首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The genotoxicity of 15 polycyclic aromatic hydrocarbons was determined with the alkaline version of the comet assay employing V79 lung fibroblasts of the Chinese hamster as target cells. These cells lack the enzymes necessary to convert PAHs to DNA-binding metabolites. Surprisingly, 11 PAHs, i.e., benzo[a]pyrene (BaP), benz[a]anthracene, 7,12-dimethylbenz[a]anthracene, 3-methylcholanthrene, fluoranthene, anthanthrene, 11H-benzo[b]fluorene, dibenz[a,h]anthracene, pyrene, benzo[ghi]perylene and benzo[e]pyrene caused DNA strand breaks even without external metabolic activation, while naphthalene, anthracene, phenanthrene and naphthacene were inactive. When the comet assay was performed in the dark or when yellow fluorescent lamps were used for illumination the DNA-damaging effect of the 11 PAHs disappeared. White fluorescent lamps exhibit emission maxima at 334.1, 365.0, 404.7, and 435.8 nm representing spectral lines of mercury. In the case of yellow fluorescent lamps these emissions were absent. Obviously, under standard laboratory illumination many PAHs are photo-activated, resulting in DNA-damaging species. This feature of PAHs should be taken into account when these compounds are employed for the initiation of skin cancer.The genotoxicity of BaP that is metabolically activated in V79 cells stably expressing human cytochrome P450-dependent monooxygenase (CYP1A1) as well as human epoxide hydrolase (V79-hCYP1A1-mEH) could not be detected with the comet assay performed under yellow light. Likewise the DNA-damaging effect of r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BaPDE) observed with the comet assay was only weak. However, upon inhibition of nucleotide excision repair (NER), which is responsible for the removal of stable DNA adducts caused by anti-BaPDE, the tail moment rose 3.4-fold in the case of BaP and 12.9-fold in the case of anti-BaPDE. These results indicate that the genotoxicity of BaP and probably of other compounds producing stable DNA adducts are reliably detected with the comet assay only when NER is inhibited.  相似文献   

2.
Covalent binding of benzo(a)pyrene (BP) metabolites to DNA was investigated in hepatocytes and liver microsomes (MC-microsomes) isolated from 3-methylcholanthrene-treated rats. The major DNA adducts formed during BP metabolism in both hepatocytes and incubations of calf thymus DNA with MC-microsomes were adducts of anti and syn isomers of trans-7,8,-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (diol-epoxides) and of epoxide derivatives of BP-9-phenol (phenol-oxides). Diol-epoxide adducts predominated over phenol-oxide adducts in hepatocytes, while the reverse was found in microsomal incubations. In hepatocytes, both diol-epoxide and phenol-oxide adducts increased with increasing BP concentration; the ratio of diol-epoxide adduct to phenol-oxide adduct decreased from 6:1 to 3:1 between 30 and 100 μm BP. In microsomal incubations, decreases in DNA concentration or addition of the hepatocyte L15 medium produced larger decreases in phenol-oxide adducts than in diol-epoxide adducts. The effects of the inhibitors salicylamide, diethylmaleate, and 3,3,3,-trichloropropene oxide on formation of BP-DNA adducts are interpreted in terms of changes in precursor formation and metabolism and reductions in hepatocyte glutathione levels. Addition of 1.5 mg/ml exogenous DNA to hepatocyte incubations produced no change in covalent binding to cellular DNA, even though extracellular BP-DNA adducts accounted for 97% of the total adducts formed. Both the relative amounts of diol-epoxide and phenol-oxide adducts and the total adducts per milligram of DNA were indistinguishable with respect to extracellular and intracellular DNA. Modification of extracellular DNA by diol-epoxides was at least as efficient as modification of calf thymus DNA in incubations with MC-microsomes. It is concluded that BP diol-epoxides and phenol-oxides can leave the cell or enter the nucleus with equal facility but are more effective in binding to DNA in the cell in which they are generated.  相似文献   

