首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fructose-1,6-bisphosphatase (FBPase) operates at a control point in mammalian gluconeogenesis, being inhibited synergistically by fructose 2,6-bisphosphate (Fru-2,6-P(2)) and AMP. AMP and Fru-2,6-P(2) bind to allosteric and active sites, respectively, but the mechanism responsible for AMP/Fru-2,6-P(2) synergy is unclear. Demonstrated here for the first time is a global conformational change in porcine FBPase induced by Fru-2,6-P(2) in the absence of AMP. The Fru-2,6-P(2) complex exhibits a subunit pair rotation of 13 degrees from the R-state (compared with the 15 degrees rotation of the T-state AMP complex) with active site loops in the disengaged conformation. A three-state thermodynamic model in which Fru-2,6-P(2) drives a conformational change to a T-like intermediate state can account for AMP/Fru-2,6-P(2) synergism in mammalian FBPases. AMP and Fru-2,6-P(2) are not synergistic inhibitors of the Type I FBPase from Escherichia coli, and consistent with that model, the complex of E. coli FBPase with Fru-2,6-P(2) remains in the R-state with dynamic loops in the engaged conformation. Evidently in porcine FBPase, the actions of AMP at the allosteric site and Fru-2,6-P(2) at the active site displace engaged dynamic loops by distinct mechanisms, resulting in similar quaternary end-states. Conceivably, Type I FBPases from all eukaryotes may undergo similar global conformational changes in response to Fru-2,6-P(2) ligation.  相似文献   

2.
Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the crystal structure (resolution, 1.45A) of recombinant FBPase from Escherichia coli, the first structure of a prokaryotic Type I FBPase. The E. coli enzyme is a homotetramer, but in a quaternary state between the canonical R- and T-states of porcine FBPase. Phe(15) and residues at the C-terminal side of the first alpha-helix (helix H1) occupy the AMP binding pocket. Residues at the N-terminal side of helix H1 hydrogen bond with sulfate ions buried at a subunit interface, which in porcine FBPase undergoes significant conformational change in response to allosteric effectors. Phosphoenolpyruvate and sulfate activate E. coli FBPase by at least 300%. Key residues that bind sulfate anions are conserved among many heterotrophic bacteria, but are absent in FBPases of organisms that employ fructose 2,6-bisphosphate as a regulator. These observations suggest a new mechanism of regulation in the FBPase enzyme family: anionic ligands, most likely phosphoenolpyruvate, bind to allosteric activator sites, which in turn stabilize a tetramer and a polypeptide fold that obstructs AMP binding.  相似文献   

3.
The enteric bacterium Escherichia coli requires fructose-1,6-bisphosphatase (FBPase) for growth on gluconeogenic carbon sources. Constitutive expression of FBPase and fructose-6-phosphate-1-kinase coupled with the absence of futile cycling implies an undetermined mechanism of coordinate regulation involving both enzymes. Tricarboxylic acids and phosphorylated three-carbon carboxylic acids, all intermediates of glycolysis and the tricarboxylic acid cycle, are shown here to activate E. coli FBPase. The two most potent activators, phosphoenolpyruvate and citrate, bind to the sulfate anion site, revealed previously in the first crystal structure of the E. coli enzyme. Tetramers ligated with either phosphoenolpyruvate or citrate, in contrast to the sulfate-bound structure, are in the canonical R-state of porcine FBPase but nevertheless retain sterically blocked AMP pockets. At physiologically relevant concentrations, phosphoenolpyruvate and citrate stabilize an active tetramer over a less active enzyme form of mass comparable with that of a dimer. The above implies the conservation of the R-state through evolution. FBPases of heterotrophic organisms of distantly related phylogenetic groups retain residues of the allosteric activator site and in those instances where data are available exhibit activation by phosphoenolpyruvate. Findings here unify disparate observations regarding bacterial FBPases, implicating a mechanism of feed-forward activation in bacterial central metabolism.  相似文献   

