首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Superoxide dismutase was purified from pea (Pisum sativum L., cv. Wando) seeds and corn (Zea mays L., cv. Michigan 500) seedlings. The purified pea enzyme eluting as a single peak from gel exclusion chromatography columns contained the three electrophoretically distinct bands of superoxide dismutase characterizing the crude extract. The purified corn enzyme eluted as the same peak as the pea enzyme, and contained five of the seven active bands found in the crude extract. The similar molecular weights and the cyanide sensitivities of these bands indicated that they are probably isozymes of a cupro-zinc superoxide dismutase. One of the remaining corn bands was shown to be a peroxidase.  相似文献   

2.
We measured the concentrations of acetyl-CoA and malonyl-CoA in shoots and roots of corn (Zea mays, L., cv. “Peter Corn”). Acetyl-CoA and malonyl-CoA concentrations were found to be relatively constant in shoots and in roots under a light-dark cycle. Acetyl-CoA concentrations were lower in shoots than in roots, whereas malonyl-CoA concentrations were higher in shoots than in roots.  相似文献   

3.
Superoxide dismutase has been purified to homogeneity from Lens esculenta cotyledons and shoots. The two forms appeared to be identical. The purified enzyme contained two electrophoretically distinct bands. It contained two ions of Cu and two ions of Zn. Gel filtration experiments indicate a molecular weight of about 33,000. The spectrum of ultraviolet and visible regions and electron paramagnetic resonance were similar to those of Cu-Zn mammalian superoxide dismutase.  相似文献   

4.
Seedlings of two Indica rice (Oryza sativa L.) cvs. HUR-105 and Vandana, differing in Al-tolerance were used to identify the key mechanisms involved in their differential behaviour towards Al toxicity. Cv. HUR-105 appeared to be Al sensitive by showing significant reduction (p ≤ 0.01) in root/shoot length, fresh weight, dry weight and water content in presence of 421 μM Al3+ in growth medium whereas cv. Vandana appeared to be fairly Al3+ tolerant. A conspicuous and significant reduction in dry weight of root and shoot was observed in Al sensitive cv. HUR-105 with 178 μM Al3+ treatment for 3 days. Al was readily taken up by the roots and transported to shoots in both the rice cultivars. Localization of absorbed Al was always greater in roots than in shoots. Our results of the production of reactive oxygen species (ROS) H2O2 and O2 .? and activities of major antioxidant enzymes such as total superoxide dismutase (SOD), Cu/Zn SOD, Mn SOD, Fe SOD, catalase (CAT) and guaiacol peroxidase revealed Al induced higher oxidative stress, greater production of ROS and lesser capacity to scavenge ROS in cv. HUR-105 than Vandana. With Al treatment, higher oxidative stress was noted in shoots than in roots. Greatly enhanced activities of SOD (especially Fe and Mn SOD) and CAT in Al treated seedlings of cv. Vandana suggest the role of these enzymes in Al tolerance. Furthermore, a marked presence of Fe SOD in roots and shoots of the seedlings of Al tolerant cv. Vandana and its significant (p ≤ 0.01) increase in activity due to Al-treatment, appears to be the unique feature of this cultivar and indicates a vital role of Fe SOD in Al-tolerance in rice.  相似文献   

5.
Wheat (Triticum aestivum L. cv. ‘Zyta’) seedlings were treated with 10, 100 and 200 μM Ni. Tissue Ni accumulation, length, relative water content (RWC), proline and H2O2 concentrations as well as the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POD) and glutathione S-transferase (GST) were studied in the shoots and roots after 6 days of Ni exposure. Treatment with Ni, except for its lowest concentration, resulted in a significant reduction in wheat growth. In comparison to the shoots, the roots showed greater inhibition of elongation, which corresponded with higher accumulation of Ni in these organs. Both shoots and roots responded to Ni application with a decrease in RWC and enhancement in proline concentration. Greater dehydration of the shoot tissue was accompanied by more intense accumulation of proline. Treatment of the wheat seedlings with the highest concentration of Ni led to about 60% increase in H2O2 concentration in both studied organs. Apart from CAT, constitutive activities of antioxidative enzymes were much higher in the roots than in the shoots. Exposure of the seedlings to Ni resulted in SOD activity decline, which was more marked in the roots. While the shoots showed a substantial decrease (up to 30%) in CAT activity, in the roots the activity of this enzyme remained unchanged. After Ni application APX, POD and GST activities increased several-fold in the shoots, whereas in the roots they were not significantly altered. The results suggest that differential antioxidative responses of the shoots and roots of wheat seedlings to Ni stress might be related to diverse constitutive levels of antioxidant enzyme activities in both organs.  相似文献   

