首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Moderate increases of intracellular Ca2+ concentration ([Ca2+]i), induced by either the activation of tropomyosin receptor kinase (Trk) receptors for neurotrophins or by neuronal activity, regulate different intracellular pathways and neuronal survival. In the present report we demonstrate that glial cell line-derived neurotrophic factor (GDNF) treatment also induces [Ca2+]i elevation by mobilizing this cation from internal stores. The effects of [Ca2+]i increase after membrane depolarization are mainly mediated by calmodulin (CaM). However, the way in which CaM exerts its effects after tyrosine kinase receptor activation remains poorly characterized. It has been reported that phosphatidylinositol 3-kinase (PI 3-kinase) and its downstream target protein kinase B (PKB) play a central role in cell survival induced by neurotrophic factors; in fact, GDNF promotes neuronal survival through the activation of the PI 3-kinase/PKB pathway. We show that CaM antagonists inhibit PI 3-kinase and PKB activation as well as motoneuron survival induced by GDNF. We also demonstrate that endogenous Ca2+/CaM associates with the 85-kDa regulatory subunit of PI 3-kinase (p85). We conclude that changes of [Ca2+]i, induced by GDNF, promote neuronal survival through a mechanism that involves a direct regulation of PI 3-kinase activation by CaM thus suggesting a central role for Ca2+ and CaM in the signaling cascade for neuronal survival mediated by neurotrophic factors.  相似文献   

2.
Hirschsprung's disease (HSCR), a frequent developmental defect of the enteric nervous system is due to loss-of-function mutations of RET, a receptor tyrosine kinase essential for the mediation of glial cell-derived neurotrophic factor (GDNF)-induced cell survival. Instead, gain-of-function Cys mutations (e.g., Cys(609), Cys(620), and Cys(634)) of the same gene are responsible for thyroid carcinoma (MEN2A/familial medullary thyroid carcinoma) by causing a covalent Ret dimerization, leading to ligand-independent activation of its tyrosine kinase. In this context, the association of Cys(609)- or Cys(620)-activating mutations with HSCR is still an unresolved paradox. To address this issue, we have compared these two mutants with the Cys(634) Ret variant, which has never been associated with HSCR, for their ability to rescue neuroectodermic cells (SK-N-MC cells) from apoptosis. We show here that despite their constitutively activated kinase, the mere expression of these three mutants does not allow cell rescue. Instead, we demonstrate that like the wild-type Ret, the Cys(634) Ret variant can trigger antiapoptotic pathways only in response to GDNF. In contrast, Cys(609) or Cys(620) mutations, which impair the terminal Ret glycosylation required for its insertion at the plasma membrane, abrogate GDNF-induced cell rescue. Taken together, these data support the idea that sensitivity to GDNF is the mandatory condition, even for constitutively activated Ret mutants, to rescue neuroectodermic cells from apoptosis. These findings may help clarify how a gain-of-function mutation can be associated with a developmental defect.  相似文献   

3.
Activation of Lyn, a Src-related nonreceptor tyrosine kinase, in trophoblast cells is associated with trophoblast giant cell differentiation. The purpose of the present work was to use Lyn as a tool to identify signaling pathways regulating the endocrine differentiation of trophoblast cells. The Src homology 3 domain of Lyn was shown to display differentiation-dependent associations with other regulatory proteins, including phosphatidylinositol 3-kinase (PI3-K). PI3-K activation was dependent upon trophoblast giant cell differentiation. The downstream mediator of PI3-K, Akt/protein kinase B, also exhibited differentiation-dependent activation. Lyn is a potential regulator of the PI3-K/Akt signaling pathway, as are receptor tyrosine kinases. Protein tyrosine kinase profiling was used to identify two candidate regulators of the PI3-K/Akt pathway, fibroblast growth factor receptor-1 and Sky. At least part of the activation of Akt in differentiating trophoblast giant cells involves an autocrine growth arrest-specific-6-Sky signaling pathway. Inhibition of PI3-K activities via treatment with LY294002 disrupted Akt activation and interfered with the endocrine differentiation of trophoblast giant cells. In summary, activation of the PI3-K/Akt signaling pathway regulates the development of the differentiated trophoblast giant cell phenotype.  相似文献   

