首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility that Escherichia coli MutT and human MTH1 (hMTH1) hydrolyze oxidized DNA precursors other than 8-hydroxy-dGTP (8-OH-dGTP) was investigated. We report here that hMTH1 hydrolyzed 2-hydroxy-dATP (2-OH-dATP) and 8-hydroxy-dATP (8-OH-dATP), oxidized forms of dATP, but not (R)-8,5'-cyclo-dATP, 5-hydroxy-dCTP, and 5-formyl-dUTP. The kinetic parameters indicated that 2-OH-dATP was hydrolyzed more efficiently and with higher affinity than 8-OH-dGTP. 8-OH-dATP was hydrolyzed as efficiently as 8-OH-dGTP. The preferential hydrolysis of 2-OH-dATP over 8-OH-dGTP was observed at all of the pH values tested (pH 7.2 to pH 8.8). In particular, a 5-fold difference in the hydrolysis efficiencies for 2-OH-dATP over 8-OH-dGTP was found at pH 7.2. However, E. coli MutT had no hydrolysis activity for either 2-OH-dATP or 8-OH-dATP. Thus, E. coli MutT is an imperfect counterpart for hMTH1. Furthermore, we found that 2-hydroxy-dADP and 8-hydroxy-dGDP competitively inhibited both the 2-OH-dATP hydrolase and 8-OH-dGTP hydrolase activities of hMTH1. The inhibitory effects of 2-hydroxy-dADP were 3-fold stronger than those of 8-hydroxy-dGDP. These results suggest that the three damaged nucleotides share the same recognition site of hMTH1 and that it is a more important sanitization enzyme than expected thus far.  相似文献   

2.
To examine the substrate recognition mechanism of the human MTH1 protein, which hydrolyzes 2-hydroxy-dATP, 8-hydroxy-dATP, and 8-hydroxy-dGTP, ten nucleotide analogs (8-bromo-dATP, 8-bromo-dGTP, deoxyisoinosine triphosphate, 8-hydroxy-dITP, 2-aminopurine-deoxyriboside triphosphate, 2-amino-dATP, deoxyxanthosine triphosphate, deoxyoxanosine triphosphate, dITP, and dUTP) were incubated with the MTH1 protein. Of these, the former five nucleotides were hydrolyzed with various efficiencies. The fact that the syn-oriented brominated nucleotides were hydrolyzed suggests that the MTH1 protein binds to deoxynucleotides adopting the syn-conformation. However, 8-hydroxy-dITP, which lacks the 2-amino group of 8-hydroxy-dGTP, was degraded with tenfold less efficiency as compared with 8-hydroxy-dGTP. In addition, deoxyisoinosine triphosphate, lacking the 6-amino group of 2-hydroxy-dATP, was hydrolyzed as efficiently as 8-hydroxy-dGTP, but less efficiently than 2-hydroxy-dATP. These results clarify the effects of the anti/syn conformation and the functional groups on the 2 and 6 positions of the purine ring on the recognition by the human MTH1 protein.  相似文献   

3.
The human nucleotide pool sanitization enzyme, MTH1, hydrolyzes 2-hydroxy-dATP and 8-hydroxy-dATP in addition to 8-hydroxy-dGTP. We report here that human MTH1 is highly specific for 2-hydroxy-ATP, among the cognate ribonucleoside triphosphates. The pyrophosphatase activities for 8-hydroxy-GTP, 2-hydroxy-ATP and 8-hydroxy-ATP were measured by high-performance liquid chromatography. The kinetic parameters thus obtained indicate that the catalytic efficiencies of MTH1 are in the order of 2-hydroxy-dATP > 2-hydroxy-ATP > 8-hydroxy-dGTP > 8-hydroxy-dATP >> dGTP > 8-hydroxy-GTP > 8-hydroxy-ATP. Notably, MTH1 had the highest affinity for 2-hydroxy-ATP among the known substrates. ATP is involved in energy metabolism and signal transduction, and is a precursor in RNA synthesis. We suggest that the 2-hydroxy-ATP hydrolyzing activity of MTH1 might prevent the perturbation of these ATP-related pathways by the oxidized ATP.  相似文献   