6.
Effects of putrescine (Put) on responses of wheat (Triticum aestivum) seedlings or detached tillers at mid-milky stage to high temperature (HT) stress were investigated. The heat tolerant cv. PBW 343 exhibited higher content of antioxidants and activities of antioxidative enzymes, while lower content of lipid peroxides as compared to the heat-sensitive cv. HD 2329. HT elevated peroxidase (POX) and superoxide dismutase (SOD) activities, while diamine oxidase (DAO) and polyamine oxidase (PAO) activities were reduced in roots, shoots and developing grains. Application of Put under HT further enhanced POX and SOD activities along with increased content of ascorbate and tocophereol in grains. Invariably POX and SOD revealed higher activities in roots while CAT, DAO and PAO activities were higher in shoots. The content of lipid peroxides was increased in roots and shoots of HT stressed seedlings but less in Put-treated cv. PBW 343.  相似文献   

7.
Effects of NaCl and Mycorrhizal Fungi on Antioxidative Enzymes in Soybean   总被引:12,自引:3,他引:9  
The effects of different concentrations of NaCl on the activities of antioxidative enzymes in the shoots and roots of soybean (Glycine max [L.] Merr cv. Pershing) inoculated or not with an arbuscular mycorrhizal fungus, Glomus etunicatum Becker & Gerdemann, were studied. Furthermore, the effect of salt acclimated mycorrhizal fungi on the antioxidative enzymes in soybean plants grown under salt stress (100 mM NaCl) was investigated. Activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were increased in the shoots of both mycorrhizal (M) and nonmycorrhizal (NM) plants grown under NaCl salinity. Salinity increased SOD activity in the roots of M and NM plants, but had no effect on CAT and polyphenol oxidase activities in the roots. M plants had greater SOD, POD and ascorbate peroxidase activity under salinity. Under salt stress, soybean plants inoculated with salt pre-treated mycorrhizal fungi showed increased SOD and POD activity in shoots, relative to those inoculated with the non pre-treated fungi.  相似文献   

8.
Two cultivars of Jerusalem artichoke (Helianthus tuberosus L.) differing in genotype, Red skin (cv. R., salt-tolerant but low-yield) and White skin (cv. W., salt-sensitive but high-yield), were used to investigate malondialdehyde (MDA) content and antioxidant enzyme activity changes in their roots under a hydroponic culture system with 250 mM NaCl. The results showed that MDA contents in roots of the two genotypes increased, but MDA content of cv. R. was higher than that of cv. W. Changes in all antioxidant enzymes in roots of both varieties exhibited a similar trend, namely increased initially and then decreased. However, there were still some differences existing between the two cultivars. In other words, activities of the other two antioxidant enzymes except catalase (CAT) and peroxidase (POD) in roots of cv. R. were less than controls at 48 h, while all others except ascorbate peroxidase (APX) in roots of cv. W. were greater than controls. The peak of superoxide dismutase (SOD) activity of cv. W. was observed to appear earlier than that of cv. R. CAT activity of cv. W. was significantly greater than the value of cv. R. and the latter showed a moderate trend. POD activity of cv. R. obtained the maximum at 6 h, whereas the peak of cv. W. displayed at 24 h. APX activity of cv. R. declined more than that of cv. W. These results suggested that there was a lower efficiency of scavenging reactive oxygen species (ROS) in cv. R. roots. Concomitantly, salt stress caused more severe damage to roots of cv. R. Antioxidant enzymes in roots were inadequate to elucidate salt-tolerance mechanisms of the whole plant.  相似文献   