4.
Most, if not all, cytokines activate phosphatidylinositol 3-kinase (PI-3K). Although many cytokine receptors have direct binding sites for the p85 subunit of PI-3K, others, such as the interleukin-3 (IL-3) receptor beta common chain (betac) and the IL-2 receptor beta chain (IL-2Rbeta), lack such sites, leaving the mechanism by which they activate PI-3K unclear. Here, we show that the protooncoprotein Shc, which promotes Ras activation by recruiting the Grb2-Sos complex in response to stimulation of cytokine stimulation, also signals to the PI-3K/Akt pathway. Analysis of Y-->F and "add-back" mutants of betac shows that Y577, the Shc binding site, is the major site required for Gab2 phosphorylation in response to cytokine stimulation. When fused directly to a mutant form of IL-2Rbeta that lacks other cytoplasmic tyrosines, Shc can promote Gab2 tyrosyl phosphorylation. Mutation of the three tyrosyl phosphorylation sites of Shc, which bind Grb2, blocks the ability of the Shc chimera to evoke Gab2 tyrosyl phosphorylation. Overexpression of mutants of Grb2 with inactive SH2 or SH3 domains also blocks cytokine-stimulated Gab2 phosphorylation. The majority of cytokine-stimulated PI-3K activity associates with Gab2, and inducible expression of a Gab2 mutant unable to bind PI-3K markedly impairs IL-3-induced Akt activation and cell growth. Experiments with the chimeric receptors indicate that Shc also signals to the PI-3K/Akt pathway in response to IL-2. Our results suggest that cytokine receptors lacking direct PI-3K binding sites activate Akt via a Shc/Grb2/Gab2/PI-3K pathway, thereby regulating cell survival and/or proliferation.  相似文献   

5.
Although substantial studies have begun to explore the regulation of phosphatidylinositol 3-kinase/Akt cascade by different signalling pathways, whether protein kinase C (PKC) activity plays a crucial role remains as yet unclear. In this study, we found that in A549 and HEK293 cells non-selective PKC inhibitors Ro 31-8220 and bisindolylmaleimide VIII, and PKCbeta inhibitor LY 379196, caused Akt/PKB phosphorylation at Ser 473 and increased the upstream activator, integrin-linked kinase (ILK) activity. The increased Akt phosphorylation was blocked by phosphatidylinositol 3-kinase inhibitor wortmannin and the newly identified PIP(3)-dependent kinases (PDK) inhibitor SB 203580. In contrast to the Akt stimulation caused by PKC inhibitors, PMA attenuated Akt/PKB phosphorylation. We also found that this stimulating effect on Akt phosphorylation by PKC inhibitors was not the result of phosphatase inhibition, since treatment with PP2A, PP2B and tyrosine phosphatase inhibitors (okadaic acid, FK506 and sodium orthovanadate, respectively) had no effect. We conclude that phosphatidylinositol 3-kinase/Akt signalling pathway is regulated by PKC in a negative manner.  相似文献   

6.
TLR3, one of the TLRs involved in the recognition of infectious pathogens for innate and adaptive immunity, primarily recognizes viral-associated dsRNA. Recognition of dsRNA byproducts released from apoptotic and necrotic cells is a recently proposed mechanism for the amplification of toxicity, suggesting a pivotal participation of TLR3 in viral infection, as well as in lung diseases where apoptosis plays a critical role, such as asthma and chronic obstructive pulmonary disease. In addition to metabolic control, insulin signaling was postulated to be protective by inhibiting apoptosis. Therefore, we explored the role of insulin signaling in protecting against TLR3-mediated apoptosis of human bronchial epithelial cells. Significant TLR3-mediated apoptosis was induced by polyinosinic-polycytidylic acid, a dsRNA analog, via caspase-8-dependent mechanisms. However, insulin efficiently inhibited TLR3/polyinosinic-polycytidylic acid-induced human bronchial epithelial cell apoptosis via PI3K/Akt and ERK pathways, at least in part, via upregulation of cellular FLIPs and through protein synthesis-independent mechanisms. These results indicate the significance of TLR3-mediated dsRNA-induced apoptosis in the pathogenesis of apoptosis-driven lung disease and provide evidence for a novel protective role of insulin.  相似文献   