3.
The mutagenicity of diethylstilbestrol (DES) in V79 Chinese hamster cells was examined under a variety of conditions. DES over a concentration range 0.01–10 μg/ml failed to induce any increase above the spontaneous frequency of 6-thioguanine-resistant V79 cells. The effect of varying the expression time after treatment in the mutation assay from 3 to 9 days was studied and DES was nonmutagenic at all time points, while N-methyl-N′-nitro-N-nitrosoguanidine was highly mutagenic with a peak response after a 5–7 day expression time. The mutagenicity of benzo[a]pyrene and DES, both of which induce morphological and neoplastic transformation of Syrian hamster embryo (SHE) cells, was tested by cocultivating V79 cells with SHE cells for possible metabolic activation of the chemicals. Neither compound was mutagenic to V79 cells in the absence of SHE cells. Benzo[a]pyrene, but not DES, was mutagenic to V79 cells cocultivated with SHE cells. These results support the observation that DES can induce cell transformation under conditions that do not result in any measurable gene mutations. Moreover, the ability of DES to enhance the recovery of 6-thioguanine-resistant mutations was studied by determining the ability of DES to inhibit metabolic cooperation of V79 cells. Unlike the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate, DES was a weak or inactive inhibitor of metabolic cooperation.  相似文献   

4.
Benzo[a]pyrene is metabolised by isolated viable hepatocytes from both untreated and 3-methylcholanthrene pretreated rats to reactive metabolites which covalently bind to DNA. The DNA from the hepatocytes was isolated, purified and enzymically hydrolysed to deoxyribonucleosides. The hydrocarbon-deoxyribonucleoside products after initial separation, on small columns of Sephadex LH-20, from unhydrolysed DNA, oligonucleotides and free bases, were resolved by high pressure liquid chromatography (HPLC). The qualitative nature of the adducts found in both control and pretreated cells was virtually identical; however pretreatment with 3-methylcholanthrene resulted in a quantitatively higher level of binding. The major hydrocarbon-deoxyribonucleoside adduct, found in hepatocytes co-chromatographed with that obtained following reaction of the diol-epoxide, (±)7α,8β-dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene with DNA. Small amounts of other adducts were also present including a more polar product which co-chromatographed with the major hydrocarbon-deoxyribonucleoside adduct formed following microsomal activation of 9-hydroxybenzo[a]pyrene and subsequent binding to DNA. In contrast to the results with hepatocytes, when microsomes were used to metabolically activate benzo[a]pyrene, the major DNA bound-product co-chromatographed with the more polar adduct formed upon further metabolism of 9-hydroxybenzo[a]pyrene. These results illustrate that great caution must be exercised in the extrapolation of results obtained from short-term mutagenesis test systems, utilising microsomes, to in vivo carcinogenicity studies.  相似文献   

5.
The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N 2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide excision repair or base excision repair mechanisms.  相似文献   

6.
7.
Sonic disrupted mitoplasts from 3-methylcholanthrene (MCA) treated rats can catalyze the formation of benzo(a)pyrene (BaP) adducts with calf thymus DNA in the presence of an NADPH generating system. The mitoplasts used in this study contained less than 1% microsomal marker enzymes: rotenone insensitive NADPH cytochrome c reductase and glucose-6-phosphatase. The rates of BaP metabolism and DNA adduct formation per nanomole cytochrome P-450 were different for MCA induced mitochondrial and microsomal enzymes. The major B(a)P DNA adducts formed in incubations with lysed mitoplasts were derived from reaction of 9-OH-B(a)P-4,5 oxide with deoxyguanosine. The results suggest a potential role of mitochondrial monooxygenase activity in the covalent binding of B(a)P to mitochondrial DNA.  相似文献   

8.
Benzo[a]pyrene is a polycyclic aromatic hydrocarbon (PAH) associated with potent carcinogenic activity. Mutagenesis induced by benzo[a]pyrene DNA adducts is believed to involve error-prone translesion synthesis opposite the lesion. However, the DNA polymerase involved in this process has not been clearly defined in eukaryotes. Here, we provide biochemical evidence suggesting a role for DNA polymerase η (Polη) in mutagenesis induced by benzo[a]pyrene DNA adducts in cells. Purified human Polη predominantly inserted an A opposite a template (+)- and (−)-trans-anti-BPDE-N2-dG, two important DNA adducts of benzo[a]pyrene. Both lesions also dramatically elevated G and T mis-insertion error rates of human Polη. Error-prone nucleotide insertion by human Polη was more efficient opposite the (+)-trans-anti-BPDE-N2-dG adduct than opposite the (−)-trans-anti-BPDE-N2-dG. However, translesion synthesis by human Polη largely stopped opposite the lesion and at one nucleotide downstream of the lesion (+1 extension). The limited extension synthesis of human Polη from opposite the lesion was strongly affected by the stereochemistry of the trans-anti-BPDE-N2-dG adducts, the nucleotide opposite the lesion, and the sequence context 5′ to the lesion. By combining the nucleotide insertion activity of human Polη and the extension synthesis activity of human Polκ, effective error-prone lesion bypass was achieved in vitro in response to the (+)- and (−)-trans-anti-BPDE-N2-dG DNA adducts.  相似文献   