4.
The effects of phosphate and several phosphate-containing compounds on the activity of purified phosphoenolpyruvate carboxylase (PEPC) from the crassulacean acid metabolism plant, Crassula argentea, were investigated. When assayed at subsaturating phosphoenolpyruvate (PEP) concentrations, low concentrations of most of the compounds tested were found to stimulate PEPC activity. This activation, variable in extent, was found in all cases to be competitive with glucose 6-phosphate (Glc-6-P) stimulation, suggesting that these effectors bind to the Glc-6-P site. At higher concentrations, depending upon the effector molecule studied, deactivation, inhibition, or no response was observed. More detailed studies were performed with Glc-6-P, AMP, phosphoglycolate, and phosphate. AMP had previously been shown to be a specific ligand for the Glc-6-P site. The main effect of Glc-6-P and AMP on the kinetic parameters was to decrease the apparent Km and increase Vmax/Km. AMP also caused a decrease in the Vmax of the reaction. In contrast, phosphoglycolate acted essentially as a competitive inhibitor increasing the apparent Km for PEP and decreasing Vmax/Km. Inorganic phosphate had a biphasic effect on the kinetic parameters, resulting in a transient decrease in Km followed by an increase of the apparent Km for PEP with increasing concentration of phosphate. The Vmax also was decreased with increasing phosphate concentrations. Further, the enzyme appeared to respond to the complex of phosphate with magnesium. In the presence of a saturating concentration of AMP, no activation but rather inhibition was observed with increasing phosphate concentration. This is consistent with the binding of phosphate to two separate sites--the Glc-6-P activation site and an inhibitory site, a phenomenon that may be occurring with other phosphate containing compounds. High concentrations of phosphate with magnesium were found to protect enzyme activity when PEPC, previously shown to contain an essential arginine at the active site, was incubated with the specific arginyl reagent 2,3-butanedione, consistent with the binding of phosphate at the active site. Data were successfully fitted to a rapid equilibrium model allowing for binding of the phosphate-magnesium complex to both the activation site and the active site which accounts for the activation/deactivation observed at low substrate concentrations. Effects on the Vmax of the reaction are also addressed. Factors controlling the differential affinity of various effectors to the active site or activation site appear to include charge distribution, size, and other steric factors.  相似文献   

5.
Previous kinetic characterization of Escherichia coli fructose 1,6-bisphosphatase (FBPase) was performed on enzyme with an estimated purity of only 50%. Contradictory kinetic properties of the partially purified E. coli FBPase have been reported in regard to AMP cooperativity and inactivation by fructose-2,6-bisphosphate. In this investigation, a new purification for E. coli FBPase has been devised yielding enzyme with purity levels as high as 98%. This highly purified E. coli FBPase was characterized and the data compared to that for the pig kidney enzyme. Also, a homology model was created based upon the known three-dimensional structure of the pig kidney enzyme. The kcat of the E. coli FBPase was 14.6 s(-1) as compared to 21 s(-1) for the pig kidney enzyme, while the K(m) of the E. coli enzyme was approximately 10-fold higher than that of the pig kidney enzyme. The concentration of Mg2+ required to bring E. coli FBPase to half maximal activity was estimated to be 0.62 mM Mg2+, which is twice that required for the pig kidney enzyme. Unlike the pig kidney enzyme, the Mg2+ activation of the E. coli FBPase is not cooperative. AMP inhibition of mammalian FBPases is cooperative with a Hill coefficient of 2; however, the E. coli FBPase displays no cooperativity. Although cooperativity is not observed, the E. coli and pig kidney enzymes show similar AMP affinity. The quaternary structure of the E. coli enzyme is tetrameric, although higher molecular mass aggregates were also observed. The homology model of the E. coli enzyme indicated slight variations in the ligand-binding pockets compared to the pig kidney enzyme. The homology model of the E. coli enzyme also identified significant changes in the interfaces between the subunits, indicating possible changes in the path of communication of the allosteric signal.  相似文献   