4.
The MTH1 protein catalyzes hydrolysis of oxidatively damaged purine nucleotides including 8-hydroxy-dGTP to the monophosphates. The MTH1 protein seems to act as an important defense system against mutagenesis, carcinogenesis, and cell death induced by oxidized purine nucleotides. We previously reported that the functional groups at the 2- and 6-positions of the purine ring affect the recognition by the human MTH1 protein. 8-Hydroxy-dGTP and 8-hydroxy-dATP are substrates of MTH1, and both have the "7,8-dihydro-8-oxo structure." In this study, three nucleotide analogs containing this motif were examined. A synthetic purine analog containing the 7,8-dihydro-8-oxo structure and the 2-amino function (dJTP) was hydrolyzed to the monophosphate with high efficiency by MTH1. On the other hand, two analogs that lack the two-ring system of their bases [formamidopyrimidine-dGTP (FAPY-dGTP) and 2-OH-dYTP] were poor substrates. FAPY-dGTP is a mixture of conformers and was hydrolyzed more than ten-fold less efficiently than 8-hydroxy-dGTP. These results clarify the effects of the 2-amino group and the two-ring system of the purine base on the recognition by the human MTH1 protein.  相似文献   

5.
The Escherichia coli MutT protein hydrolyzes 8-hydroxy-dGTP (8-OH-dGTP) in vitro, and mutT gene deficiencies cause increased spontaneous A:T-->C:G mutations. However, no direct evidence exists for enhanced mutagenicity of 8-OH-dGTP in mutT cells. In this study, 8-OH-dGTP was introduced into wild type and mutT E. coli cells, and mutations of a chromosomal gene were monitored. 8-OH-dGTP induced mutations of the rpoB gene, the degree of the mutation induction in the mutT strain being approximately 6-fold higher than that in the wild type strain. On the other hand, 2-hydroxy-dATP, which is not a substrate of the MutT protein, increased the mutation to similar degrees in the two strains. These results constitute the first evidence that the MutT protein suppresses mutation by 8-OH-dGTP in vivo.  相似文献   

6.
To examine whether base excision repair suppresses mutations induced by oxidized deoxyribonucleotide 5'-triphosphates in the nucleotide pool, 8-hydroxy-dGTP (8-OH-dGTP) and 2-hydroxy-dATP were introduced into Escherichia coli strains deficient in endonucleases III (Nth) and VIII (Nei) and MutY, and mutations in the chromosomal rpoB gene were analyzed. The spontaneous rpoB mutant frequency was also examined in mutT/nth and mutT/nei strains, to assess the influence on the mutations induced by the endogenous 8-OH-dGTP accumulated in the mutT mutant. The mutations induced by exogenous 2-hydroxy-dATP were similar in all of the strains tested. Exogenous 8-OH-dGTP increased the rpoB mutant frequency more efficiently in the nth strain than that in the wild-type strain. The spontaneous mutant frequency in the mutT/nth strain was 2-fold higher than that in the mutT strain. These results suggest that E. coli endonuclease III also acts as a defense against the mutations caused by 8-OH-dGTP in the nucleotide pool.  相似文献   