7.
The inhibitory effect of caveolin on the cellular response to growth factor stimulation is well established. Given the significant overlap in signaling pathways involved in regulating cell proliferation and stress responsiveness, we hypothesized that caveolin would also affect a cell's ability to respond to environmental stress. Here we investigated the ability of caveolin-1 to modulate the cellular response to sodium arsenite and thereby alter survival of the human cell lines 293 and HeLa. Cells stably transfected with caveolin-1 were found to be much more sensitive to the toxic effects of sodium arsenite than either untransfected parental cells or parental cells transfected with an empty vector. Unexpectedly, the caveolin-overexpressing cells also exhibited a significant activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which additional studies suggested was likely due to decreased neutral sphingomyelinase activity and ceramide synthesis. In contrast to its extensively documented antiapoptotic influence, the elevated activity of Akt appears to be important in sensitizing caveolin-expressing cells to arsenite-induced toxicity, as both pretreatment of cells with the PI3K inhibitor wortmannin and overexpression of a dominant-negative Akt mutant markedly improved the survival of arsenite-treated cells. This death-promoting influence of the PI3K/Akt pathway in caveolin-overexpressing cells appeared not to be unique to sodium arsenite, as wortmannin pretreatment also resulted in increased survival in the presence of H(2)O(2). In summary, our results indicate that caveolin-induced upregulation of the PI3K/Akt signaling pathway, which appears to be a death signal in the presence of arsenite and H(2)O(2), sensitizes cells to environmental stress.  相似文献   

8.
Hypoxia is a common environmental stress that influences signaling pathways and cell function. Several cell types, including neuroendocrine chromaffin cells, have evolved to sense oxygen levels and initiate specific adaptive responses to hypoxia. Here we report that under hypoxic conditions, rat pheochromocytoma PC12 cells are resistant to apoptosis induced by serum withdrawal and chemotherapy treatment. This effect is also observed after treatment with deferoxamine, a compound that mimics many of the effects of hypoxia. The hypoxia-dependent protection from apoptosis correlates with activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which is detected after 3-4 h of hypoxic or deferoxamine treatment and is sustained while hypoxic conditions are maintained. Hypoxia-induced Akt activation can be prevented by treatment with cycloheximide or actinomycin D, suggesting that de novo protein synthesis is required. Finally, inhibition of PI3K impairs both the protection against apoptosis and the activation of Akt in response to hypoxia, suggesting a functional link between these two phenomena. Thus, reduced oxygen tension regulates apoptosis in PC12 cells through activation of the PI3K/Akt survival pathway.  相似文献   

9.
We compared the effects of glial cell line-derived neurotrophic factor (GDNF) on dorsal root ganglion (DRG) sensory neurons to that of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3). All of these factors were retrogradely transported to sub-populations of sensory neuron cell bodies in the L4/L5 DRG of neonatal rats. The size distribution of 125I-GDNF-labeled neurons was variable and consisted of both small and large DRG neurons (mean of 506.60 μm2). 125I-NGF was preferentially taken up by small neurons with a mean cross-sectional area of 383.03 μm2. Iodinated BDNF and NT-3 were transported by medium to large neurons with mean sizes of 501.48 and 529.27 μm2, respectively. A neonatal, sciatic nerve axotomy-induced cell death model was used to determine whether any of these factors could influence DRG neuron survival in vivo. GDNF and NGF rescued nearly 100% of the sensory neurons. BDNF and NT-3 did not promote any detectable level of neuronal survival despite the fact that they underwent retrograde transport. We examined the in vitro survival-promoting ability of these factors on neonatal DRG neuronal cultures derived from neonatal rats. GDNF, NGF, and NT-3 were effective in vitro, while BDNF was not. The range of effects seen in the models described here underscores the importance of testing neuronal responsiveness in more than one model. The biological responsiveness of DRG neurons to GDNF in multiple models suggests that this factor may play a role in the development and maintenance of sensory neurons. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 22–32, 1997.  相似文献   

10.
To test the hypothesis that the phosphatidylinositol 3-kinase (PI3 kinase)/protein kinase Akt signaling pathway is involved in nitric oxide (NO)-induced endothelial cell migration and angiogenesis, we treated human and bovine endothelial cells with NO donors, S-nitroso-L-glutathione (GSNO) and S-nitroso-N-penicillamine (SNAP). Both GSNO and SNAP increased Akt phosphorylation and activity, which were blocked by cotreatment with the PI3 kinase inhibitor wortmannin. The mechanism was due to the activation of soluble guanylyl cyclase because 8-bromo-cyclic GMP activated PI3 kinase and the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ) blocked NO-induced PI3 kinase activity. Indeed, transfection with adenovirus containing endothelial cell NO synthase (eNOS) or protein kinase G (PKG) increased endothelial cell migration, which was inhibited by cotransfection with a dominant-negative mutant of PI3 kinase (dnPI3 kinase). In a rat model of hind limb ischemia, adenovirus-mediated delivery of human eNOS cDNA in adductor muscles resulted in time-dependent expression of recombinant eNOS, which was accompanied by significant increases in regional blood perfusion and capillary density. Coinjection of adenovirus carrying dnPI3 kinase abolished neovascularization in ischemic hind limb induced by eNOS gene transfer. These findings indicate that NO promotes endothelial cell migration and neovascularization via cGMP-dependent activation of PI3 kinase and suggest that this pathway is important in mediating NO-induced angiogenesis.  相似文献   