6.
Phosphoenolpyruvate carboxylases (PEPC, EC 4.1.1.31) from higher plants are regulated by both allosteric effects and reversible phosphorylation. Previous x-ray crystallographic analysis of Zea mays PEPC has revealed a binding site for sulfate ion, speculated to be the site for an allosteric activator, glucose 6-phosphate (Glc-6-P) (Matsumura, H., Xie, Y., Shirakata, S., Inoue, T., Yoshinaga, T., Ueno, Y., Izui, K., and Kai, Y. (2002) Structure (Lond.) 10, 1721-1730). Because kinetic experiments have also supported this notion, each of the four basic residues (Arg-183, -184, -231, and -372' on the adjacent subunit) located at or near the binding site was replaced by Gln, and the kinetic properties of recombinant mutant enzymes were investigated. Complete desensitization to Glc-6-P was observed for R183Q, R184Q, R183Q/R184Q (double mutant), and R372Q, as was a marked decrease in the sensitivity for R231Q. The heterotropic effect of Glc-6-P on an allosteric inhibitor, l-malate, was also abolished, but sensitivity to Gly, another allosteric activator of monocot PEPC, was essentially not affected, suggesting the distinctness of their binding sites. Considering the kinetic and structural data, Arg-183 and Arg-231 were suggested to be involved directly in the binding with phosphate group of Glc-6-P, and the residues Arg-184 and Arg-372 were thought to be involved in making up the site for Glc-6-P and/or in the transmission of an allosteric regulatory signal. Most unexpectedly, the mutant enzymes had almost lost responsiveness to regulatory phosphorylation at Ser-15. An apparent lack of kinetic competition between the phosphate groups of Glc-6-P and of phospho-Ser at 15 suggested the distinctness of their binding sites. The possible roles of these Arg residues are discussed.  相似文献   

7.
Difference spectroscopic investigations on the interaction of brain hexokinase with glucose and glucose 6-phosphate (Glc-6-P) show that the binary complexes E-glucose and E-Glc-6-P give very similar UV difference spectra. However, the spectrum of the ternary E-glucose-Glc-6-P complex differs markedly from the spectra of the binary complexes, but resembles that produced by the E-glucose-Pi complex. Direct binding studies of the interaction of Glc-6-P with brain hexokinase detect only a single high-affinity binding site for Glc-6-P (KD = 2.8 microM). In the ternary E-glucose-Glc-6-P complex, Glc-6-P has a much higher affinity for the enzyme (KD = 0.9 microM) and a single binding site. Ribose 5-phosphate displaces Glc-6-P from E-glucose-Glc-6-P only, but not from E-Glc-6-P complex. It also fails to displace glucose from E-glucose and E-glucose-Glc-6-P complexes. Scatchard plots of the binding of glucose to brain hexokinase reveal only a single binding site but show distinct evidence of positive cooperativity, which is abolished by Glc-6-P and Pi. These ligands, as well as ribose 5-phosphate, substantially increase the binding affinity of glucose for the enzyme. The spectral evidence, as well as the interactive nature of the sites binding glucose and phosphate-bearing ligands, lead us to conclude that an allosteric site for Glc-6-P of physiological relevance occurs on the enzyme only in the presence of glucose, as a common locus where Glc-6-P, Pi, and ribose 5-phosphate bind. In the absence of glucose, Glc-6-P binds to the enzyme at its active site with high affinity. We also discuss the possibility that, in the absence of glucose, Glc-6-P may still bind to the allosteric site, but with very low affinity, as has been observed in studies on the reverse hexokinase reaction.  相似文献   