9.
Photoconversion of riboflavin to lumichrome in plant tissues   总被引:1,自引:0,他引:1       下载免费PDF全文
Free flavins have been extracted from shoots of etiolated corn (Zea mays L., var. Burpee Snowcross) and from yeast cells and separated from other substances by absorption on resorcinol-formaldehyde resin and talc columns and by thin layer chromatography. Riboflavin was the only free flavin present. Extracts of etiolated shoots of oats (Avena sativa L., var. Multiline E-69 and Clinford) yielded riboflavin plus a second free flavin previously demonstrated in oats. The areas of the chromatograms expected to contain lumichrome were completely clear. After illumination of any of the three organisms with artificial light (1100 ft-c) or sunlight for 6 hours, lumichrome (7,8-dimethylalloxazine) was found. In corn shoots after irradiation by sunlight, the amount of lumichrome present was equivalent to 2.5% of the total free flavin. Lumichrome was identified by thin layer chromatography in six solvent systems (including two two-dimensional systems), by its characteristic fluorescence in acetic acid, by its absorption spectrum, and by formation of a characteristic hydrate in ammonia-containing solutions. A comparison was made with in vitro photolysis of riboflavin and the possible role of photolysis of riboflavin (either free or bound) and of lumichrome formation in photo-responses of plants is discussed. Placing the shoots in the dark for 4 hours after irradiation in sunlight for 6 hours led to no detectable loss of the lumichrome which had been formed.  相似文献   

10.
The effects of 1-min-long exposure to 42°C (hardening heating) on heat tolerance and dynamics of ROS (superoxide anion radical and hydrogen peroxide) generation were investigated in the wheat (Triticum aestivum L., cv. Elegiya) seedlings. During the initial 5–30 min after the onset of hyperthermia, ROS generation by roots and shoots was intensified, and superoxide dismutase (SOD) was activated. During the first hour after hardening heating, the seedling tolerance to injurious 10-min-long treatment with high temperature (46°C) decreased but subsequently it gradually rose, reaching maximum in 24 h. Transient accumulation of hydrogen peroxide induced by hardening was suppressed by seedling treatment with H2O2 scavenger dimethylthiourea, by inhibitors of NADPH-oxidase (imidazole) and DDC (sodium diethyldithiocarbamate). These compounds considerably reduced favorable effect of hardening on seedling heat tolerance. It was concluded that generation of a signal inducing the development of heat tolerance depended on NADPH-oxidase producing superoxide anion radical and SOD that transforms it into hydrogen peroxide (more stable ROS performing signaling functions).  相似文献   

11.
The effect of artificial ageing on the relationship between mitochondrial activities and the antioxidant system was studied in soybean seeds (Glycine max L. cv. Zhongdou No. 27). Ageing seeds for 18 d and 41 d at 40 °C reduced germination from 99% to 52% and 0%, respectively. In comparison to the control, malondialdehyde content and leachate conductivity in aged seeds increased and were associated with membrane damage. Transmission electron microscopy and Percoll density gradient centrifugation showed that aged seeds mainly contained poorly developed mitochondria in which respiration and marker enzymes activities were significantly reduced. Heavy mitochondria isolated from the interface of the 21% and 40% Percoll were analyzed. Mitochondrial antioxidant enzymes activities including superoxide dismutase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase, and dehydroascorbate reductase were significantly reduced in aged seeds. A decrease in total ascorbic acid (ASC) and glutathione (GSH) content as well as the reduced/oxidized ratio of ASC and GSH in mitochondria with prolonged ageing showed that artificial ageing reduced ASC–GSH cycle activity. These results suggested an elevated reactive oxygen species (ROS) level in the aged seeds, which was confirmed by measurements of superoxide radical and hydrogen peroxide levels. We conclude that mitochondrial dysfunction in artificially aged seeds is due to retarded mitochondrial and ASC-GSH cycle activity and elevated ROS accumulation.  相似文献   