7.
The Escherichia coli Orf135 protein, a MutT-type enzyme, hydrolyzes 2-hydroxy-dATP and 8-hydroxy-dGTP, in addition to dCTP and 5-methyl-dCTP, and its deficiency causes increases in both the spontaneous and H(2)O(2)-induced mutation frequencies. In this study, the Gly-36, Gly-37, Lys-38, Glu-43, Arg-51, Glu-52, Leu-53, Glu-55, and Glu-56 residues of Orf135, which are conserved in the three MutT-type proteins (Orf135, MutT, and MTH1), were substituted, and the enzymatic activity of these mutant proteins was examined. The mutant proteins with a substitution at the 36th, 37th, 52nd, and 56th amino acid residues completely lost their activity. On the other hand, the mutant proteins with a substitution at the 38th, 43rd, 51st, 53rd, and 55th residues could hydrolyze 5-methyl-dCTP. Some mutants with detectable activity for 5-methyl-dCTP did not hydrolyze dCTP. Activities for known substrates (5-methyl-dCTP, dCTP, 2-hydroxy-dATP, and 8-hydroxy-dGTP) were examined in detail with the four mutants, K38R, E43A, L53A, and E55Q. These results indicate the essential residues for the activity of the Orf135 protein.  相似文献   

8.
Escherichia coli DNA polymerase IV incorporated 2-hydroxy-dATP opposite template guanine or thymine and 8-hydroxy-dGTP exclusively opposite adenine in vitro. Mutator phenotypes in sod/fur strains were substantially diminished by deletion of dinB and/or umuDC. DNA polymerases IV and V may be involved in mutagenesis caused by incorporation of the oxidized deoxynucleoside triphosphates.  相似文献   

9.
10.
The oxidized nucleotide precursors 7, 8-dihydro-8-oxo-dGTP (8-oxo-dGTP) and 1, 2-dihydro-2-oxo-dATP (2-oxo-dATP) are readily incorporated into nascent DNA strands during replication, which would cause base substitution mutations. E. coli MutT and human homologue hMTH1 hydrolyze 8-oxo-dGTP, thereby preventing mutations. In this study, we searched for hMTH1 homologues in the ascidian Ciona intestinalis using the NCBI-BLAST database. Among several candidates, we focused on one open reading frame, designated as CiMutT, because of its high degree of identity (41.7%) and similarity (58.3%) to the overall amino acid sequence of hMTH1, including the Nudix box. CiMutT significantly suppressed the mutator activity of E. coli mutT mutant. Purified CiMutT had a pyrophosphohydrolase activity that hydrolyzed 8-oxo-dGTP to 8-oxo-dGMP and inorganic pyrophosphate. It had a pH optimum of 9.5 and Mg(++) requirement with optimal activity at 5 mM. The activity of CiMutT for 8-oxo-dGTP was comparable to that of hMTH1, while it was 100-fold lower for 2-oxo-dATP than that of hMTH1. These facts indicate that CiMutT is a functional homologue of E. coli MutT. In addition, the enzyme hydrolyzed all four of the unoxidized nucleoside triphosphates, with a preference for dATP. The specific activity for 8-oxo-dGTP was greater than that for unoxidized dATP and dGTP. These results suggest that CiMutT has the potential to prevent mutations by 8-oxo-dGTP in C. intestinalis.  相似文献   

11.
In situ, oxidation of deoxyguanosine yields 8-hydroxy-2'-deoxyguanosine (8-oxo-dG), which is mutation prone and results in a G:C --> T:A transversion following DNA replication. Another pathway to the formation of DNA containing 8-oxo-dG is by the misincorporation of 8-oxo-dGTP via DNA polymerase. Human MutT homologue (hMTH1), an 8-oxo-dGTPase, prevents misincorporation of this oxidized nucleotide by hydrolyzing 8-oxo-dGTP to 8-oxo-dGMP. Previous studies have shown that hMTH1 mRNA is overexpressed in human renal cell carcinomas and breast tumors. Elevated levels of hMTH1 protein have also been detected in brain tumors. In the current study, we determined whether hMTH1 protein is overexpressed in primary non-small-cell lung carcinomas as compared to adjacent histologically normal lung tissue. Twenty matched human lung tumor/normal pairs were examined by Western analysis for expression of hMTH1 protein. Overexpression in the tumors was detected in 4/8 (50%) adenocarcinomas, 4/4 (100%) adenocarcinomas with bronchioalveolar (BAC) features, 2/2 (100%) BACs, and 3/6 (50%) squamous cell carcinomas. The data from Western analysis were validated by immunohistochemical staining for hMTH1 protein. The results of this study indicate that hMTH1 protein may be a potential marker for the detection of persistent oxidative stress in lung cancer.  相似文献   