8.
The effect of fructose 2,6-P2, AMP and substrates on the coordinate inhibition of FBPase and activation of PFK in swine kidney has been examined. Fructose 2,6-P2 inhibits the activity of FBPase and stimulates the activity of PFK in the presence of inhibitory concentrations of ATP. Under similar conditions 2.2 μM fructose 2,6-P2 was required for 50% inhibition of FBPase and 0.04 μM fructose 2,6-P2 restored 50% of the activity of PFK. Fructose 2,6-P2 also enhanced the allosteric activation of PFK by AMP and it increased the extent of inhibition of FBPase by AMP. Fructose 2,6-P2, AMP and fructose 6-P act cooperatively to stimulate the activity of PFK whereas the same latter two effectors and fructose 1,6-P2 inhibit the activity of FBPase. Taken collectively, these results suggest that an increase in the intracellular level of fructose 2,6-P2 during gluconeogenesis could effectively overcome the inhibition of PFK by ATP and simulataneously inactivate FBPase. When the level of fructose 2,6-P2 is low, a glycolytic state would be restored, since under these conditions PFK would be inhibited by ATP and FBPase would be active.  相似文献   

9.
Regulation of bacterial glycogen synthesis   总被引:4,自引:0,他引:4  
The formation of the alpha 1,4 glucosidic linkages of bacterial glycogen occurs first by synthesis of ADPglucose from ATP and alpha glucose 1-P and then transfer of the glucose moiety from the formed sugar nucleotide to a pre-existing glucan primer. Unlike mammalian glycogen synthesis, regulation occurs at the synthesis of the sugar nucleotide. Generally glycolytic intermediates activate ADPglucose synthesis while AMP, ADP and/or Pi inhibit ADPglucose synthesis. A variation of activator specificity is is seen when the enzyme is isolated from different bacteria and is thought to be related to the predominant type of carbon assimilation or dissimilation pathways present in the particular organism. Evidence indicating that the allosteric activation effects observed in vitro are physiologically pertinent for the regulation of glycogen synthesis is reviewed. The recent experiments in identifying the allosteric activator site of the Escherichia coli ADPglucose pyrophosphorylase as well as other chemical modification studies identifying amino acid residues essential for allosteric activation and for catalytic activity are discussed. Evidence is also presented for the covalent modification of the Rhodopseudomonas sphaeroides ADPglucose pyrophosphorylase by bromopyruvate at its allosteric activator site. Regulation of the biosynthesis of glycogen also occurs at the genetic level and the current evidence for the existence of a glycogen operon is presented. In addition the current studies concerning the cloning of the DNA region containing the Escherichia coli structural genes coding for the glycogen biosynthetic enzymes as well as the nucleotide sequence of the E. coli ADPglucose pyrophosphorylase are presented.  相似文献   

10.
11.
Sedoheptulose-1,7-bisphosphatase (SBPase) is a Calvin Cycle enzyme exclusive to chloroplasts and is involved in photosynthetic carbon fixation. The two cysteine residues involved in its redox regulation have been identified by site-directed mutagenesis. They are four residues apart in a predicted loop between two alpha helices and probably form a disulphide bond when oxidised. Three-dimensional modelling of SBPase has been performed using crystallographic data from the structurally homologous pig fructose-1,6-bisphosphatase (FBPase). The results suggest that formation of the disulphide bridge in SBPase is directly analogous to the allosteric regulation of pig FBPase by AMP in terms of the resulting structural changes. Similar changes are thought to occur in chloroplast FBPase, which like SBPase, is also redox regulated and involved in carbon fixation. From the results presented here it appears that the same basic mechanism for the allosteric regulation of enzymic activity operates in the FBPases and SBPase but that the sites at which the regulatory ligands (AMP or thioredoxin) exert their effects are different in each  相似文献   

12.
The binding of beta-glycerophosphate (glycerol-2-P) to glycogen phosphorylase b in the crystal has been studied by X-ray diffraction at 3 A resolution. Glycerol-2-P binds to the allosteric effector site in a position close to that of AMP, glucose-6-P, UDP-Glc, and phosphate. In this position, glycerol-2-P is stabilized through interactions of its phosphate moiety with the guanidinium groups of Arg 309 and Arg 310 which undergo conformational changes, and the hydroxyl group of Tyr 75, while the same residues and solvent are involved in van der Waals interactions with the remaining part of the molecule. Kinetic experiments indicate that glycerol-2-P partially competes with both the activator (AMP) and the inhibitor (glucose 6-phosphate) of phosphorylase b. A comparison of the positions of glycerol-2-P, AMP, glucose 6-phosphate, UDP-Glc, and Pi at the allosteric site is presented.  相似文献   