9.
Loss of tritium from specific positions in [3H,14C] aromatic hydrocarbons can elucidate their binding site(s) to DNA and RNA and indicate the mechanism of activation. Studies of tritium loss from [6-3H,14C]benzo[a]pyrene(B[a]P), [1,3-3H,14C]B[a]P, [1,3,6-3H,14C]B[a]P, [6,7-3H,14C]B[a]P, and [7-3H,14C]B[a]P were conducted in vitro using liver nuclei and microsomes from 3-methylcholanthrene-induced Sprague-Dawley rats and in vivo on the skin of Charles River CD-1 mice. The relative loss of tritium from [3H, 14C]B[a]P was measured after binding to skin DNA and RNA, to nuclear DNA, and to native and denatured calf thymus and rat liver DNA's and poly(G) by microsomal activation. In skin, nuclei, and microsomes plus native DNA, virtually all B[a]P binding occurred at positions 1,3 and 6; while with microsomes plus denatured DNA or poly(G), B[a]P showed no binding at the 6 position and a small amount at the 1 and 3 positions. In vivo and with nuclei, binding at the 6 position predominated. Little loss of tritium from the 7 position was seen; this was expected because binding at this position is not thought to occur. This confirms the interpretation of loss of tritium as an indication of binding at a given position. These results demonstrate that the use of microsomes to activate B[a]P is not a valid model system for delineating the in vivo mechanism of B[a]P activation, and support previous evidence for one-electron oxidation as the mechanism of activation of hydrocarbons in binding to nucleic acids.  相似文献   

10.
The reactions of glyoxal with 2′-deoxyguanosine and calf thymus single- and double-stranded DNA in aqueous buffered solutions at physiological conditions resulted in the formation of two previously undetected adducts in addition to the known reaction product 3-(2′-deoxy-β-d-erythro-pentofuranosyl)-5,6,7-trihydro-6,7-dihydroxyimidazo[1,2-a]purine-9-one (Gx-dG). The adducts were isolated and purified by reversed-phase liquid chromatography and structurally characterised by UV absorbance, mass spectrometry, 1H and 13C NMR spectroscopy. The hitherto unknown adducts were identified as: 5-carboxymethyl-3-(2′-deoxy-β-d-erythro-pentofuranosyl)-5,6,7-trihydro-6,7-dihydroxyimidazo[1,2-a]purine-9-one (Gx2-dG) and N2-(carboxymethyl)-9-(2′-deoxy-β-d-erythro-pentofuranosyl)-purin-6(9H)-one (Gx1-dG). Both adducts were shown to arise from Gx-dG. Gx-dG and Gx2-dG were found to be unstable and partly transformed to Gx1-dG, which is a stable adduct and seems to be the end-product of the glyoxal reaction with 2′-deoxyguanosine. All adducts formed in the reaction of glyoxal with 2′-deoxyguanosine were observed in calf thymus DNA. Also in DNA, Gx1-dG was the only stable adduct. The transformation of Gx-dG to Gx1-dG seemed to take place in single-stranded DNA and therefore, Gx1-dG may be a potentially reliable biomarker for glyoxal exposure and may be involved in the genotoxic properties of the compound.  相似文献   

11.
We have used endonuclease IV from Escherichia coli as a probe for apurinic sites in the DNA of HeLa cells following treatment with an activated diol epoxide derivative of benzo[a]pyrene. DNA strand breaks and alkali-labile sites were observed that were repaired following exposure to the carcinogenic alkylating agent. The alkali-labile sites were not substrates for the apurinic site-specific endonuclease IV. We conclude that the alkali-labile sites formed in vivo by benzo[a]pyrene derivatives are not apurinic sites and probably arise as a consequence of rearrangement of the abundant N2-guanine adducts. This finding questions the involvement of apurinic sites in the mutagenic activity of benzo[a]pyrene.  相似文献   