12.
The Escherichia coli Orf135 protein, a MutT-type enzyme, hydrolyzes mutagenic 2-hydroxy-dATP (2-OH-dATP) and 8-hydroxy-dGTP, in addition to dCTP and 5-methyl-dCTP, and its deficiency causes increases in both the spontaneous and H(2)O(2)-induced mutation frequencies. To identify the amino acid residues that interact with these nucleotides, the Glu-33, Arg-72, Arg-77, and Asp-118 residues of Orf135, which are candidates for residues interacting with the base, were substituted, and the enzymatic activities of these mutant proteins were examined. The mutant proteins with a substitution at the 33rd, 72nd, and 118th amino acid residues displayed activities affected to various degrees for each substrate, suggesting the involvement of these residues in substrate binding. On the other hand, the mutant protein with a substitution at the 77th Arg residue had activitiy similar to that of the wild-type protein, excluding the possibility that this Arg side chain is involved in base recognition. In addition, the expression of some Orf135 mutants in orf135(-) E. coli reduced the level of formation of rpoB mutants elicited by H(2)O(2). These results reveal the residues involved in the substrate binding of the E. coli Orf135 protein.  相似文献   

13.
Escherichia coli Orf135 protein is thought to be an enzyme that efficiently hydrolyzes oxidatively damaged nucleotides such as 2-hydroxy-dATP, 8-hydroxy-dGTP and 5-hydroxy-CTP, in addition to 5-methyl-dCTP, dCTP and CTP, thus preventing mutations in cells caused by unfavorable base pairing. Nucleotide pool sanitization by Orf135 is important since organisms are continually subjected to potential damage by reactive oxygen species produced during respiration. It is known that the frequency of spontaneous and H2O2-induced mutations is two to threefold higher in the orf135 - strain compared with the wild-type. Orf135 is a member of the Nudix family of proteins which hydrolyze nucleoside diphosphate derivatives. Nudix hydrolases are characterized by the presence of a conserved motif, although they recognize various substrates and possess a variety of substrate binding pockets. We are interested in delineating the mechanism by which Orf135 recognizes oxidatively damaged nucleotides. To this end, we are investigating the tertiary structure of Orf135 and its interaction with substrate using NMR. Herein, we report on the 1H, 13C and 15N resonance assignments of Orf135, which should contribute towards a structural understanding of Orf135 and its interaction with substrate.  相似文献   

14.
Oxidative stress is considered to be one of the most important phenomena involved in the process of aging and age-related diseases. 8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) has been frequently used as a marker for oxidative stress. However, the origin of extracellular 8-oxo-dG is not well understood. The aim of this work was to investigate the nucleotide pool and the role of the human mutT homologue protein (hMTH1) in the appearance of extracellular 8-oxo-dG in a cellular model system. For this purpose we used primary human fibroblast cells, which were transfected by siRNAs homologous to hMTH1. Extracellular 8-oxo-dG in cell culture media after exposure of the cells to ionizing radiation was measured as enzyme-linked immunosorbent assay reactivity. Our results demonstrate the profound effect of both hMTH1 expression and nucleotide pool size on the cellular excretion of 8-oxo-dG, suggesting that the nucleotide pool is a significant target for the formation of extracellular 8-oxo-dG.  相似文献   

