首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-linkage of Induced Mutations in Chinese Hamster Cells   总被引:8,自引:0,他引:8  
The relatively rapid loss of human chromosomes from human-rodent somatic cell hybrids has allowed the determination of linkage relationships between several human genes1–4. Cells that have segregated out most of the human chromosomes are analysed for the presence or absence of particular human gene products; when two gene products are always found to be retained together, they are assumed to be linked. Little has been done to extend these genetic techniques to cell hybrids formed between two different mutants of the same cell line. A linkage analysis would provide a valuable means of interpreting the gene function altered in such mutants. The principal obstacle to such an approach has been the fact that homospecific cell hybrids are rather stable, losing chromosomes at only a low rate5–7. Nevertheless, by using suitably marked strains, it is possible to select rare segregants from a homospecific hybrid population7,8. I have applied such a system to test for linkage between several chemically induced mutations in a Chinese hamster cell line.  相似文献   

2.
We have studied the effect of X or γ irradiation, of one parent of a cell hybrid, on hybrid viability and chromosome segregation. The hybrid types studied were mouse-Chinese hamster (which spontaneously lose a few hamster chromosomes) and Chinese hamster-human (which spontaneously lose most of the human complement). Preirradiation of the segregated and retained cell parent resulted in highly asymmetric hybrid survival curves; survival was greatly reduced when the retained parent was irradiated, especially for hamster-human fusions. Preirradiation of the parents of mouse-hamster hybrids modified both the direction and the extent of chromosome segregation, but no consistent effect on elimination was observed for hamster-human hybrids, and reversal of the direction of loss was never observed. These results are more consistent with the hypothesis that chromosome segregation from hybrids results from an intracellular chromosome selection, than with the hypothesis that cellular selection acts on randomly generated chromosome variants.  相似文献   

3.
We have developed an X-irradiation:cell fusion procedure that segregates segments of human chromosomes lacking selectable markers and have used this approach to construct somatic cell hybrids retaining fragments of human chromosome 4 as the only human material. To identify hybrids retaining a small chromosomal fragment in the region of the Huntington disease (HD) gene, we used Southern blot analysis to screen 72 hybrid lines for the presence or absence of seven chromosome 4 single-copy loci. These data, combined with in situ hybridization experiments, identified three hybrids of interest. One of these cell lines, C25, stably retains a 10,000- to 20,000-kb fragment of distal 4p in the vicinity of the HD gene, translocated to a hamster chromosome. Field-inversion gel electrophoresis revealed no evidence of rearrangements in the human DNA present in C25. In combination with similar radiation hybrids, C25 is a valuable tool for isolating DNA probes near the HD gene.  相似文献   

4.
Evidence is presented for the uptake of the human X chromosome by human-Chinese hamster cell hybrids which lack H P R T activity, following incubation with isolated human HeLa S3 chromosomes. Sixteen independent clonal cell lines were isolated in H A T medium, all of which contained a human X chromosome as determined by trypsin-Giemsa staining. The frequency of H A T-resistant clones was 32 x 10(-6) when 10(7) cells were incubated with 10(8) HeLa chromosomes. Potential reversion of the hybrid cells in H A T medium was less than 5 x 10(-7). The 16 isolated cell lines all contained activity of the human X-linked marker enzymes H P R T, P G K,alpha-Gal A, and G6PD, as determined by electrophoresis. The phenotype of G6PD was G6PD A, corresponding to G6PD A in HeLa cells. The human parental cells used in the fusion to form the hybrids had the G6PD B phenotype. The recipient cells gave no evidence of containing human X chromosomes. These results indicate that incorporation and expression of HeLa X chromosomes is accomplished in human-Chinese hamster hybrids which lack a human X chromosome.  相似文献   

5.
J A Graves  I Barbieri 《Génome》1992,35(3):537-540
Using human and Chinese hamster established lines as cell parents, we constructed hamster-human cell hybrids and human cell - hamster karyoplast hybrids. The cell hybrids retained one or two sets of hamster chromosomes and lost most of the human chromosomes. The karyoplast hybrids, however, retained a full set of human chromosomes and lost most of the Chinese hamster chromosomes. This reverse segregation pattern implies that cytoplasmic factors are major determinants of the direction of chromosome segregation.  相似文献   