13.
The side chains of Escherichia coli phosphofructokinase (EcPFK) that interact with bound substrate, fructose 6-phosphate (Fru-6-P), are examined for their potential roles in allosteric regulation. Mutations that severely decrease Fru-6-P affinity and/or k(cat)/K(m) were created at each contact residue, with the exception of the catalytic base, D127. Even though Fru-6-P affinity was greatly decreased for R162E, M169A, E222A/H223A, and R243E, the mutated proteins retained the ability to be activated by MgADP and inhibited by phosphoenolpyruvate (PEP). R252E did not show an allosteric response to either MgADP or PEP. The H249E mutation retained MgADP activation but did not respond to PEP. R72E, T125A, and R171E maintained allosteric inhibition by PEP. Both R72E and T125A displayed a MgADP-dependent decrease in k(cat) but no MgADP-dependent K-type effects. R171E maintained MgADP-dependent K-type activation but also displayed a MgADP-dependent decrease in k(cat). Localization of mutations that alter MgADP activation near the transferred phosphate group indicates the importance of the 1-methoxy region of Fru-6-P in allosteric regulation by MgADP. A region near the 6'-phosphate may be similarly important for PEP inhibition. R252 is uniquely positioned between the 1'- and 6'-phosphates of bound Fru-1,6-BP, and the mutation at this position may alter both allosterically responsive regions. The differential functions of specific regions in the Fru-6-P contact residues support different mechanisms for allosteric activation and inhibition. In addition, the lack of correlation between mutations that decrease Fru-6-P affinity and those that abolish allosteric communications supports the independence of affinity and allosteric coupling.  相似文献   

14.
Muscle fructose-1,6-bisphosphatase (FBPase) is highly sensitive toward inhibition by AMP and calcium ions. In allosteric inhibition by AMP, a loop 52-72 plays a decisive role. This loop is a highly conservative region in muscle and liver FBPases. It is feasible that the same region is involved in the inhibition by calcium ions. To test this hypothesis, chemical modification, limited proteolysis and site directed mutagenesis Glu(69)/Gln were employed. The chemical modification of Lys(71-72) and the proteolytic cleavage of the loop resulted in the significant decrease of the muscle FBPase sensitivity toward inhibition by calcium ions. The mutation of Glu(69)-->Gln resulted in a 500-fold increase of muscle isozyme I(0.5) vs. calcium ions. These results demonstrate the key role that the 52-72 amino acid loop plays in determining the sensitivity of FBPase to inhibition by AMP and calcium ions.  相似文献   

15.
After denaturation in 0.6 M guanidine hydrochloride, rat brain hexokinase becomes highly susceptible to proteolysis by trypsin. Glucose 6-phosphate (Glc-6-P) and its analog, 1,5-anhydroglucitol 6-phosphate, selectively protect the N-terminal half of the molecule from proteolysis. These compounds do not protect the C-terminal half of the molecule, nor do they protect enzyme activity; the Glc analog, N-acetylglucosamine, does protect the C-terminal domain and catalytic activity, but does not prevent proteolysis of the N-terminal half of the molecule. These results are consistent with previous work [M. Nemat-Gorgani and J. E. Wilson (1986) Arch. Biochem. Biophys. 251, 97-103; D. M. Schirch and J. E. Wilson (1987) Arch. Biochem. Biophys. 254, 385-396] demonstrating that binding sites for both hexose and nucleotide substrates, and thus catalytic function, are associated with a 40-kDa domain located at the C-terminus of the enzyme. They further demonstrate that the binding site for the allosteric effector, Glc-6-P, lies in the N-terminal half of the molecule and is distinct from the catalytic site. Using protection against proteolysis as a reflection of binding, it is shown that the Glc-6-P binding site in the N-terminal region has all the characteristics described for the allosteric effector site on this enzyme in terms of affinity for Glc-6-P, specificity, and synergistic interactions with the hexose binding site in the C-terminal region of the molecule. This disposition of catalytic and regulatory functions in discrete halves of the molecule is consistent with suggestions by several investigators that mammalian hexokinases evolved by a process of duplication and fusion of an ancestral gene coding for a hexokinase similar to the present-day yeast enzyme, with the regulatory site of mammalian hexokinases having evolved from what was originally a catalytic site.  相似文献   