15.
Several human neurodegenerative disorders are characterized by the accumulation of 8-oxo-7,8-dihydroguanine (8-oxodG) in the DNA of affected neurons. This can occur either through direct oxidation of DNA guanine or via incorporation of the oxidized nucleotide during replication. Hydrolases that degrade oxidized purine nucleoside triphosphates normally minimize this incorporation. hMTH1 is the major human hydrolase. It degrades both 8-oxodGTP and 8-oxoGTP to the corresponding monophosphates. To investigate whether the incorporation of oxidized nucleic acid precursors contributes to neurodegeneration, we constructed a transgenic mouse in which the human hMTH1 8-oxodGTPase is expressed. hMTH1 expression protected embryonic fibroblasts and mouse tissues against the effects of oxidants. Wild-type mice exposed to 3-nitropropionic acid develop neuropathological and behavioural symptoms that resemble those of Huntington''s disease. hMTH1 transgene expression conferred a dramatic protection against these Huntington''s disease–like symptoms, including weight loss, dystonia and gait abnormalities, striatal degeneration, and death. In a complementary approach, an in vitro genetic model for Huntington''s disease was also used. hMTH1 expression protected progenitor striatal cells containing an expanded CAG repeat of the huntingtin gene from toxicity associated with expression of the mutant huntingtin. The findings implicate oxidized nucleic acid precursors in the neuropathological features of Huntington''s disease and identify the utilization of oxidized nucleoside triphosphates by striatal cells as a significant contributor to the pathogenesis of this disorder.  相似文献   

16.
Oxidation is a common form of DNA damage to which purines are particularly susceptible. We previously reported that oxidized dGTP is potentially an important source of DNA 8-oxodGMP in mammalian cells and that the incorporated lesions are removed by DNA mismatch repair (MMR). MMR deficiency is associated with a mutator phenotype and widespread microsatellite instability (MSI). Here, we identify oxidized deoxynucleoside triphosphates (dNTPs) as an important cofactor in this genetic instability. The high spontaneous hprt mutation rate of MMR-defective msh2(-/-) mouse embryonic fibroblasts was attenuated by expression of the hMTH1 protein, which degrades oxidized purine dNTPs. A high level of hMTH1 abolished their mutator phenotype and restored the hprt mutation rate to normal. Molecular analysis of hprt mutants showed that the presence of hMTH1 reduced the incidence of mutations in all classes, including frameshifts, and also implicated incorporated 2-oxodAMP in the mutator phenotype. In hMSH6-deficient DLD-1 human colorectal carcinoma cells, overexpression of hMTH1 markedly attenuated the spontaneous mutation rate and reduced MSI. It also reduced the incidence of -G and -A frameshifts in the hMLH1-defective DU145 human prostatic cancer cell line. Our findings indicate that incorporation of oxidized purines from the dNTP pool may contribute significantly to the extreme genetic instability of MMR-defective human tumors.  相似文献   

17.
MTH1 hydrolyzes oxidized purine nucleoside triphosphates such as 8-oxo-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP) and 2-hydroxy-2'-deoxyadenosine 5'-triphosphate (2-OH-dATP) and thus protects cells from damage caused by their misincorporation into DNA. In the present study, we established MTH1-null mouse embryo fibroblasts that were highly susceptible to cell dysfunction and death caused by exposure to H2O2, with morphological features of pyknosis and electron-dense deposits accumulated in mitochondria. The cell death observed was independent of both poly(ADP-ribose) polymerase and caspases. A high performance liquid chromatography tandem mass spectrometry analysis and immunofluorescence microscopy revealed a continuous accumulation of 8-oxo-guanine both in nuclear and mitochondrial DNA after exposure to H2O2. All of the H2O2-induced alterations observed in MTH1-null mouse embryo fibroblasts were effectively suppressed by the expression of wild type human MTH1 (hMTH1), whereas they were only partially suppressed by the expression of mutant hMTH1 defective in either 8-oxo-dGTPase or 2-OH-dATPase activity. Human MTH1 thus protects cells from H2O2-induced cell dysfunction and death by hydrolyzing oxidized purine nucleotides including 8-oxo-dGTP and 2-OH-dATP, and these alterations may be partly attributed to a mitochondrial dysfunction.  相似文献   