6.
A number of human intraspecific hybrids were produced by fusing the 8-azaguanine-resistant cell line D98/AH-2 with PHA-stimulated lymphocytes from a normal human male, followed by selection in HAT medium. The parent cells differed in zymogram patterns for 4 enzyme systems. Hypoxanthine-guanine phophoribosyltransferase was missing in D98/AH-2 and was determined in the hybrids by the normal gene derived from the lymphocyte donor's X chromosome. The HL-A antigens of the lymphocyte donor as well as the W28 specificity from HeLa were easily recognized by a cytotoxicity assay on the hybrid cells, while D98/AH-2 itself was not killed in the normal way by any HL-4 typing sera. The initial hybrid karyotype in all lines was relatively stable, but slow loss of chromosomes occurred following extended growth in culture. The importance of the culture conditions for the rate of chromosome loss was demonstrated. The behavior of several chromosomes was followed in the hybrids and their derivatives. There was relatively nonspecific loss of small numbers of chromosomes, showing that loss of chromosomes from both the D98/AH-2 and the normal lymphocyte parent can occur. Cell lines resistant to 6-thioguanine were selected from the sensitive hybrids. Most had lost the lymphocyte donor's X chromosome, thereby losing the only active allele for HGPRT present in the initial hybrids. However, one line, DMR41, apparently retained the X chromosome and may have a mutated allele for HGPRT. Two lines that are the products of spontaneous segregation are also described. DM4CS and DM17A.  相似文献   

7.
The pig chromosome complement of six different types of pig-rodent hybrid cell lines was examined by means of fluorescence in situ hybridization with a porcine SINE probe. The cell lines were obtained by fusing pig lymphocytes with cells of the Chinese hamster cell lines wg3h, BK14-150 and E36, and of the mouse cell lines NSO, PU and LMTK-. The hybrids were analysed with respect to: (1) the number of pig chromosomes, (2) the type of pig chromosomes, (3) the occurrence of pig-rodent chromosome trans-locations, and (4) the presence of pig chromsome fragments. The results show that the number of pig chromosomes varied within and among hybrid cell lines. The pig-hamster hybrids mainly retained nontelocentric pig chromosomes, whereas the pig-mouse hybrids also retained telocentric pig chromosomes. Pig-rodent chromosome translocations were found in all types of hybrids, but the incidence was in general low. Chromosome fragments were abundant in BK14-150 hybrids, and rare in most other hybrid cell lines. It is concluded that the SINE probe is a useful tool to make a preliminary characterization of the porcine chromosome complement of pig-rodent somatic cell hybrids. The results of this characterization can be used to select hybrids for further cytogenetic analysis. Furthermore, our data show that different rodent cell lines will have to be used as fusion partners for the production of hybrids when constructing a panel informative for all pig chromosomes.  相似文献   

8.
Electrophoretic mobilities in polyacrylamide gel of five dehydrogenases: NADP-dependent malate dehydrogenase (NADP-MDH), 6-phosphogluconate dehydrogenase (6PGD), alcohol dehydrogenase (ADH), glucose-6-phosphate dehydrogenase (G6PD) and glutamate dehydrogenase (GDH) were investigated in a series of mouse X Chinese hamster somatic cell hybrids. Seven hybrid lines with different ratio of chromosome sets of hamster and mouse: 1:1, 2:1, 3:1 and 1:2 respectively were studied. NADP-MDH and 6PGD of both parental species and intermediate hybrid bands were present in all hybrids except two lines. These lines had only hamster MDH due to the elimination of mouse chromosomes. A correlation was found between the gene dose and the intensity of the expression of the MDH bands. The mouse type ADH was detected in all hybrids. The hamster ADH was found in one of the hybrid lines that lost all mouse chromosomes during cultivation. It is suggested that hamster ADH activity was suppressed in hybrids by the mouse genome. The species origin of GDH and G6PD could not be established due to similarity of electrophoretic mobilities of respective enzymes in parental cells.  相似文献   