11.
12.
We previously reported that CD151 promotes neovascularization and improves blood perfusion in rat hind-limb ischemia model, but the precise mechanism is still unclear. Endothelial cell proliferation and cell migration play critical roles in angiogenesis. Many growth factors and hormones have been shown to regulate cell proliferation, cell migration and angiogenesis, including the activation of eNOS activity, via the PI3K/Akt signaling pathway. Whether CD151 induces cell proliferation and cell migration via PI3K/Akt signaling pathway is not known. Here we showed that CD151 promotes human umbilical vein endothelial cell (HUVEC) proliferation, migration and tube formation in vitro, accompanied by increased phosphorylation of Akt and eNOS, leading to increased eNOS activity and nitric oxide (NO) levels after rAAV-CD151 infection, whereas infection with rAAV-anti-CD151 attenuated the effects of CD151, which suggested that CD151 can activate PI3K/Akt pathway. Moreover, inhibitors of PI3K (LY294002) and eNOS (l-NAME) can attenuate CD151-induced cell proliferation and cell migration. The results suggested that activation of PI3K/Akt signaling pathway mediates CD151-induced cell proliferation and migration.  相似文献   

13.
《Life sciences》1995,57(7):685-694
The metabolism of phosphoinositides plays an important role in the signal transduction pathways. We report here that naturally occuring polyamines affect the activities of phosphatidylinositol (PI) 3-kinase and PI 4-phosphate (PIP) 5-kinase differently. While polyamines inhibited the PI 3-kinase activity, they stimulated the activity of PIP 5-kinase in the order of spermine > spermidine > putrescine. Spermine inhibited the PI 3-kinase activity in a concentration-dependent manner with an IC50 of 100 μM. On the other hand, spermine (5 mH) stimulated the activity of PIP 5-kinase 2–3 fold. Kinetic studies of spermine-mediated inhibition of PI 3-kinase revealed that it was noncompetitive with respect to ATP. The effect of Mg2+ and PIP, concentration on kinase activity was sigmoidal, with spermine inhibiting PI 3-kinase activity at all PIP2 concentrations. While 1 mH calcium stimulated PI 3-kinase activity at submaximal concentrations of Mg2+ (1.25 mH), inhibition was observed at optimal concentration of Mg2+(2 mM). We propose that spermine may modulate the cellular signal by virtue of its differential effects on phosphoinositide kinases.  相似文献   

14.
The intestinal mucosa is a rapidly-renewing tissue characterized by cell proliferation, differentiation, and eventual apoptosis with progression up the vertical gut axis. The inhibition of phosphatidylinositol (PI) 3-kinase by specific chemical inhibitors or overexpression of the lipid phosphatase PTEN enhances enterocyte-like differentiation in human colon cancer cell models of intestinal differentiation. In this report, we examined the role of PI 3-kinase inhibition in the regulation of apoptotic gene expression in human colon cancer cell lines HT29, HCT-116, and Caco-2. Inhibition of PI 3-kinase with the chemical inhibitor wortmannin increased TNF-related apoptosis-inducing ligand (TRAIL; Apo2) mRNA and protein expression. Similarly, overexpression of the tumor suppressor protein PTEN, an antagonist of PI 3-kinase signaling, resulted in the increased expression of TRAIL. Activation of PI 3-kinase by pretreatment with IGF-1, a gut trophic factor, markedly attenuated the induction of TRAIL by wortmannin. Moreover, overexpression of active Akt, a downstream target of PI 3-kinase, or inhibition of GSK-3, a downstream target of active Akt, completely blocked the induction of TRAIL by wortmannin. Consistent with findings that TRAIL is induced by agents that enhance intestinal cell differentiation, TRAIL expression was specifically localized to the differentiated cells of the colon and small bowel. Adenovirus-mediated overexpression of TRAIL increased DNA fragmentation of HCT-116 cells, demonstrating the functional activity of TRAIL induction. Taken together, our findings demonstrate induction of the TRAIL by inhibition of PI 3-kinase in colon cancer cell lines. These results identify TRAIL, a novel TNF family member, as a downstream target of the PI 3-kinase/Akt/GSK-3 pathway and may have important implications for better understanding the role of the PI 3-kinase pathway in intestinal cell homeostasis.  相似文献   