12.
Benzo[a]pyrene (B[a]P) is a potent human and rodent lung carcinogen. This activity has been ascribed in part to the formation of anti-trans-7,8-dihydroxy-7,8-dihydroB[a]P-9,10-epoxide (BPDE)-DNA adducts. Other carcinogenic mechanisms have been proposed: (1) the induction of apurinic sites from radical cation processes, and (2) the metabolic formation of B[a]P-7,8-quinone (BPQ) that can form covalent DNA adducts or reactive oxygen species which can damage DNA. The studies presented here sought to examine the role of stable BPQ-DNA adducts in B[a]P-induced mouse lung tumorigenesis. Male strain A/J mice were injected intraperitoneally once with BPQ or trans-7,8-dihydroxy-7,8-dihydroB[a]P (BP-7,8-diol) at 30, 10, 3, or 0 mg/kg. Lungs and livers were harvested after 24 h, the DNA extracted and subjected to 32P-postlabeling analysis. Additional groups of mice were dosed once with BPQ or BP-7,8-diol each at 30 mg/kg and tissues harvested 48 and 72 h later, or with B[a]P (50 mg/kg, a tumorigenic dose) and tissues harvested 72 h later. No BPQ or any other DNA adducts were observed in lung or liver tissues 24, 48, or 72 h after the treatment with 30 mg/kg BPQ. BP-7,8-diol gave BPDE-DNA adducts at all time points in both tissues and B[a]P treatment gave BPDE-DNA adducts in the lung. In each case, no BPQ-DNA adducts were detected. Mouse body weights significantly decreased over time after BPQ or BP-7,8-diol treatments suggesting that systemic toxicity was induced by both agents. Model studies with BPQ and N-acetylcysteine suggested that BPQ is rapidly inactivated by sulfhydryl-containing compounds and not available for DNA adduction. We conclude that under these treatment conditions BPQ does not form stable covalent DNA adducts in the lungs or livers of strain A/J mice, suggesting that stable BPQ-covalent adducts are not a part of the complex of mechanisms involved in B[a]P-induced mouse lung tumorigenesis.  相似文献   

13.
Five distinct hydrocarbon-deoxyribonucleoside adducts are separated by high pressure liquid chromatography after reaction of benzo[alpha]pyrene with calf thymus DNA in the presence of liver microsomes from 3-methylcholanthrene treated rats. The two major adducts co-chromatography with deoxyribonucleoside adducts obtained after hydrolysis of calf thymus DNA previously reacted with liver microsomal metabolically activated 9-hydroxy-benzo[alpha]pyrene or trans-7,8-dihydro-7,8-dihydroxybenzo[alpha]pyrene. High magnesium ion concentrations in the microsomal incubations cause a significant decrease in the covalent binding of the hydrocarbon to DNA but do not affect the qualitative distribution of the individual benzo[alpha]pyrene-deoxyribonucleoside adducts.  相似文献   

14.
Early events in the cellular response to DNA damage, such as double strand breaks, rely on lesion recognition and activation of proteins involved in maintenance of genomic stability. One important component of this process is the phosphorylation of the histone variant H2AX. To investigate factors explaining the variation in carcinogenic potency between different categories of polycyclic aromatic hydrocarbons (PAHs), we have studied the phosphorylation of H2AX (H2AXγ). A549 cells were exposed to benzo[a]pyrene diol epoxide [(+)-anti-BPDE] (a bay-region PAH) and dibenzo[a,l]pyrene diol epoxide [(−)-anti-DBPDE] (a fjord-region PAH) and H2AXγ was studied using immunocytochemistry and Western blot. Hydrogen peroxide (H2O2) was used to induce oxidative DNA damage and strand breaks. As showed with single cell gel electrophoresis, neither of the diol epoxides resulted in DNA strand breaks relative to H2O2. Visualisation of H2AXγ formation demonstrated that the proportion of cells exhibiting H2AXγ staining at 1 h differed between BPDE, 40% followed by a decline, and DBPDE, <10% followed by an increase. With H2O2 treatment, almost all cells demonstrated H2AXγ at 1 h. Western blot analysis of the H2AXγ formation also showed concentration and time-dependent response patterns. The kinetics of H2AXγ formation correlated with the previously observed kinetics of elimination of BPDE and DBPDE adducts. Thus, the extent of H2AXγ formation and persistence was related to both the number of adducts and their structural features.  相似文献   

