSBs) with the I-SceI restriction endonuclease or after stalling or collapsing replication forks following treatment with thymidine or camptothecin, respectively. We show that each lesion produces different spectra of recombinants, suggesting differential use of homologous recombination pathways in repair of these lesions. The spontaneous spectrum most resembled the spectra produced at collapsed replication forks formed when a replication fork runs into camptothecin-stabilized DNA single-strand breaks (SSBs) within the topoisomerase I cleavage complex. We found that camptothecin-induced DSBs and the resulting recombination repair require replication, showing that a collapsed fork is the substrate for camptothecin-induced recombination. An SSB repair-defective cell line, EM9 with an XRCC1 mutation, has an increased number of spontaneous gammaH2Ax and RAD51 foci, suggesting that endogenous SSBs collapse replication forks, triggering recombination repair. Furthermore, we show that gammaH2Ax, DSBs, and RAD51 foci are synergistically induced in EM9 cells with camptothecin, suggesting that lack of SSB repair in EM9 causes more collapsed forks and more recombination repair. Furthermore, our results suggest that two-ended DSBs are rare substrates for spontaneous homologous recombination in a mammalian fibroblast cell line. Interestingly, all spectra showed evidence of multiple homologous recombination events in 8 to 16% of clones. However, there was no increase in homologous recombination genomewide in these clones nor were the events dependent on each other; rather, we suggest that a first homologous recombination event frequently triggers a second event at the same locus in mammalian cells.  相似文献   

8.
Genetic and biochemical consequences of thymidylate stress   总被引:8,自引:0,他引:8  
We have examined the genetic and biochemical consequences of thymidylate stress in haploid and diploid strains of the simple eukaryote Saccharomyces cerevisiae (Bakers' yeast). Previously we reported that inhibition of dTMP biosynthesis causes "thymineless death" and is highly recombinagenic, but apparently not mutagenic, at the nuclear level; however, it is mutagenic for mitochondria. Concurrent provision of dTMP abolishes these effects. Conversely, excess dTMP is highly mutagenic for nuclear genes. It is likely that DNA strand breaks are responsible for the recombinagenic effects of thymidylate deprivation; such breaks could be produced by reiterative uracil incorporation and excision in DNA repair patches. In our experiments, thymidylate stress was produced both by starving dTMP auxotrophs for the required nucleotide and also by blocking de novo synthesis of thymidylate by various antimetabolites. We found that the antifolate methotrexate is a potent inducer of mitotic recombination (both gene conversion and mitotic crossing-over). This suggests that the gene amplification associated with methotrexate resistance in mammalian cells could arise, in part, by unequal sister-chromatid exchange induced by thymidylate stress. In addition, several sulfa drugs, which impede de novo folate biosynthesis, also have considerable recombinagenic activity.  相似文献   

9.
Summary Mechanisms of the inhibition of growth of mammalian cell cultures caused by mycoplasmal infection were investigated by using cell-free extracts of 14 species of mycoplasmas. In four mammalian cell lines tested, the growth of two cell lines, FM3A and MDCK, was inhibited by the extracts of arginine-utilizing mycoplasmas, whereas that of the other two cell lines, Vero and LLC-MK2, was not inhibited by extracts of either arginine- or glucose-utilizing mycoplasmas. These results suggest that there are two types of cell cultures, one susceptible and the other insusceptible to arginine-utilizing mycoplasmas. In a series of experiments using FM3A cells, it was found that the growth inhibition caused by the extracts of arginine-utilizing mycoplasmas was due to removal of arginine from the medium by the action of arginine deiminase present in the extracts and that none of the metabolic products of arginine had any effect on the growth. A highly positive correlation (r=0.96,P<0.01) was observed between the activity of arginine deiminase and the growth-inhibiting activity of extracts of arginine-utilizing mycoplasmas.  相似文献   

