首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
J S Eisen  S H Pike  B Debu 《Neuron》1989,2(1):1097-1104
Developing motoneurons in zebrafish embryos follow a stereotyped sequence of axonal outgrowth and accurately project their axons to cell-specific target muscles. During axonal pathfinding, an identified motoneuron pioneers the peripheral motor pathway. Growth cones of later motoneurons interact with the pioneer via contact, coupling, and axonal fasciculation. In spite of these interactions, ablation of the pioneer motoneuron does not affect the ability of other identified motoneurons to select the pathways that lead to appropriate target muscles. We conclude that interactions between these cells during pathfinding are not required for accurate pathway selection.  相似文献   

2.
Zebrafish primary motor axons extend along stereotyped pathways innervating distinct regions of the developing myotome. During development, these axons make stereotyped projections to ventral and dorsal myotome regions. Caudal primary motoneurons, CaPs, pioneer axon outgrowth along ventral myotomes; whereas, middle primary motoneurons, MiPs, extend axons along dorsal myotomes. Although the development and axon outgrowth of these motoneurons has been characterized, cues that determine whether axons will grow dorsally or ventrally have not been identified. The topped mutant was previously isolated in a genetic screen designed to uncover mutations that disrupt primary motor axon guidance. CaP axons in topped mutants fail to enter the ventral myotome at the proper time, stalling at the nascent horizontal myoseptum, which demarcates dorsal from ventral axial muscle. Later developing secondary motor nerves are also delayed in entering the ventral myotome whereas all other axons examined, including dorsally projecting MiP motor axons, are unaffected in topped mutants. Genetic mosaic analysis indicates that Topped function is non-cell autonomous for motoneurons, and when wild-type cells are transplanted into topped mutant embryos, ventromedial fast muscle are the only cell type able to rescue the CaP axon defect. These data suggest that Topped functions in the ventromedial fast muscle and is essential for motor axon outgrowth into the ventral myotome.  相似文献   

3.
4.
During nervous system development, neurons form synaptic contacts with distant target cells. These connections are formed by the extension of axonal processes along predetermined pathways. Axon outgrowth is directed by growth cones located at the tips of these neuronal processes. Although the behavior of growth cones has been well-characterized in vitro, it is difficult to observe growth cones in vivo. We have observed motor neuron growth cones migrating in living Caenorhabditis elegans larvae using time-lapse confocal microscopy. Specifically, we observed the VD motor neurons extend axons from the ventral to dorsal nerve cord during the L2 stage. The growth cones of these neurons are round and migrate rapidly across the epidermis if they are unobstructed. When they contact axons of the lateral nerve fascicles, growth cones stall and spread out along the fascicle to form anvil-shaped structures. After pausing for a few minutes, they extend lamellipodia beyond the fascicle and resume migration toward the dorsal nerve cord. Growth cones stall again when they contact the body wall muscles. These muscles are tightly attached to the epidermis by narrowly spaced circumferential attachment structures. Stalled growth cones extend fingers dorsally between these hypodermal attachment structures. When a single finger has projected through the body wall muscle quadrant, the growth cone located on the ventral side of the muscle collapses and a new growth cone forms at the dorsal tip of the predominating finger. Thus, we observe that complete growth cone collapse occurs in vivo and not just in culture assays. In contrast to studies indicating that collapse occurs upon contact with repulsive substrata, collapse of the VD growth cones may result from an intrinsic signal that serves to maintain growth cone primacy and conserve cellular material.  相似文献   