16.
The effects of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) on porcine fructose-1,6-bisphosphatase (pFBPase) and Escherichia coli FBPase (eFBPase) differ in three respects. AMP/Fru-2,6-P2 synergism in pFBPase is absent in eFBPase. Fru-2,6-P2 induces a 13° subunit pair rotation in pFBPase but no rotation in eFBPase. Hydrophilic side chains in eFBPase occupy what otherwise would be a central aqueous cavity observed in pFBPase. Explored here is the linkage of AMP/Fru-2,6-P2 synergism to the central cavity and the evolution of synergism in FBPases. The single mutation Ser45 → His substantially fills the central cavity of pFBPase, and the triple mutation Ser45 → His, Thr46 → Arg, and Leu186 → Tyr replaces porcine with E. coli type side chains. Both single and triple mutations significantly reduce synergism while retaining other wild-type kinetic properties. Similar to the effect of Fru-2,6-P2 on eFBPase, the triple mutant of pFBPase with bound Fru-2,6-P2 exhibits only a 2° subunit pair rotation as opposed to the 13° rotation exhibited by the Fru-2,6-P2 complex of wild-type pFBPase. The side chain at position 45 is small in all available eukaryotic FBPases but large and hydrophilic in bacterial FBPases, similar to eFBPase. Sequence information indicates the likelihood of synergism in the FBPase from Leptospira interrogans (lFBPase), and indeed recombinant lFBPase exhibits AMP/Fru-2,6-P2 synergism. Unexpectedly, however, AMP also enhances Fru-6-P binding to lFBPase. Taken together, these observations suggest the evolution of AMP/Fru-2,6-P2 synergism in eukaryotic FBPases from an ancestral FBPase having a central aqueous cavity and exhibiting synergistic feedback inhibition by AMP and Fru-6-P.  相似文献   

17.
Leptin and insulin share some hypothalamic signaling molecules, but their central administration induces different effects on hepatic glucose fluxes. Acute insulin infusion in the third cerebral ventricle inhibits endogenous glucose production (GP), whereas acute leptin infusion stimulates gluconeogenesis but does not alter GP because of a compensatory decrease in glycogenolysis. Because melanocortin agonists also stimulate hepatic gluconeogenesis, here we examined whether central melanocortin blockade modifies the acute effects of leptin on GP, on gluconeogenesis, on glycogenolysis, and/or on the hepatic expression of the gluconeogenic enzymes glucose-6-phosphatase (Glc-6-Pase) and phosphoenolpyruvate carboxykinase (PEPCK). Systemic or central administration of leptin alone did not alter GP, despite increasing both the rate of gluconeogenesis and the expression of Glc-6-Pase and PEPCK. When activation of the central melanocortin pathway was prevented, the effects of leptin on gluconeogenesis, Glc-6-Pase, and PEPCK were abolished, and a marked suppression of glycogenolysis resulted in decreased GP. We conclude that leptin regulates hepatic glucose fluxes through a melanocortin-dependent pathway leading to stimulation of gluconeogenesis and a melanocortin-independent pathway causing inhibition of GP and glycogenolysis.  相似文献   

