首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emanuel syndrome is an inherited chromosomal abnormality resulting from 3:1 meiotic segregation from parental balanced translocation carrier t(11;22)(q23;q11), mostly of maternal origin. It is characterized by mental retardation, microcephaly, preauricular tag or sinus, ear anomalies, cleft or high arched palate, micrognathia, congenital heart diseases, kidney abnormalities, structural brain anomalies and genital anomalies in male. Here in, we describe a female patient with supernumerary der(22) syndrome (Emanuel syndrome) due to balanced translocation carrier father t(11;22) (q23;q11). She was mentally and physically disabled and had most of the craniofacial dysmorphism of this syndrome. Our patient had cleft palate, maldeveloped corpus callosum and hind brain with normal internal organs. Additionally, arachnodactyly, hyperextensibility of hand joints, abnormal deep palmar and finger creases, extra finger creases and bilateral talipus were evident and not previously described with this syndrome. Cytogenetic analysis and FISH documented that the patient had both translocation chromosomes plus an additional copy of der(22) with karyotyping: 47,XX,t(11; 22)(q23;q11),+der(22)t(11;22)(q23;q11). We postulated that this rare chromosomal complement can arise from; 2:2 segregation in the first meiotic division of the balanced translocation father followed by non-disjunction at meiosis II in the balanced spermatocyte.  相似文献   

2.
The t(11;22)(q23;q11) translocation is the most frequently encountered familial reciprocal translocation in humans. In the majority of reported cases ascertainment has been through the birth of a child with the chromosomal constitution 47,XX,+der(22) or 47,XY,+der(22), i.e., tertiary trisomy. Previous segregation analysis of familial cases showed a number of interesting features. Thus, euploid unbalanced genotypes resulting from adjacent segregation are absent in the progeny, and only tertiary trisomic offspring are recovered. To explain this unusual progeny output we present here a model for the meiotic behavior of this translocation in the carriers based on an analysis of cytogenetic data of progeny of carriers. This model predicts the formation of a chain trivalent with chromosome order 11-der(11)-22 during prophase I and its predominant alternate orientation at metaphase I.  相似文献   

3.
Summary Carriers of the standard translocation t(11;22) (q23.3;q11.2) produce only one type of unbalanced offspring, a tertiary trisomy resulting into the karyotype 47,XX or XY, +der(22)t(11;22)(q23.3;q11.2), usually derived from the mother. The exception is one single patient 47,XY,t(11;22)(q23.3;q11.2),+der(22)t(11;22) (q23.3;q11.2)pat. We report a second case with the same karyotype, also of paternal origin. Thus, the rare unbalanced offspring of a carrier father (only 5 cases known) may receive a supernumerary der(22), as a consequence of tertiary trisomy, but also as a consequence of nondisjunction at meiosis II of a balanced spermatocyte.  相似文献   

4.
In this case report we present a child with an additional chromosome in the karyotype. The karyotypes of the boy and his parents were analyzed by use of a conventional banding technique (GTG) and fluorescence in situ hybridization (FISH). Probes painting whole chromosomes 12 and 18 were used in FISH. Cytogenetic examination of the parents revealed that his mother was carrying balanced reciprocal translocation between chromosomes 12 and 18. Her karyotype was described as 46,XX,t(12;18)(p13;q12). Father's karyotype was normal, described as 46,XY. The boy's karyotype was defined as 47,XY,+der(18)t(12;18)(p13;q12). The additional chromosome appeared probably due to 3:1 meiotic disjunction of the maternal balanced translocation, known as tertiary trisomy. The mother displayed a normal phenotype and delivered earlier a healthy child. However, the boy with the unbalanced karyotype shows multiple congenital abnormalities.  相似文献   

5.
The 11q;22q translocations, whatever the breakpoints may be, are of particular interest because of their propensity to 3:1 segregation of the chromosomes at meiosis I. Until now, no unbalanced karyotype resulting from 2:2 adjacent segregation was published among offspring of 11q;22q translocation carriers. The authors report the case of an unbalanced karyotype due to adjacent 1 segregation of a maternal translocation (11;22)(q23.3;q13.2). The proband's karyotype was 46,XX,-22,+der(22)(11;22)(q23.3;q13.2)mat. This finding demonstrates that adjacent 1 segregation is possible in t(11;22) with breakpoints at 11q23 and 22q13, and can lead to birth of viable infants.  相似文献   