5.
Retrograde cobalt labeling was performed by incubating the rootlets of cranial nerves IX, X and XI, or the central stumps of the same nerves, in a cobaltic lysine complex solution, and the distribution of efferent neurons sending their axons into these nerves was investigated in serial sections of the medulla and the cervical spinal cord in young rats. The following neuron groups were identified. The inferior salivatory nucleus lies in the dorsal part of the tegmentum at the rostral part of facial nucleus. It consists of a group of medium-sized and a group of small neurons. Their axons make a hair-pin loop at the midline and join the glossopharyngeal nerve. The dorsal motor nucleus of the vagus situates in the dorsomedial part of the tegmentum. Its rostral tip coincides with the first appearance of sensory fibres of the glossopharyngeal nerve, the caudal end extends into the pyramidal decussation. The constituting cells have globular or fusiform perikarya and they are the smallest known efferent neurons. The ambiguous nucleus is in the ventrolateral part of the tegmentum. The rostral tip lies dorsal to the facial nucleus, and the caudal tip extends to the level of the pyramidal decussation. The rostral one third of the ambiguous nucleus is composed of tightly-packed medium sized neurons, while larger neurons are arranged more diffusely in the caudal two thirds. The long dendrites are predominantly oriented in the dorsoventral direction. The dorsally-oriented axons take a ventral bend anywhere between the ambiguous nucleus and dorsal motor nucleus of the vagus. The motoneurons of the accessorius nerve are arranged in a medial, a lateral and a weak ventral cell column. The medial column begins at the caudal aspect of the pyramidal decussation and terminates in C2 spinal cord segment. The lateral and ventral columns begin in C2 segment and extend into C6 segment. The neurons have large polygonal perikarya and characteristic cross-shaped dendritic arborizations. The axons follow a dorsally-arched pathway between the ventral and dorsal horns. The accessorius motoneurons have no positional relation to any of the vagal efferent neurons. It is concluded that the topography and neuronal morphology of accessorius motoneurons do not warrant the designation of a bulbar accessorius nucleus and a bulbar accessorius nerve.  相似文献   

6.
The primary divisions of the spinal nerve in the brown caiman characteristically show the following features: (1) the medial ramus was lies in the thoraco-lumbar and caudal regions, and (2) the first cervical and hypoglossal nerves form a single nerve complex from which the ventral and dorsal rami extend. Intramuscular injections of horseradish peroxidase (HRP) established the positions of motoneurons whose axons followed the primary rami. In the ventral horn of the thoracic and caudal spinal cord, the motoneurons of the medial ramus lie ventrally. These motoneurons lie between the epaxial and hypaxial motoneurons. At the spinomedullary junction, the pools of motoneurons innervating the infrahyoid, lingual, and dorsal muscles have a somatotopic organization similar to that observed in the thoraco-lumbar and caudal regions. Thus clear somatotopic organization of the motoneurons that innervate the axial musculature exists at all spinal levels. © 1994 Wiley-Liss, Inc.  相似文献   

7.
Primary motoneurons, the earliest developing spinal motoneurons in zebrafish, have highly stereotyped axon projections. Although much is known about the development of these neurons, the molecular cues guiding their axons have not been identified. In a screen designed to reveal mutations affecting motor axons, we isolated two mutations in the stumpy gene that dramatically affect pathfinding by the primary motoneuron, CaP. In stumpy mutants, CaP axons extend along the common pathway, a region shared by other primary motor axons, but stall at an intermediate target, the horizontal myoseptum, and fail to extend along their axon-specific pathway during the first day of development. Later, most CaP axons progress a short distance beyond the horizontal myoseptum, but tend to stall at another intermediate target. Mosaic analysis revealed that stumpy function is needed both autonomously in CaP and non-autonomously in other cells. stumpy function is also required for axons of other primary and secondary motoneurons to progress properly past intermediate targets and to branch. These results reveal a series of intermediate targets involved in motor axon guidance and suggest that stumpy function is required for motor axons to progress from proximally located intermediate targets to distally located ones.  相似文献   