12.
Since jasmonates have been shown to mimic some of the plant'sresponses to stress, the effect of methyl jasmonate on antioxidant enzymes andcompounds was investigated in roots and shoots of light- and dark-grown canola(Brassica napus cv. Westar). The pattern of superoxidedismutase isoforms activity was also investigated. When enzyme activities werecalculated on a per gram of fresh weight basis, nearly all enzymes examinedshowed enhanced activity. However, when these activities were calculated basedon the amount of protein, methyl jasmonate induced an increase only insuperoxide dismutase activity in the roots of both light- and dark-grownseedlings. The ascorbate level was found to be higher in treated shoots,whereasthe glutathione level was found to be higher in treated roots. We conclude thatthe plant's antioxidant response to methyl jasmonate may be mainlydetermined by the type of tissue rather than by the light conditions. However,this last factor appeared to be involved in some antioxidant componentresponse,e.g. catalase activity and glutathione content.  相似文献   

13.
Altering the level of phytic acid phosphorus by nutritional means had no effect on the ability of soybean (Glycine max L. [Merr.], cv `Williams 79') seeds to germinate under laboratory or greenhouse conditions. Dry matter moved out of the cotyledons at similar rates whether the germinating seeds initially contained low (0.19), medium (0.59), or high (1.00 milligram per seed) phytic acid phosphorus. Growth of roots and shoots from 3 to 9 days after planting was similar for seeds containing low and medium levels of phytic acid phosphorus. The medium level of phytic acid resembles that found in field-grown seed, so it is clear that soybean seeds normally contain a phosphorus reserve far above that needed for germination and early seedling growth.  相似文献   

14.
Two chickpea cultivars PBG-1 and PDG-3 along with a wild species Cicer judaicum were investigated to compare the activities of their antioxidant enzymes in mature seeds and roots, as well as shoots and cotyledons of seedlings germinated under dark and continuous illumination of 40 μmol m−2 s−1 photosynthetically active radiation (PAR). Seedling biomass of C. judaicum was lower as compared to cultivars of PBG-1 and PDG-3 both under dark and light conditions. Light reduced the biomass of seedlings. Activities of glutathione reductase (GR) and ascorbate peroxidase (APX) were higher in shoots and roots of C. judaicum compared to the cultivars PBG-1 and PDG-3. In mature seeds, the activities of GR and APX were higher in the cultivated genotypes whereas catalase (CAT) and peroxidase were higher in C. judaicum. Under illumination, a general upregulation of CAT in both shoots and cotyledons and of GR in shoots was observed in all the three genotypes. However, superoxide dismutase (SOD) increased in C. judaicum and APX in PBG-1 and PDG-3. The differences in antioxidant enzyme system between wild and cultivated genotypes possibly contribute to better tolerance of wild Cicer species against abiotic and biotic stresses.  相似文献   

15.
Comparative immunochemistry of phytochrome   总被引:17,自引:16,他引:1       下载免费PDF全文
Pratt LH 《Plant physiology》1973,51(1):203-209
Partially purified high molecular weight preparations of phytochrome, estimated to be close to 440,000 molecular weight based upon chromatography through a calibrated Bio-Gel P-300 column, were obtained from Garry and Newton oats (Avena Sativa L., cv. Garry and cv. Newton), rye (Secale cereale L., cv. Balbo), barley (Horedum vulgare L., cv. Harrison), and pea (Pisum sativum L., cv. Alaska) by a sequence of three chromatographic steps: brushite, diethylaminoethyl cellulose, and Bio-Gel P-300. No significant differences were observed between these preparations during purification or subsequent handling. In addition, a low molecular weight form of phytochrome was purified from Garry oats. Two specific antisera against a low molecular weight form of phytochrome (60,000 molecular weight) obtained from etiolated Garry oat seedlings are characterized and used to compare the phytochrome preparations. Double diffusion assays indicated antigenic identity between all preparations except that pea phytochrome yielded a spur when compared to oat phytochrome. Micro complement fixation assays yielded complete identity between Garry and Newton oat phytochrome, reduced activity with rye and barley phytochrome, and a complete lack of activity with pea phytochrome at the serum dilutions assayed. Immunoelectrophoretic assays indicated that all high molecular weight phytochrome preparations were homogeneous by this criterion and that there were only slight differences between the preparations in electrophoretic mobility. Large and small forms of phytochrome isolated from Garry oats were found to be very similar antigens when tested with the anti-small phytochrome sera, although the small form was observed to electrophorese at a much slower rate than the large.  相似文献   