15.
Polycyclic aromatic hydrocarbons (PAHs) are carcinogens with varying potencies. These compounds are metabolized to diol epoxides that react to form DNA adducts. Nucleotide excision repair is a critical cellular defense against these bulky DNA adducts which, if not repaired, can lead to mutations and the initiation of cancer. The structural features of the PAH-adducts play a role in differential repair of these adducts by the global genomic repair subpathway of nucleotide excision repair. DNA adducts derived from the PAHs containing bay-regions are repaired more rapidly than adducts derived from PAHs containing fjord-regions. We have employed the host cell reactivation assay to examine the rate of repair of these adducts in an actively transcribing gene. The pGL3 plasmid containing a luciferase gene was damaged with diol epoxides of benzo[a]pyrene (B[a]P-DE), dibenzo[a,l]pyrene (DB[a,l]P-DE), benzo[g]chrysene (B[g]Ch-DE), and benzo[c]phenanthrene (B[c]Ph-DE). The plasmids were transfected into B-lymphocytes with normal repair capacity as well as lymphocytes derived from patients with the XP-A, XP-C and CS-B syndromes. We found that XPA cells were able to transcribe slowly past B[g]Ch-adducts but not the other PAHs. Using the amount of luciferase produced as a measure of DNA repair, we found that the relative rates of repair in the actively transcribing luciferase gene was B[a]P-DE > DB[a,l]P-DE, B[g]Ch-DE, >B[c]Ph-DE in repair proficient and XP-C cells. These results indicate that the abilities to transcribe past and to repair the PAH adducts are dependent on different structural features of the DNA adducts.  相似文献   

16.
Bulky DNA adducts and 8-oxo-7,8-dihydro-2´-deoxyguanosine (8-oxodGuo) were measured in gill DNA of benzo[a]pyrene (B[a]P)-exposed mussels (50 mg kg-1 dw day-1), respectively by the 32P-post-labelling technique and high performance liquid chromatography coupled to electrochemical detection assay. A time-course study was performed for both biomarkers and their potential use for marine biomonitoring discussed for the sentinel species studied. In gills, B[a]P-related DNA adducts were positively correlated with B[a  相似文献   

17.
The oxidative metabolism of benzo[a]pryrene (B[a]P) phenols catalyzed by liver microsomes in vitro leads to multiple products. High-pressure liquid chromatography analysis of the organic-soluble products formed indicates that regardless of the animal pretreatment regime, 3-hydroxy-B[a]P is metabolized to the 3,6-quinone and to a hydroxylated derivative tentatively identified as 3,9-dihyroxy-B[a]P. However, the distribution of products obtained with 9-hydroxy-B[a]P varied with animal pretreatment. A maximum of three distinct metabolites was obtained when the 9-phenol was metabolized in vitro with microsomes from phenobarbital-pretreated rats and the tentative 3,9-dihydroxy derivative was a common metabolite for all pretreatment regimes. Physical characterization, including mass spectrometry, indicates that all three products have an extra oxygen atom incorporated into their molecular structure from molecular oxygen. Studies utilizing specific inhibitors of the cytochrome P-450-dependent monooxygenase clearly suggest that the formation of dihydroxy or phenol-oxide derivatives is catalyzed by the hemoprotein, cytochrome P-450. These metabolites of the benzo[a]pyrene phenols are most likely related to the putative phenol-oxides of benzo[a]pyrene which have been demonstrated to alkylate DNA and protein. Repetitive scan difference spectrophotometric analysis of incubation mixtures containing rat liver microsomes, 3- or 9-hydroxy-B[a]P, NADPH, and oxygen shows the conversion of the phenols into products which absorb in the region from 400 to 500 nm. During and after the steady state of the reaction, it can be seen that certain of the hydroxy compounds produced are in equilibrium with their respective quinone form and may be involved in an oxygen-coupled redox cycle.  相似文献   