18.
The hMTH1 protein, a human homologue of E. coli MutT protein, is an enzyme converting 8-oxo-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP) to 8-oxo-2'-deoxyguanosine 5'-monophosphate (8-oxo-dGMP) and inorganic pyrophosphate. It is thought to play an antimutagenic role by preventing the incorporation of promutagenic 8-oxo-dGTP into DNA. As found in our previous investigations, 8-oxo-2'-deoxyguanosine 5'-diphosphate (8-oxo-dGDP) strongly inhibited 8-oxo-dGTPase activity of MTH1. Following this finding, in the present study we have tested the canonical ribo- and deoxyribonucleoside 5'-diphosphates (NDPs and dNDPs) for possible inhibition of 8-oxo-dGTP hydrolysis by hMTH1 extracted from CCRF-CEM cells (a human leukemia cell line). Among them, the strongest inhibitors appeared to be dGDP (Ki=74 microM), dADP (Ki=147 microM), and GDP (Ki=502 microM). Other dNDPs and NDPs, such as dCDP, dTDP, ADP, CDP, and UDP were much weaker inhibitors, with Ki in the millimolar range. Based on the present results and published data, we estimate that the strongest inhibitors, dGDP and dADP, at physiological concentrations not exceeding 5 microM and GDP at mean concentration of 30 microM, taken together, can decrease the cellular hMTH1 enzymatic activity vs. 8-oxo-dGTP (expected to remain below 500 pM) by up to 15%. The other five NDPs and dNDPs tested cannot markedly affect this activity.  相似文献   

19.
Escherichia coli Orf135 hydrolyzes oxidatively damaged nucleotides such as 2-hydroxy-dATP, 8-oxo-dGTP and 5-hydroxy-CTP, in addition to 5-methyl-dCTP, dCTP and CTP. Nucleotide pool sanitization by Orf135 is important since nucleotides are continually subjected to potential damage by reactive oxygen species produced during respiration. Orf135 is a member of the Nudix family of proteins which hydrolyze nucleoside diphosphate derivatives. Nudix hydrolases are characterized by the presence of a conserved motif, even though they recognize various substrates and possess a variety of substrate binding pockets. We investigated the tertiary structure of Orf135 and its interaction with a 2-hydroxy-dATP analog using NMR. We report on the solution structure of Orf135, which should contribute towards a structural understanding of Orf135 and its interaction with substrates.  相似文献   

20.
Youn CK  Jun JY  Hyun JW  Hwang G  Lee BR  Chung MH  Chang IY  You HJ 《DNA Repair》2008,7(11):1809-1823
Although the accumulation of 8-oxo-dGTP in DNA is associated with apoptotic cell death and mutagenesis, little is known about the exact mechanism of hMTH1-mediated suppression of oxidative-stress-induced cell death. Therefore, we investigated the regulation of DNA-damage-related apoptosis induced by oxidative stress using control and hMTH1 knockdown cells. Small interfering RNA (siRNA) was used to suppress hMTH1 expression in p53-proficient GM00637 and H460 cells, resulting in a significant increase in apoptotic cell death after H(2)O(2) exposure; however, p53-null, hMTH1-deficient H1299 cells did not exhibit H(2)O(2)-induced apoptosis. In addition, hMTH1-deficient GM00637 and H460 cells showed increased caspase-3/7 activity, cleaved caspase-8, and Noxa expression, and gamma-H2AX formation in response to H(2)O(2). In contrast, the caspase inhibitors, p53-siRNA, and Noxa-siRNA suppressed H(2)O(2)-induced cell death. Moreover, in 8-week (long-term) cultured H460 and H1299 cells, hMTH1 suppression increased cell death, Noxa expression, and gamma-H2AX after H(2)O(2) exposure, compared to 3-week (short-term) cultured cells. These data indicate that hMTH1 plays an important role in protecting cells against H(2)O(2)-induced apoptosis via a Noxa- and caspase-3/7-mediated signaling pathway, thus conferring a survival advantage through the inhibition of oxidative-stress-induced DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号