8.
9.
Chick sensory neurons grow to their correct targets in the hindlimb from the outset during normal development and following various experimental manipulations. This may result not because sensory neurons respond to specific limb-derived cues, but because they interact in some way with motoneurons which are responsive to such cues. To test this possibility, we removed the ventral part of the neural tube, which contains motoneurons and their precursors, at stages 16 1/2-20 1/2 and later examined the pathways sensory neurons had taken within the limb. Muscle nerves generally were missing or were reduced in diameter beyond the extent expected simply from the absence of motoneuron axons. In many cases, cutaneous nerves were enlarged, presumably due to the addition of other sensory axons. This result suggests that, in the absence of motoneurons, sensory neurons that normally project to muscles are unable to do so and may instead project along cutaneous pathways. Sensory axons from different segments also crossed less extensively in the plexus region than they did in control embryos, suggesting that alterations in their trajectories may normally be facilitated by similar changes in motoneuron pathways. Thus, motoneurons greatly enhance sensory neuron growth to muscles and contribute significantly toward the achievement of the normal sensory projection pattern. Sensory axons may fasciculate with motoneuron axons, or motoneuron axons may provide an aligned substrate for sensory neurons to grow along. Alternatively, motoneuron axons may alter the environment, thereby making certain pathways in the limb permissive for sensory neuron growth.  相似文献   

10.
Intracellular dye fills have been used to reveal the pattern of embryonic growth of each of the four neurons which innervate the extensor tibiae muscle (ETi) of the hind leg of the locust. The growth cone of the slow extensor tibiae motoneuron (SETi), the first of the four neurons to leave the central nervous system, pioneers nerve 3 (N3). The fast extensor motoneuron (FETi), the next neuron to grow out, follows earlier outgrowing motoneurons into the periphery in nerve 5 (N5) and then rejoins SETi in N3. As it transfers from N5 to N3, it is transiently dye-coupled to the Tr1 pioneer neuron which spans the gap between the two nerves. It then follows SETi onto the ETi muscle in the femur. The common inhibitory neuron and the dorsal unpaired median neuron (DUMETi) follow SETi and FETi in nerves 3B2 and 5B1, respectively. SETi's growth cone requires almost twice as long to reach ETi as those of the three later motoneurons, all of which follow preexisting neural pathways. At least three of the four developing motoneurons form one or more axon branches not found in the adult. These branches may occur (1) at segmental boundaries; (2) where the nerve, which the growth cone is following, itself branches or the growth cone encounters another nerve; or (3) when the axon continues to grow beyond its target muscle. These findings contrast with the apparent absence of inappropriate axon branches in another developing locust neuromuscular system and during the innervation of zebrafish myotomes, but resemble in some ways the transient production of inappropriate axonal branches reported for embryonic leech motoneurons.  相似文献   

11.
The dorsal ramus nerve diverges dorsally from each spinal nerve to innervate the epaxial muscle and dermis that are derived in situ from each dermamyotome. The outgrowth of both the sensory and motor components of this nerve are sensitive to the proximity of the dermamyotome. Motoneurons display a direct target response that is not dependent upon the concurrent outgrowth of sensory neurites (Tosney: Dev. Biol. 122:540-588, 1987). Likewise, the outgrowth of sensory neurites could be directly dependent on the dermamyotome. Alternatively, sensory neurites could be dependent on motor axons that in turn require the dermamyotome for outgrowth. To distinguish between these possibilities, motor outgrowth was abolished by unilateral ventral neural tube deletion and the patterns of subsequent sensory neurite outgrowth were assessed. The cutaneous nerve branch formed in all cases. In contrast, neither of the epaxial muscle nerves formed in the absence of epaxial motoneuron outgrowth. Furthermore, sensory neurites could not be detected diverging into muscle from the cutaneous nerve or entering muscle via other novel routes. We conclude that motoneurons are essential for sensory outgrowth to epaxial muscle but not to cutaneous targets. It is clear that different subsets of navigational cues guide sensory afferents to muscle and to cutaneous destinations.  相似文献   