10.
The purpose of this paper is to determine the relationship between the response to radiation and the appearance of apoptosis and micronuclei with Trp53 protein in murine tumors after irradiation. Two murine tumors, EL4, which was derived from a mouse lymphoma, and FM3A, which was derived from a mouse mammary carcinoma, were locally irradiated with 15 Gy and sections were stained with H&E and an anti-Trp53 antibody. The response to radiation was greater in EL4 tumors than in FM3A tumors. The frequency of apoptotic cells in EL4 tumors was 6.1 +/- 1.2% at time zero, reached a peak of 36.3 +/- 3. 8% at 6 h, and then decreased with time through 72 h to 2.5 +/- 1.5% after 15 Gy irradiation. In FM3A tumors, no apoptotic cells were detected at 0, 1, 3, 6 or 24 h after exposure. At 48 and 72 h, the frequency was only 3.0 +/- 0.6% and 1.3 +/- 0.3%. Apoptotic cells increased significantly at 3, 6 and 24 h after irradiation in EL4 tumors (P < 0.008) and at 48 and 72 h in FM3A tumors (P < 0.006). The frequency of Trp53-positive cells was 17.9 +/- 2.2 and 15.2 +/- 2.3% at time zero in EL4 and FM3A tumors, respectively, increased to 74.5 +/- 4.5% in EL4 cells (P = 0.001), and increased to 33.9 +/- 1. 1% in FM3A cells (P = 0.005) 1 h after irradiation. Trp53-positive micronuclei appeared in cells in both tumors from 24 to 72 h after irradiation. The frequency of Trp53-positive micronuclei was 3.8 +/- 0.5 and 13.5 +/- 1.3% at 24 h in EL4 and FM3A tumors, respectively, and gradually decreased by 72 h. After exposure to 15 Gy, Trp53-positive micronuclei increased significantly in FM3A tumors compared to EL4 tumors at both 24 and 48 h (P < 0.02). The frequency of these micronuclei increased with increasing dose in FM3A tumors, and the difference between these percentages after 3 Gy and after 5, 10 and 15 Gy was significant (P < 0.02). Many apoptotic cells were observed in the radiosensitive EL4 tumor after irradiation. Death by apoptosis may be related to an early response to radiation in these tumors. The appearance of micronuclei may be an important mechanism of cell death in FM3A tumors in which no apoptosis was induced.  相似文献   

11.
Trifluorothymidine (TFT) can be phosphorylated by thymidine kinase (TK) to TFTMP which can inhibit thymidylate synthase (TS), resulting in depletion of thymidine nucleotides. TFT can be degraded by thymidine phosphorylase (TP) which can be inhibited by thymidine phosphorylase inhibitor (TPI). Using the TS in situ Inhibition Assay (TSIA) FM3A breast cancer cells were exposed 4 h or 24 h to TFT and 5-Fluorouracil (5FU). TS activity reduced to 9% (0.1 microM TFT) and 58% (1 microM 5FU) after 4 h exposure and to 6% (TFT) and 21% (5FU) after 24 h exposure. TPI did not affect TS inhibition by TFT. FM3A cells lacking TK or TS activity (FM3A/TK-) were far less sensitive to TFT compared to FM3A cells. Conclusion: TFT can be taken up and activated very rapidly by FM3A cancer cells, probably due to favourable TK enzyme properties, and TPI did not influence this.  相似文献   

12.
Folate antagonists, such as aminopterin, methotrexate and various sulfonamides, block de novo thymidylate biosynthesis in Saccharomyces cerevisiae. The resulting starvation for thymine nucleotides is lethal and recombinagenic in RAD wild-type strains. In this paper we report our studies of these effects in repair-deficient yeast. Antifolate treatment of various rad mutants revealed that repair defects influence the killing and recombination caused by thymidylate deprivation. Compared to a RAD wild-type strain, diploids homozygous for rad3, rad6 or rad18 were more resistant to cell killing. Thus, contrary to findings with conventional DNA-damaging agents, the lethal effects of thymidylate starvation appear to be ameliorated by certain DNA repair deficiencies. On the other hand, a rad50 strain was extremely sensitive to the antifolates. Within this series of diploids, increasing sensitivity to thymidylate starvation was accompanied by an increase in recombination frequencies. The degrees of lethality and recombination, induced by thymidylate depletion, were correlated with the severity of DNA-strand breakage in the RAD and rad50 strains. Experiments with diploids homozygous for rad52, rad54 or rad57 suggested that aborted recombination events, provoked by thymidylate deprivation, caused chromosome loss. Furthermore, the repair defects in these mutants indicated that double-strand breaks are among the lethal lesions induced by thymine nucleotide starvation. Finally, we discuss the possibility that the recombinagenicity of thymidylate stress may account for one type of acquired resistance to methotrexate in mammalian cells.  相似文献   