18.
Liver nuclei from 3-methylcholanthrene-treated rats in the presence of NADPH metabolized 3- and 9-hydroxybenzo[a]pyrene and 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene to products that bound to DNA. Maximal binding was obtained with the dihydrodiol which was approximately 3-fold that with 9-hydroxybenzo[a]pyrene, and 60-fold that with 3-hydroxybenzo[a]pyrene, as substrates. Both 4,5-dihydro-4,5-dihydroxybenzo[a]pyrene and 9,10-dihydro-9,10-dihydroxybenzo[a]pyrene were also extensively metabolized by the nuclear fraction but did not give rise to DNA-binding products.The available evidence suggests that the DNA binding species derived from 9-hydroxy-benzo[a]pyrene is 9-hydroxy-benzo[a]pyrene-4,5-oxide and from 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene, as previously observed in different systems, 7,8-dihydro-7,8-dihydroxy-benzo[a]pyrene-9,10-oxide.  相似文献   

19.
Y-family DNA polymerases (DNAPs) are often required in cells to synthesize past DNA-containing lesions, such as [+ ta]-B[a]P-N2-dG, which is the major adduct of the potent mutagen/carcinogen benzo[a]pyrene. The current model for the non-mutagenic pathway in Escherichia coli involves DNAP IV inserting deoxycytidine triphosphate opposite [+ ta]-B[a]P-N2-dG and DNAP V doing the next step(s), extension. We are investigating what structural differences in these related Y-family DNAPs dictate their functional differences. X-ray structures of Y-family DNAPs reveal a number of interesting features in the vicinity of the active site, including (1) the “roof-amino acid” (roof-aa), which is the amino acid that lies above the nucleobase of the deoxynucleotide triphosphate (dNTP) and is expected to play a role in dNTP insertion efficiency, and (2) a cluster of three amino acids, including the roof-aa, which anchors the base of a loop, whose detailed structure dictates several important mechanistic functions. Since no X-ray structures existed for UmuC (the polymerase subunit of DNAP V) or DNAP IV, we previously built molecular models. Herein, we test the accuracy of our UmuC(V) model by investigating how amino acid replacement mutants affect lesion bypass efficiency. A ssM13 vector containing a single [+ ta]-B[a]P-N2-dG is transformed into E. coli carrying mutations at I38, which is the roof-aa in our UmuC(V) model, and output progeny vector yield is monitored as a measure of the relative efficiency of the non-mutagenic pathway. Findings show that (1) the roof-aa is almost certainly I38, whose β-carbon branching R-group is key for optimal activity, and (2) I38/A39/V29 form a hydrophobic cluster that anchors an important mechanistic loop, aa29-39. In addition, bypass efficiency is significantly lower both for the I38A mutation of the roof-aa and for the adjacent A39T mutation; however, the I38A/A39T double mutant is almost as active as wild-type UmuC(V), which probably reflects the following. Y-family DNAPs fall into several classes with respect to the [roof-aa/next amino acid]: one class has [isoleucine/alanine] and includes UmuC(V) and DNAP η (from many species), while the second class has [alanine (or serine)/threonine] and includes DNAP IV, DNAP κ (from many species), and Dpo4. Thus, the high activity of the I38A/A39T double mutant probably arises because UmuC(V) was converted from the V/η class to the IV/κ class with respect to the [roof-aa/next amino acid]. Structural and mechanistic aspects of these two classes of Y-family DNAPs are discussed.  相似文献   

20.
In cultures of hamster embryo cells, benzo[a]pyrene (B[a]P) is metabolized primarily in the bay region. In contrast, little or no bay region metabolism of the noncarcinogenic isomer benzo[e]pyrene (B[e]P) could be detected during 12–96-h incubations of hamster embryo cells with 4 μM [3H]B[e]P. The upper limit to 9,10-dihydro-9,10-dihydroxy-B[e]P formation is about 0.2% of the ethyl acetate-soluble metabolites ( <0.1% of the total metabolites). The major identified metabolites of B[e]P were 4,5-dihydro-4,5-dihydroxy B[e]P and the glucuronide conjugates of 3-OH-B[e]P and 4,5-dihydro-4,5-dihydroxy B[e]P. Simultaneous treatment of cells with either B[a]P or 7,8-benzoflavone (BF) did not induce bay region metabolism of [3H]B[e]P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号