9.
A chromosomally stable mouse-Chinese hamster hybrid cell line was subjected to five rounds of selection with cytotoxic antisera raised in rabbits against either the parental mouse 3T3 cells or the parental Chinese hamster Wg-1 cells. Routine karyological analysis of clones isolated at each stage of serum selection revealed that treatment with either serum resulted in a limited loss of chromosomes (compared to the untreated hybrid cell cultured in parallel) and that the pattern of chromosome loss could not be correlated with the particular antiserum used for selection. However, more detailed analysis with the SSC-formamide C-banding technique, which identifies chromosomes containing a mouse centromere region, demonstrated that while large-scale chromosome loss was not achieved as a result of antiserum selection, the limited loss of chromosomes did, in fact, reflect a specific depletion of chromosomes in response to treatment with cytotoxic antiserum. Specific chromosomal elimination was shown to occur as early as the first round of antiserum treatment. Antigenic analysis of the serum-selected clones revealed a quantitative decrease in the expression of the species-specific surface antigens selected against, but no qualitative loss of antigens was detected. The results suggest that treatment with cytotoxic antiserum may select for clones that have lost specific chromosomes bearing genes regulating the expression of species-specific surface antigens, rather than for those demonstrating large-scale depletion of chromosomes bearing the corresponding structural genes. Some of these chromosomally depleted hybrid cell clones have been used (along with pseudotype viruses containing the genome of vesicular stomatitis virus within the envelope of murine leukemia virus, VSV [MuLV]), to study the mechanisms regulating MuLV replication in Chinese hamster cells. The results indicate that the restriction of MuLV replication in Chinese hamster cells operates at two levels: (a) an inability to adsorb to or penetrate Chinese hamster cells; and (b) an additional intracellular block which is dominant in the mouse-Chinese hamster hybrid cell clones examined. This latter block is presently under study.  相似文献   

10.
We have developed a simple and efficient procedure for transferring specific human genes into mutant Chinese hamster ovary cell recipients that does not rely on using calcium phosphate-precipitated high-molecular-weight DNA. Interspecific cell hybrids between human leukocytes and temperature-sensitive Chinese hamster cell mutants with either a thermolabile leucyl-tRNA synthetase or a thermolabile asparaginyl-tRNA synthetase were used as the starting material in these experiments. These hybrids contain only one or a few human chromosomes and require expression of the appropriate human aminoacyl-tRNA synthetase gene to grow at 39 degrees C. Hybrids were exposed to very high doses of gamma-irradiation to extensively fragment the chromosomes and re-fused immediately to the original temperature-sensitive Chinese hamster mutant, and secondary hybrids were isolated at 39 degrees C. Secondary hybrids, which had retained small fragments of the human genome containing the selected gene, were subjected to another round of irradiation, refusion, and selection at 39 degrees C to reduce the amount of human DNA even further. Using this procedure, we have constructed Chinese hamster cell lines that express the human genes encoding either asparaginyl- or leucyl-tRNA synthetase, yet less than 0.1% of their DNA is derived from the human genome, as quantitated by a sensitive dot-blot nucleic acid hybridization procedure. Analysis of these cell lines with Southern blots confirmed the presence of a small number of restriction endonuclease fragments containing human DNA specifically. These cell lines represent a convenient and simple means to clone the human genomic sequences of interest.  相似文献   

11.
The activity of thymidine kinase (TK) was studied in series of somatic cell hybrids between the mouse cell line 3T3-4E (TK-) and Chinese hamster cells M-15-1 (HGPRT-). Four groups of hybrid lines with different ratio of parental chromosome sets have been investigated: 1) three lines containing one hamster and one mouse chromosome set (1 hs+1 ms); 2) one line with 2 hs+1 ms; 3) one line containing 3 hs+1 ms and 4) one line containing 1 hs+2 ms. Mixtures of extracts from the parental cells were shown to possess the expected TK activity. The calculation of the activity per cell revealed that the 1 hs+1 ms and 2 hs+1 ms hybrid lines possessed about 50% of the initial hamster cell TK activity. The decreased TK activity in these hybrids might be due either to a loss of hamster chromosomes or to some inhibitory effect of mouse genome in cells with the studied ratio of parental sets. The enzyme activity in the 3 hs+1 ms hybrid was as expected, about three times greater than that of hamster cells.  相似文献   