13.
Trifluorothymidine (TFT) can be phosphorylated by thymidine kinase (TK) to TFTMP which can inhibit thymidylate synthase (TS), resulting in depletion of thymidine nucleotides. TFT can be degraded by thymidine phosphorylase (TP) which can be inhibited by thymidine phosphorylase inhibitor (TPI). Using the TS in situ Inhibition Assay (TSIA) FM3A breast cancer cells were exposed 4 h or 24 h to TFT and 5‐Fluorouracil (5FU). TS activity reduced to 9% (0.1 µM TFT) and 58% (1 µM 5FU) after 4 h exposure and to 6% (TFT) and 21% (5FU) after 24 h exposure. TPI did not affect TS inhibition by TFT. FM3A cells lacking TK or TS activity (FM3A/TK?) were far less sensitive to TFT compared to FM3A cells. Conclusion: TFT can be taken up and activated very rapidly by FM3A cancer cells, probably due to favourable TK enzyme properties, and TPI did not influence this.  相似文献   

14.
Nucleolin associates with various DNA repair, recombination, and replication proteins, and possesses DNA helicase, strand annealing, and strand pairing activities. Examination of nuclear protein extracts from human somatic cells revealed that nucleolin and Rad51 co-immunoprecipitate. Furthermore, purified recombinant Rad51 associates with in vitro transcribed and translated nucleolin. Electroporation-mediated introduction of anti-nucleolin antibody resulted in a 10- to 20-fold reduction in intra-plasmid homologous recombination activity in human fibrosarcoma cells. Additionally, introduction of anti-nucleolin antibody sensitized cells to death induced by the topoisomerase II inhibitor, amsacrine. Introduction of anti-Rad51 antibody also reduced intra-plasmid homologous recombination activity and induced hypersensitivity to amsacrine-induced cell death. Co-introduction of anti-nucleolin and anti-Rad51 antibodies did not produce additive effects on homologous recombination or on cellular sensitivity to amsacrine. The association of the two proteins raises the intriguing possibility that nucleolin binding to Rad51 may function to regulate homologous recombinational repair of chromosomal DNA.  相似文献   

15.
Thymidylate synthase-negative mutant mouse cells starved of thymidine or their parental FM3A cells treated with 5-fluoro-2′-deoxyuridine produced DNA fragments ranging from 50 to 200 kilobase pairs with a peak at 100 kb in length as determined by pulsed-field agarose gel electrophoresis. Accumulation of the DNA fragments following such thymidylate stress was time-dependent but their size distribution did not change in either case. Regions of the chromosomal DNA breaks seemed to be restricted to those where DNA replication was in progress as shown by pulse-labeling of the DNA synthesis. Emetine, an inhibitor of protein synthesis, blocked the accumulation of the DNA fragments when present during thymidylate stress. Cell-free extracts prepared from the thymidylate-stressed cells derived by either of the above means were capable of degrading DNA in chromatins prepared from normally growing cells in vitro. The resulting DNA fragments were similar but with a somewhat broader size distribution compared to those produced in vivo. The broader distribution of the fragments produced in the in vitro reaction became closer to the pattern obtained in vivo when ATP and 4 deoxyribonucleotides were added to the reaction.  相似文献   

16.
In mammalian cells, chromosomal double-strand breaks are efficiently repaired, yet little is known about the relative contributions of homologous recombination and illegitimate recombination in the repair process. In this study, we used a loss-of-function assay to assess the repair of double-strand breaks by homologous and illegitimate recombination. We have used a hamster cell line engineered by gene targeting to contain a tandem duplication of the native adenine phosphoribosyltransferase (APRT) gene with an I-SceI recognition site in the otherwise wild-type APRT+ copy of the gene. Site-specific double-strand breaks were induced by intracellular expression of I-SceI, a rare-cutting endonuclease from the yeast Saccharomyces cerevisiae. I-SceI cleavage stimulated homologous recombination about 100-fold; however, illegitimate recombination was stimulated more than 1,000-fold. These results suggest that illegitimate recombination is an important competing pathway with homologous recombination for chromosomal double-strand break repair in mammalian cells.  相似文献   