15.
The matrix metalloproteinase (MMP)-2 has been recognized as a major mediator of basement membrane degradation, angiogenesis, tumor invasion, and metastasis. The factors that regulate its expression have not, however, been fully elucidated. We previously identified the type I insulin-like growth factor (IGF-I) receptor as a regulator of MMP-2 synthesis. The objective of the present study was to investigate the signal transduction pathway(s) mediating this regulation. We show here that in Lewis lung carcinoma subline H-59 cells treated with IGF-I (10 ng/ml), the PI 3-kinase (phosphatidylinositol 3'-kinase) /protein kinase B (Akt) and C-Raf/ERK pathways were activated, and MMP-2 promoter activity, mRNA, and protein synthesis were induced. MMP-2 induction was blocked by the PI 3-kinase inhibitors LY294002 and wortmannin, by overexpression of a dominant-negative Akt or wild-type PTEN (phosphatase and tensin homologue deleted on chromosome 10), and by rapamycin. In contrast, a MEK inhibitor PD98059 failed to reduce MMP-2 promoter activation and actually increased MMP-2 mRNA and protein synthesis by up to 30%. Interestingly, suppression of PI 3-kinase signaling by a dominant-negative Akt enhanced ERK activity in cells stimulated with 10 ng/ml but not with 100 ng/ml IGF-I. Furthermore, at the higher (100 ng/ml) IGF-I concentration, C-Raf and ERK, but not PI 3-kinase activation, was enhanced, and this resulted in down-regulation of MMP-2 synthesis. This effect was reversed in cells expressing a dominant-negative ERK mutant. The results suggest that IGF-I can up-regulate MMP-2 synthesis via PI 3-kinase/Akt/mTOR (the mammalian target of rapamycin) signaling while concomitantly transmitting a negative regulatory signal via the Raf/ERK pathway. The outcome of IGF-IR (the receptor for IGF-I) activation may ultimately depend on factors, such as ligand bioavailability, that can shift the balance preferentially toward one pathway or the other.  相似文献   

16.
CD40 has been involved in tumor and inflammatory neoangiogenesis. In this study we determined that stimulation of endothelial CD40 with sCD154 induced resistance to apoptosis and in vitro vessel-like formation by human microvascular endothelial cells (HMEC). These effects were determined to be mediated by CD40-dependent signaling because they were inhibited by a soluble CD40-muIg fusion protein. Moreover, apoptosis of HMEC was associated with an impairment of Akt phosphorylation, which was restored by stimulation with sCD154. The anti-apoptotic effect as well as in vitro vessel-like formation and Akt phosphorylation were inhibited by treatment of HMEC with two unrelated pharmacological inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin and LY294002. CD40 stimulation induced a rapid increase in Akt enzymatic activity that was not prevented by cycloheximide, an inhibitor of protein synthesis. The enhanced Akt activity induced by stimulation of endothelial CD40 was temporarily correlated with the association of CD40 with TRAF6, c-Cbl, and the p85 subunit of PI3K. Expression of negative-dominant Akt inhibited the activation of endogenous Akt through CD40 stimulation, despite the observation that association of CD40 with TRAF6, c-Cbl, and PI3K was intact. The defective activation of Akt abrogated not only the anti-apoptotic effect of CD40 stimulation but also the proliferative response, the enhanced motility, and the in vitro formation of vessel-like tubular structures by CD40-stimulated HMEC. In conclusion, these results suggest that endothelial CD40, through activation of the PI3K/Akt signaling pathway, regulates cell survival, proliferation, migration, and vessel-like structure formation, all steps considered critical for angiogenesis.  相似文献   