12.
The methods used to characterize cytogenetically Chinese hamster x sheep somatic cell hybrids have been reported. G and C banding patterns on hybrid metaphases allowed the discrimination between hamster and sheep chromosomes, and in addition to establish the unidirectional loss of sheep chromosomes in hybrid cells.  相似文献   

13.
In an interspecific human-Chinese hamster hybrid that retains 13 and 85.6% of the chromosomes of each parental complement, activity of nucleolus-organizing regions (NOR) of both type chromosomes is observed in 18.9% of the cells. Interspecific chromosomal associations are also noted. Unlike the parental lines of Chinese hamster cells, the hybrids show the associations of the NOR of Chinese hamster chromosomes. In hybrid cells, there occurs partial suppression of NOR activity in human and Chinese hamster chromosomes, while the NOR of the 3d chromosome of the Chinese hamster is completely suppressed.  相似文献   

14.
The generation of somatic cell hybridization-derived cell lines between highly divergent species affords the opportunity to examine the concept of 'genome dominance' in the context of genetic and epigenetic changes. While whole-scale genome dominance has been well documented in natural hybrids among closely related species, an examination of centromere position and sequence retention in 2 marsupial-eutherian hybrids has revealed a mechanism for 'centromere dominance' as a driving force in the generation of stable somatic cell hybrids following an initial period of genomic instability. While one somatic cell hybrid cell line appeared to retain marsupial centromere sequences which remained competent to recruit the centromere-specific histone variant CENP-A in a Chinese hamster background, fusion events between marsupial and mouse-derived chromosomes in another hybrid line led to a centromere sequence conversion from one species to the other. We postulate that the necessity to maintain an epigenetically defined centromere following genome hybridization may be responsible for retention of specific chromosomes and may result in rapid sequence turnover to facilitate the recruitment of CENP-A containing histones.  相似文献   

15.
A study has been made of the ribosomal RNA and chromosome constitution of man-mouse hybrid cells. Previous work has shown that no human 28s rRNA is detectable in man-mouse synkaryons. In general human chromosomes are lost from such hybrids. With a recently developed method for distinguishing mouse from human chromosomes, an analysis of various man-mouse hybrid cell lines has been made. This indicates that not all the human chromosomes bearing nucleolar organizers are lost in the hybrid cells and such loss cannot alone explain the absence of human 28s rRNA. An examination of the 28s rRNA synthesized by heterokaryons formed from several different parent cells has revealed that both parental types of 28s rRNA are present in heterokaryons. The control of rRNA synthesis in hybrid cells is discussed.  相似文献   

16.
We have studied leucine transport in several Chinese hamster-human hybrid cell lines obtained by fusion of a temperature-sensitive line of Chinese hamster ovary cells, ts025C1, and normal human leukocytes. A hybrid cell line exhibiting a twofold increase in L-leucine uptake over that in the parental cell line was found. This hybrid cell line, 158CnpT-1, was temperature resistant, whereas the parental Chinese hamster ovary mutant, ts025C1, contained a temperature-sensitive leucyl-tRNA synthetase mutation. An examination of the different amino acid transport systems in this hybrid cell line revealed a specific increase of system L activity with no significant changes in systems A and ASC. The Vmax for L-leucine uptake exhibited by the hybrid 158CnpT-1 was twice that in the CHO parental mutant, ts025C1. Cytogenetic analysis showed that the hybrid 158CnpT-1 contains four complete human chromosomes (numbers 4, 5, 10, and 21) and three interspecific chromosomal translocations in a total complement of 34 chromosomes. Biochemical and cytogenetic analysis of segregant clones obtained from hybrid 158CnpT-1 showed that the primary temperature resistance and high system L transport phenotypes can be segregated from this hybrid independently. The loss of the primary temperature resistance was associated with the loss of the human chromosome 5, as previously reported by other laboratories, whereas the loss of the high leucine transport phenotype, which is associated with a lesser degree of temperature resistance, was correlated with the loss of human chromosome 20.  相似文献   