18.
Interaction between rabbit muscle fructose 1,6-bisphosphatase (FBPase) and rabbit muscle F-actin results in heterologous complex formation [A. Gizak, D. Rakus, A. Dzugaj, Histol. Histopathol. 18 (2003) 135]. Calculated on the basis of co-sedimentation-binding experiments and ELISA assay-binding constant (Ka) revealed that FBPase binds to F-actin with Ka equal to 7.4 x 10(4) M(-1). The binding is down-regulated by ligands interacting with the FBPase active site (fructose 6-phosphate, fructose 1,6-bisphosphate, fructose 2,6-bisphosphate) and with the FBPase allosteric inhibitory site (AMP). The binding and the kinetic data suggests that FBPase may bind F-actin using a bipartite motif which includes the amino acids residues involved in the binding of the substrate as well as of the allosteric inhibitor of the enzyme. The in situ co-localization experiment, in which FBPase was diffused into skinned muscle fibres pre-incubated with phalloidin (polymeric actin-interacting toxin), has shown that FBPase binds predominantly to the region of the Z-line.  相似文献   

19.
Sunlight provides the energy source for the assimilation of carbon dioxide by photosynthesis, but it also provides regulatory signals that switch on specific sets of enzymes involved in the alternation of light and dark metabolisms in chloroplasts. Capture of photons by chlorophyll pigments triggers redox cascades that ultimately activate target enzymes via the reduction of regulatory disulfide bridges by thioredoxins. Here we report the structure of the oxidized, low-activity form of chloroplastic fructose-1, 6-bisphosphate phosphatase (FBPase), one of the four enzymes of the Calvin cycle whose activity is redox-regulated by light. The regulation is of allosteric nature, with a disulfide bridge promoting the disruption of the catalytic site across a distance of 20 A. Unexpectedly, regulation of plant FBPases by thiol-disulfide interchange differs in every respect from the regulation of mammalian gluconeogenic FBPases by AMP. We also report a second crystal form of oxidized FBPase whose tetrameric structure departs markedly from D(2) symmetry, a rare event in oligomeric structures, and the structure of a constitutively active mutant that is unable to form the regulatory disulfide bridge. Altogether, these structures provide a structural basis for redox regulation in the chloroplast.  相似文献   

20.
The multicomponent hepatic glucose 6-phosphatase (Glc-6-Pase) system catalyzes the terminal step of hepatic glucose production and plays a key role in the regulation of blood glucose. We used the chlorogenic acid derivative S 3483, a reversible inhibitor of the glucose-6-phosphate (Glc-6-P) translocase component, to demonstrate for the first time upregulation of Glc-6-Pase expression in rat liver in vivo after inhibition of Glc-6-P translocase. In accordance with its mode of action, S 3483-treatment of overnight-fasted rats induced hypoglycemia and increased blood lactate, hepatic Glc-6-P, and glycogen. The metabolic changes were accompanied by rapid and marked increases in Glc-6-Pase mRNA (above 35-fold), protein (about 2-fold), and enzymatic activity (about 2-fold). Maximal mRNA levels were reached after 4 h of treatment. Glycemia, blood lactate, and Glc-6-Pase mRNA levels returned to control values, whereas Glc-6-P and glycogen levels decreased but were still elevated 2 h after S 3483 withdrawal. The capacity for Glc-6-P influx was only marginally increased after 8.5 h of treatment. Prevention of hypoglycemia by euglycemic clamp did not abolish the increase in Glc-6-Pase mRNA induced by S 3483 treatment. A similar pattern of hypoglycemia and possibly of associated counterregulatory responses elicited by treatment with the phosphoenolpyruvate carboxykinase inhibitor 3-mercaptopicolinic acid could account for only a 2-fold induction of Glc-6-Pase mRNA. These findings suggest that the significant upregulation of Glc-6-Pase gene expression observed after treatment of rats in vivo with an inhibitor of Glc-6-P translocase is caused predominantly either by S 3483 per se or by the compound-induced changes of intracellular carbohydrate metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号