17.
We have recently demonstrated that the gene encoding the osteopontin (OPN) protein is activated both by interleukin-3 and granulocyte-macrophage colony-stimulating factor signaling pathways and that, through binding to the cell surface receptor CD44, OPN contributes to the survival activities of interleukin (IL)-3 and GM-CSF (Lin, Y.-H., Huang, C.-J., Chao, J.-R., Chen, S.-T., Lee, S.-F., Yen, J. J.-Y., and Yang-Yen, H.-F. (2000) Mol. Cell. Biol. 20, 2734-2742). In this report, we demonstrate that the CD44-binding domain of OPN involves a region containing amino acid residues from 121 to 140 and that both threonine and serine at positions 137 and 147, respectively, are essential for the survival stimulatory effect of OPN. Substitution of either residue with alanine results into a dominant negative mutant that overrides the survival effect of IL-3. Upon binding to the CD44 receptor, the wild-type OPN but not the inactive mutant induces activation of phosphatidylinositol 3-kinase and Akt. Last, we demonstrate that two waves of Akt activation are detected in IL-3-treated cells and that the survival promoting effect of OPN is mediated predominantly through the phosphatidylinositol 3-kinase/Akt signaling pathway. Together, our results suggest that a positive autoregulatory loop is involved in the survival pathway of IL-3.  相似文献   

18.
19.
The tumor suppressor PTEN is a phosphatase with sequence homology to tensin. PTEN dephosphorylates phosphatidylinositol 3,4, 5-trisphosphate (PIP3) and focal adhesion kinase (FAK), and it can inhibit cell growth, invasion, migration, and focal adhesions. We investigated molecular interactions of PTEN and FAK in glioblastoma and breast cancer cells lacking PTEN. The PTEN trapping mutant D92A bound wild-type FAK, requiring FAK autophosphorylation site Tyr397. In PTEN-mutated cancer cells, FAK phosphorylation was retained even in suspension after detachment from extracellular matrix, accompanied by enhanced PI 3-K association with FAK and sustained PI 3-K activity, PIP3 levels, and Akt phosphorylation; expression of exogenous PTEN suppressed all five properties. PTEN-mutated cells were resistant to apoptosis in suspension, but most of the cells entered apoptosis after expression of exogenous PTEN or wortmannin treatment. Moreover, overexpression of FAK in PTEN-transfected cells reversed the decreased FAK phosphorylation and PI 3-K activity, and it partially rescued PIP3 levels, Akt phosphorylation, and PTEN-induced apoptosis. Our results show that FAK Tyr397 is important in PTEN interactions with FAK, that PTEN regulates FAK phosphorylation and molecular associations after detachment from matrix, and that PTEN negatively regulates the extracellular matrix-dependent PI 3-K/Akt cell survival pathway in a process that can include FAK.  相似文献   

20.
Secretory phospholipase A(2) (sPLA(2)), abundantly expressed in various cells including fibroblasts, is able to promote proliferation and migration. Degradation of collagenous extracellular matrix by matrix metalloproteinase (MMP) plays a role in the pathogenesis of various destructive disorders, such as rheumatoid arthritis, tumor invasion, and metastasis. Here we show that group IB PLA(2) increased pro-MMP-2 activation in NIH3T3 fibroblasts. MMP-2 activity was stimulated by group IB PLA(2) in a dose- and time-dependent manner. Consistent with MMP-2 activation, sPLA(2) decreased expression of type IV collagen. These effects are due to the reduction of tissue inhibitor of metalloproteinase-2 (TIMP-2) and the activation of the membrane type1-MMP (MT1-MMP). The decrease of TIMP-2 levels in conditioned media and the increase of MT1-MMP levels in plasma membrane were observed. In addition, treatment of cells with decanoyl Arg-Val-Lys-Arg-chloromethyl ketone, an inhibitor of pro-MT1-MMP, suppressed sPLA(2)-mediated MMP-2 activation, whereas treatment with bafilomycin A1, an inhibitor of H(+)-ATPase, sustained MMP-2 activation by sPLA(2). The involvement of phosphatidylinositol 3-kinase (PI3K) and Akt in the regulation of MMP-2 activity was further suggested by the findings that PI3K and Akt were phosphorylated by sPLA(2). Expression of p85alpha and Akt mutants, or pretreatment of cells with LY294002, a PI3K inhibitor, attenuated sPLA(2)-induced MMP-2 activation and migration. Taken together, these results suggest that sPLA(2) increases the pro-MMP-2 activation and migration of fibroblasts via the PI3K and Akt-dependent pathway. Because MMP-2 is an important factor directly involved in the control of cell migration and the turnover of extracellular matrix, our study may provide a mechanism for sPLA(2)-promoted fibroblasts migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号