17.
Cotransfer of two linked human genes, coding for the enzymes thymidine kinase (TK) and galactokinase (Gak) was demonstrated following incubation of Chinese hamster TK-deficient cells with isolated human chromosomes. The 5 colonies which were isolated all expressed a stable TK-positive phenotype. Cotransfer of the human genes coding for TK and Gak has also been observed in experiments in which isolated human chromosomes were incubated with TK-deficient human-Chinese hamster cell hybrids. These receipient hybrids had lost all human chromosomes at the time of incubation. From these experiments, four colonies were isolated, all expressing an unstable TK-positive phenotype. Using chromosome staining techniques, the presence of human chromosomes could not be demonstrated in either of the transformed clonal lines obtained with the Chinese hamster and the hybrid recipient cells. This indicates that incorporation of only the fragment of the human chromosome 17, bearing the genes for TK and Gak, has occurred in the recipient cells.  相似文献   

18.
Resistance to UV-light was studied in two UV-sensitive aneuploid Chinese hamster cell clones to different origin and degree of sensitivity, their respective polyploids and somatic cell hybrids. The karyotype of the parental clones, cell hybrids and polyploids was analyzed in parallel. A great variability of karyotypes was detected in hybrid cells. Serial cultivation of hybrids was accompanied by chromosome loss. Soon after fusion the hybrid clones proved to be more resistant to UV than the parental sensitive cells. However, their sensitivity increased with passages. The comparison of UV-sensitivity with data on karyotype analysis allowed to assume that the increase in sensitivity was correlated with the loss of particular chromosomes or chromosome regions. The results obtained indicated the existence of a polygenic control of UV-sensitivity, the multiple genes being assigned to different chromosomes. A reverse effect of ploidy was detected, i.e. a decrease in the resistance to the lethal action of UV-light in polyploids as compared to the parental clones.  相似文献   

19.
Pseudotypes of vesicular stomatitis virus (VSV) containing envelope glycoproteins provided by C3H mammary tumor virus (MTV) instead of the normal VSV G-proteins were prepared and used to assay the presence of an MTV receptor on cells. The assay was specific as demonstrated by competition studies with excess MTV particles and neutralization of the pseudotypes with anti-MTV serum or monoclonal antibodies directed against MTV gp52. The MTV receptor was abundantly present on mouse cells but hardly detectable on nonmurine cells, including the Chinese hamster cell line E36. Somatic cell hybrids between E36 cells and GRS/A spontaneous leukemia cells (GRSL cells) and between E36 and GRS/A primary mammary tumor cells were made. The hybrids retained all Chinese hamster chromosomes but segregated mouse chromosomes. From the analysis of the isoenzymes and chromosomes of the hybrid cell lines we conclude that the gene for the receptor (MTVR-1) is located on mouse chromosome 16.  相似文献   

20.
Introduction of a human or Syrian hamster X chromosome (derived from BHK-191-5C cell hybrids) into tumorigenic mouse A9 cells via microcell fusion induced changes in cellular morphology and a retardation of cellular growth. The suppression of growth of the hybrids could be abolished, however, by daily changes of medium containing 20% serum. G-banding analysis showed the absence of a single, cytogenetically identifiable, indigenous X chromosome (marker Z) in two of four hybrid clones after an X chromosome was transferred from either hamster or human cells. All hybrids were tumorigenic when tested in nude mice. Together, these data suggest that the loss of the mouse X chromosome took place probably because of growth inhibitory effects imposed on hybrid cells due to the increase in X chromosome dosage. In addition, our results show a lack of association between the phenotype of cellular growth suppression in vitro and the phenotype of suppression of tumorigenicity in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号