17.
A. S. Waldman 《Genetics》1994,136(2):597-605
Mouse LTK(-) cells were transfected with a pair of defective Herpes simplex virus thymidine kinase (tk) genes. One tk gene had an 8-bp insertion mutation while the second gene had a 100-bp inversion. Extrachromosomal homologous recombination leading to the reconstruction of a functional tk gene was monitored by selecting for tk positive cells using medium supplemented with hypoxanthine/aminopterin/thymidine. To assess whether the search for homology may be a rate-limiting step of recombination, we asked whether the presence of an excess number of copies of a tk gene possessing both the insertion and inversion mutations could inhibit recombination between the singly mutated tk genes. Effective competitive inhibition would require that homology searching (homologous pairing) occur rapidly and efficiently. We cotransfected plasmid constructs containing the singly mutated genes in the presence or absence of competitor sequences in various combinations of linear or circular forms. We observed effective inhibition by the competitor DNA in six of the seven combinations studied. A lack of inhibition was observed only when the insertion mutant gene was cleaved within the insertion mutation and cotransfected with the two other molecules in circular form. Additional experiments suggested that homologous interactions between two DNA sequences may compete in trans with recombination between two other sequences. We conclude that homology searching is not a rate-limiting step of extrachromosomal recombination in mammalian cells. Additionally, we speculate that a limiting factor is involved in a recombination step following homologous pairing and has a high affinity for DNA termini.  相似文献   

18.
Homologous recombination (HR) is established as a significant contributor to double-strand break (DSB) repair in mammalian somatic cells; however, its role in mammalian germ cells has not been characterized, although being conservative in nature it is anticipated to be the major pathway in germ cells. The germ cell system has inherent limitations by which intact cell approaches are not feasible. The present study, therefore, investigates HR-mediated DSB repair in mouse germ cell extracts by using an in vitro plasmid recombination assay based on functional rescue of a neomycin (neo) gene. A significantly high-fold increase in neo+ (Kan(R)) colonies following incubation of two plasmid substrates (neo delta1 and neo delta2) with testicular extracts demonstrated the extracts' ability to catalyze intermolecular recombination. A significant enhancement in recombinants upon linearization of one of the plasmids suggested the existence of an HR-mediated DSB repair activity. Comparison of the activity at sequential developmental stages, spermatogonia, spermatocytes and spermatids revealed its presence at all the stages; spermatocyte being the most proficient stage. Further, restriction analysis of recombinant plasmids indicated the predominance of gene conversion in enriched spermatocytes (mostly pachytenes), in contrast to gonial and spermatid extracts that showed higher reciprocal exchange. In conclusion, this study demonstrates HR repair activity at all stages of male germ cells, suggesting an important role of HR-mediated DSB repair during mammalian spermatogenesis. Further, the observed preference of gene conversion over reciprocal exchange at spermatocyte stage correlates with the close association of gene conversion with the meiotic recombination program.  相似文献   

19.
20.
R Kominami 《Mutation research》1990,243(2):133-139
Naturally occurring mutations are composed of a large number of mutations of many types that include mutations resulting from unequal homologus recombination between repetitive elements. The present paper describes a sensitive method for detecting such mutations without phenotypic selection. This system utilizes a tandemly arranged Vr repetitive sequence comprising 6000 copies in the mouse genome that is present in the spacer of the ribosomal RNA gene. For HincII digests of FM3A cell DNA, the Vr probe provides 4 major bands of 2.7 kb, 1.7 kb, 1.6 kb and 1.35 kb and several minor bands. Newly induced mutations due to unequal homologous recombination are observed as disappearance of the minor bands and appearance of extra bands. With this method a spontaneous mutation was detected in 14 cell clones randomly isolated after 60 days of continuous growth. Exposure to 4 micrograms/ml of N-methyl-N'-nitro-N-nitrosoguanidine for 2 h revealed 4 mutations in 11 clones examined. Culturing the cells after treatment in the presence of 12-O-tetradecanoylphorbol 13-acetate enhanced the frequency, yielding 6 mutations in 5 clones. The assay can skip phenotypic selection prior to analysis of DNA changes and hence provides a direct method for monitoring mutations resulting from homologous recombination in non-biased cell populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号