12.
We wished to know whether the cell death and phagocytosis seen near the outgrowing nerve front in the hindlimb delineate axon pathways and, if so, whether the cells died only in the presence of growth cones. We unilaterally deleted the lumbosacral neural tube and reconstructed the patterns of neurite outgrowth and phagocytes during the stage when neurites first begin to colonize the thigh. In the control limbs, sensory and motor nerve pathways coincided with sites of phagocytosis, including those pathways that had yet to be colonized by growth cones. For instance, phagocytes were clustered at foci within the muscle masses where muscle nerves form a day later. However, they were not seen in adjacent, nonpathway regions such as posterior sclerotome or dorsal and ventral to the region of the plexus in which axons extend only posteriorly. Phagocytes were also seen in defined regions that are probably inaccessible to growth cones because they are too distant from pathways (i.e., subjacent to the apical ectodermal ridge) or express substances that are typical of precartilagenous tissues which may prohibit axon advance. In the experimental limbs, we conservatively estimated that neurite outgrowth was reduced to less than one-tenth (neurites were visible only with electron microscopy) or less than one-third of normal. Outgrowth extended less far distally and, in half the cases, motor innervation was completely abolished. Despite the extensive reduction in neurite outgrowth, the distribution of phagocytes was indistinguishable from that of the control side. Furthermore, the number of phagocytes did not differ significantly. We conclude that cell death delineates axon pathways remarkably well and does so without an interaction with growth cones; it is an independent characteristic of the axonal pathways and may be directly or indirectly important to axonal pathfinding. This is the first identification of a feature that characterizes prospective nerve pathways in the hindlimb.  相似文献   

13.
Development of the segmented central nerve cords of vertebrates and invertebrates requires connecting successive neuromeres. Here, we show both how a pathway is constructed to guide pioneer axons between segments of the Drosophila CNS, and how motility of the pioneers along that pathway is promoted. First, canonical Notch signaling in specialized glial cells causes nearby differentiating neurons to extrude a mesh of fine projections, and shapes that mesh into a continuous carpet that bridges from segment to segment, hugging the glial surface. This is the direct substratum that pioneer axons follow as they grow. Simultaneously, Notch uses an alternate, non-canonical signaling pathway in the pioneer growth cones themselves, promoting their motility by suppressing Abl signaling to stimulate filopodial growth while presumably reducing substratum adhesion. This propels the axons as they establish the connection between successive segments.  相似文献   

14.
In vertebrate embryos, spinal motor neurons project through segmentally reiterated nerves into the somites. Here, we report that zebrafish secondary motor neurons, which are similar to motor neurons in birds and mammals, depend on myotomal cues to navigate into the periphery. We show that the absence of myotomal adaxial cells in you-too/gli2 embryos severely impairs secondary motor axonal pathfinding, including their ability to project into the somites. Moreover, in diwanka mutant embryos, in which adaxial cells are present but fail to produce cues essential for primary motor growth cones to pioneer into the somites, secondary motor axons display similar pathfinding defects. The similarities between the axonal defects in you-too/gli2 and diwanka mutant embryos strongly suggest that pathfinding of secondary motor axons depends on myotome-derived cues, and that the diwanka gene is a likely candidate to produce or encode such a cue. Our experiments also demonstrate that diwanka plays a central role in the migration of primary and secondary motor neurons, suggesting that both neural populations share mechanisms underlying axonal pathfinding. In summary, we provide compelling evidence that myotomal cells produce multiple signals to initiate and control the migration of spinal nerve axons into the somites.  相似文献   

15.
16.
17.
The development of patterned axon outgrowth and dorsal root ganglion (DRG) formation was examined after partially or totally removing chick somitic mesoderm. Since the dermamyotome is not essential and a full complement of limb muscles developed, alterations in neural patterns could be ascribed to deletion of sclerotome. When somitic tissue was completely removed, axons extended and DRG formed, but in an unsegmented pattern. Therefore the somite does not elicit outgrowth of axons or migration of DRG precursors, it is not a manditory substratum and it is not required for DRG condensation. These results suggest that posterior sclerotome is relatively inhibitory to invasion, an inhibition that is released when sclerotome is absent. When somites were partially deleted, axonal segmentation was not lost proportionally with the amount of sclerotome removed, suggesting that properties that may vary with sclerotome volume (such as diffusible cues) do not play a primary role. Instead, spinal nerves lost segmentation only when ventral sclerotome was deleted, regardless of whether dorsal sclerotome was or was not removed. This strongly suggests that axonal segmentation is imposed by direct interactions between growth cones and extracellular matrices or surfaces sclerotome cells. While DRG tended to be normally segmented when ventral sclerotome was deleted and to lose segmentation when dorsomedial sclerotome was absent, a coordinate loss of DRG segmentation with sclerotome volume could not be ruled out. However it is clear that axonal and DRG segmentation are independent. Observations on a subset of embryos in which the notochord was displaced relative to the spinal cord suggest that the ventromedial sclerotome surrounding the notochord inhibits axon advance. Posterior and ventromedial sclerotome are hypothesized to act as barriers to axon outgrowth due to some feature of their common cartilaginous development. Specific innervation patterns were also examined. When the notochord was displaced toward the control limb, axons on this side made and corrected projection errors, suggesting that the notochord can influence the precision of axonal pathway selection. In contrast, motor axons that entered the limb on all operated sides innervated muscle with their normal precision despite the absence of the somite and axonal segmentation. Therefore, the somite and the process of spinal nerve segmentation are largely irrelevant to the specificity of motoneuron projection.  相似文献   