16.
Distribution of myrosinase activity in extracts from seeds,intact plants, cell cultures and regenerated callus and plantsof Brassica napus L. was determined by the rate of glucose formationfrom glucosinolate hydrolysis. Calli with shoots and regeneratedplants were obtained from protoplasts or from explants. Of the seedling organs from Brassica napus L. cv. Niklas, hypocotylsshowed the highest myrosinase activity. In cotyledons a nearlyconstant enzyme activity was determined over the first 6 d,followed by a gradual decline. Roots showed a fast decline inenzyme activity over the investigated period. Freshly-isolated protoplasts contained less myrosinase activitythan the original intact tissue. The enzyme activity in developingcalli generally decreased during the first culture periods.After the initial decline a low activity was found which wasstable for a period of more than 2 years. The enzyme activityshowed fluctuations when measured at different times after mediumchange. Protoplast calli with regenerated shoots showed a considerablyhigher myrosinase activity than calli without shoots. Myrosinaseactivity was also found in explant calli including explant callifrom cotyledons and hypocotyls after induction of shoots. Myrosinase activity in seeds from 21 cultivars of Brassica napus,Brassica campestris, Sinapis alba and Raphanus sativus was testedand the highest myrosinase activity was found in seeds fromthe Sinapis alba cultivar Trico while the lowest activity wasfound in the Brassica campestris cultivar Rapido III. Leaf, stem and inflorescence from flowering regenerated or seed-grownplants contained a low but significant myrosinase activity.In contrast, roots showed a high myrosinase activity. The resultsobtained from regenerated plants indicate that the myrosinasesystem is stable in vitro culture, and that the glucosinolate-myrosinasesystem is active in calli tissue. Key words: Myrosinase (thioglucoside glucohydrolase, E.C. 3.2.3.1), in vitro cultures, intact plants  相似文献   

17.
Functional xylem anatomy in root-shoot junctions of six cereal species   总被引:5,自引:0,他引:5  
R. Aloni  M. Griffith 《Planta》1991,184(1):123-129
In cereals, the formation of safety zones in the root-shoot junction could protect the vessels of roots from embolism originating in the shoot. The root-shoot junction was examined both anatomically, with a light microscope, and experimentally, using a pressurized-air method, in the base of seminal and adventitious roots of maize (Zea mays L. cv. Seneca 60-II), a corngrass mutation of maize (Cg mutant), sorghum (Sorghum bicolor L. cv. Ho-Pak), winter oats (Avena sativa L. cv. Ogle), spring wheat (Triticum aestivum L. cv. Glenlea), winter wheat (T. aestivum cv. Monopol), winter barley (Hordeum vulgare L. cv. Wysor), spring rye (Secale cereale L. cv. JO-02 Finland), and winter rye (S. cereale cv. Musketeer). Two types of hydraulic architecture were found in the cereal roots: (i) a very safe root vessel system, as in winter rye, in which the vessels of the roots are separated from those of the shoots by tracheids, versus (ii) a completely unsafe system, as in corngrass, where the vessels in the root are continuous with the vessels in the shoot. The xylem anatomy of the seminal roots is generally correlated with the species-specific overall root morphology. Rye, wheat and barley, which develop four to six seminal roots, show a high degree of vascular segmentation resulting in, the formation of safe root vessels; maize, sorghum and oats, which typically develop a primary seminal root, contain unsafe vessels that are continuous through the mesocotyl and through the first node. In adventitious roots, vascular segmentation is not related to overall root morphology. Differences in the proportion of safe adventitious roots in which all the vessels end in the root-shoot junction range from 9 to 98% in the cereals studied. In the unsafe roots of these cereals, the number of vessels per root that are continuous through the junction range from 1 to 14. As significant differences in vascular segmentation of the root-shoot junction occur not only between species, but also between cultivars, we suggest that selection based on the occurrence of safety zones might be used in breeding programs designed to improve adaptation of cereals to drought and cold temperatures.This research project was supported by the Natural Sciences and Engineering Research Council of Canada through an International Scientific Exchange Award to R.A. and Dr. C.A. Peterson, and through an Operating Grant to M.G. We thank Dr. G. McLeod (Agriculture Canada, Swift Current, Sask., Canada), Dr. N.P.A. Huner (University of Western Ontario, London, Ont., Canada) and Dr. W.F. Tracy (University of Wisconsin, Madison, USA) for providing seeds; Dr. C.A. Peterson and Dr. W.B. McKendrick (University of Waterloo) for use of the Zeiss photomicroscopes; Dr. M.A. Dixon (University of Guelph, Guelph, Ont.) for use of the Moore pressure gauge; and Dr. R.J. O'Hara-Hines (University of Waterloo) for statistical advice.  相似文献   