18.
To determine the generality of developmental mechanisms involved in the construction of the insect nervous system, the embryonic development of the peripheral nervous system in the grasshopper Schistocerca gregaria was characterized at the level of identified neurons and nerve branches and then compared to that previously described from the fly Drosophila melanogaster. For this, immunocytochemistry using a neuron-specific antibody was carried out on staged grasshopper embryos. Our results show that initially a simple peripheral nerve scaffolding is established in each segment of the animal. This scaffolding consists of a pair of intersegmental nerves that are formed by identified afferent and efferent pioneer neurons and a pair of segmental nerves that are formed by afferent pioneers situated in limb buds. Subsequently, identified sets of sensory neurons differentiate in a stereotyped spatiotemporal pattern in dorsal, lateral and ventral clusters in each segment and project their axons onto these nerves. Although segment-specific differences exist, serial homologs of the developing nerves and sensory neurons can be identified. A comparison of these results with those obtained from Drosophila shows that virtually the same pattern of peripheral nerves and sensory structures is formed in both species. This indicates that the construction of the peripheral nervous system in extremely divergent modern insects relies on conserved developmental mechanisms that evolved in ancestral insects over 300 million years ago.  相似文献   

19.
The first neurons to extend axons through embryonic grasshopper limbs are a pair of sibling pioneer neurons. After migrating proximally along the limb axis, the pioneer growth cones normally make an abrupt ventral turn. In some cases (less than 20%) this turn is directly toward the proximo-ventrally located Cx1 guidepost neurons. However, in the majority of cases (greater than 80%) the pioneer growth cones make a more acute ventral turn along a single circumferential line which lies distal to the Cx1 neurons. Growth cones from other afferent neurons orient along the same line. Growth cones can extend along this line around more than half of the circumference of the limb and can grow in either direction along it. The circumferential line appears to be the prospective trochanter-coxa segment boundary. Afferent axons on the segment boundary leave it and contact the proximo-ventrally located Cx1 neurons. The site at which pioneer growth cones leave the boundary is variable and appears to be the point from which filopodial contact with Cx1 cells is first established. In addition to the trochanter-coxa segment boundary, the pioneer growth cones and axons also respond to the tibia-femur and femur-trochanter segment boundaries. The role of segment boundaries as barriers to growth cone movement and the effect of such barriers on the timing and placement of differentiation of pioneer neurons are discussed.  相似文献   

20.
Polysialic acid influences specific pathfinding by avian motoneurons.   总被引:6,自引:0,他引:6  
J Tang  L Landmesser  U Rutishauser 《Neuron》1992,8(6):1031-1044
The influence of polysialic acid (PSA) on the neural cell adhesion molecule on motoneuron outgrowth and pathway formation was investigated by determining its temporal and spatial pattern of expression and by the effect that its removal had on motoneuron projection patterns. Motoneurons first expressed PSA as their growth cones began to segregate into motoneuron pool-specific groups in the plexus region; furthermore, PSA levels differed between motoneurons projecting to different targets. When PSA was removed during the period of axonal segregation in the plexus region projection errors were common. However, later removal during the process of muscle nerve formation did not result in projection errors. These results suggest that PSA modulates interactions between motoneuron axons and guidance molecules in the plexus region during axonal pathfinding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号