18.
A greenhouse experiment was conducted to examine the changes in antioxidant enzyme activities of arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck and Smith inoculated (M+) and non-inoculated (M−) maize (Zea mays L.) plants (variety COHM5) under varying levels of zinc (0, 1.25, 2.5, 3.75 and 5.0 mg kg−1). Roots and shoots sampled at 45 days after sowing (DAS) were estimated for its antioxidant enzymes (superoxide dismutase, peroxidase) IAA oxidase, polyphenol oxidase, acid phosphatase and nutritional status especially P and Zn concentrations. Mycorrhizal inoculation significantly (P ≤ 0.01) increased all the four antioxidant enzymes in both roots and shoots at 45 DAS regardless of Zn levels. All enzyme activities except SOD increased progressively with increasing levels of Zn under M+ and M− conditions. The SOD activity got decreased in roots and shoots at 2.5 and 3.75 mg Zn kg−1. Acid phosphatase activity in M+ roots and shoots were higher in all levels of Zn but the values decreased with increasing levels of Zn particularly in roots. Mycorrhizal fungus inoculated plants had higher P and Zn concentrations in both stages in comparison to non-inoculated plants. Our overall data suggest that mycorrhizal symbiosis plays a vital role in enhancing activities of antioxidant enzymes and nutritional status that enables the host plant to sustain zinc deficient conditions.  相似文献   

19.
Vitrification of shoots of Prunus avium L. L. was induced and expressed in a four week in vitro multiplication cycle simply by replacing agar by gelrite. The first vitrification symptoms were visible from the 7th day on. Enzymatic antioxidants were compared weekly in crude extract of normal (on agar) and vitrifying (on gelrite) shoots. The activity of superoxide dismutase was higher in vitrifying shoots. The other enzymes (gaîacol-peroxidase, catalase, ascorbate peroxidase, mono- and dehydro-ascorbate reductases, glutathione reductase) had lower activities. Increased superoxide dismutase activity might mean hydrogen peroxide accumulation and decreased activities of the other enzymes, deficiency in its detoxification. The question therefore is raised whether the hyperhydric morphological abnormalities result from the accumulation of toxic oxygen forms. Vitrification is often considered as a morphological response to several stresses. Contrary to most plants which adapt themselves to stresses by increasing all the above defence enzymes, in vitro shoots under vitrifying conditions appear unable to react in a similar manner.Abbreviations Apx ascorbate peroxidase - Gpx gaîacol peroxidase - CAT catalase - H2O2 hydrogen peroxide - SOD superoxide dismutase - MDHAR monodehydroascorbate reductase - DHAR dehydroascorbate reductase - GR glutathione reductase - MS Murashige and Skoog (1962) - IBA indolebutyric acid - BAP benzyladenine - GA3 gibberellic acid  相似文献   

20.
《Plant science》1987,50(2):105-109
Levels of chloroplast antioxidants and enzymes that scavenge oxygen racidals were followed in the leaves of pea plants (Pisum sativum L. cv. Meteor) grown under glasshouse conditions between April 1984 and May 1985. While little variation in pigment levels or superoxide dismutase activity was detected during this period, plants grown in early summer (May–June) contained appreciably higher levels of ascorbate, ascorbate peroxidase and glutathione reductase than plants grown in winter (Dec–Jan.). The role of light intensity in regulating levels of chloroplast antioxidants was examined further using pea plants grown in a constant environment chamber under 100 or 400 μmol m−2 s −1 photon flux density. Chloroplasts isolated from plants grown at the higher light intensity contained significantly higher levels of ascorbate, ascorbate peroxidase, glutathione reductase and dehydroascorbate reductase. These data suggest that light intensity may have an important influence on the level and activity of chloroplast antioxidants and oxygen radical scavenger enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号