6.
We report, a newborn presenting multiple congenital abnormalities with karyotype; 47,XY,der(7)t(6;7)(pter-p23::p15-->qter),+der(9)t(7;9)(pter-->p15::q21.2--> pter)t(6;7;9)(p23;p15;q21.2)mat[20]. The mother and her phenotypically normal daughter were carriers of a complex chromosomal rearrangement with karyotypes; 46,XX,t(6;7;9)(p23;p15;q21.2)[20]. Paternal chromosomes were normal. In our case the extra derivative chromosome was the result of a 4:2 segregation of the chromosomes involved in translocation during oogenesis. Double partial trisomy in newborns resulting from 4:2 segregation is a rare event, and double partial trisomies of the 6p23-pter and trisomy 9pter-q22 regions have not reported to date.  相似文献   

7.
Partial duplication of 11q is related to several malformations like growth retardation, intellectual disability, hypoplasia of corpus callosum, short nose, palate defects, cardiac, urinary tract abnormalities and neural tube defects. We have studied the clinical and molecular characteristics of a patient with severe intellectual disabilities, dysmorphic features, congenital inguinal hernia and congenital cerebral malformation which is referred to as cytogenetic exploration. We have used FISH and array CGH analysis for a better understanding of the double chromosomic aberration involving a 7p microdeletion along with a partial duplication of 11q due to adjacent segregation of a paternal reciprocal translocation t(7;11)(p22;q21) revealed after banding analysis. The patient's karyotype formula was: 46,XY,der(7)t(7;11)(p22;q21)pat. FISH study confirmed these rearrangement and array CGH technique showed precisely the loss of at least 140 Kb on chromosome7p22.3pter and 33.4 Mb on chromosome11q22.1q25. Dysmorphic features, severe intellectual disability and brain malformations could result from the 11q22.1q25 trisomy. Our study provides an additional case for better understanding and delineating the partial duplication 11q.  相似文献   

8.
We describe an eleven day-old boy and his first degree double cousin who both have distal trisomy 10q syndrome. Their cytogenetic analysis using GTG-banding showed an unbalanced translocation 46, XY, -20, +der(20), t(10;20)(q22.3, p11) mat and 46, XX, -20, +der(20), t(10;20)(q22.3, p11) mat. The translocation was confirmed by FISH. We have found balanced translocation t(10;20)(q22.3; p11) with cytogenetic and FISH studies in the mothers and maternal grandfather of these children. Our cases had typical craniofacial and visceral anomalies of this syndrome. However case 1 had an agenesia of corpus callosum which was not previously described and case 2 had hypertrophied cardiomyopathy and cliteromegaly which were previously described as rare anomalies for this syndrome.  相似文献   

9.
A 14-year-old male was referred for evaluation of mental retardation with short stature and dysmorphic features. His karyotype was 46,XY,der(14)t(5;14)(q33;p12)pat, resulting in a pure partial 5q33-q35 trisomy due to the adjacent-1 segregation of a paternal balanced translocation. Paternal blood karyotype revealed a balanced translocation t(5;14)(q33;p12) retaining Ag-Nors. To date, only two cases of pure partial 5q trisomies spanning this region have been reported. Analysis of these cases and the one we report does not allow the delineation of a specific phenotype.  相似文献   

10.
Familial reciprocal translocations are generally without phenotypic effect, although there is some evidence for a small excess of mental retardation and congenital malformations (MR/CM) in children carrying familial reciprocal translocations. Possible mechanisms whereby such translocations could have a phenotypic effect include cryptic unbalanced rearrangements, uniparental disomy, and disruption of putative genes at the breakpoints, unmasking recessive alleles on the normal homologs. Mosaicism for a supernumerary derivative chromosome in a carrier of a familial reciprocal translocation has not yet been described. We report a boy presenting with MR/CM and a familial reciprocal translocation, t(17;22)(q24.2;q11.23), inherited from the mother. Cytogenetic analysis of peripheral blood lymphocytes showed a balanced karyotype in all 32 analyzed metaphase spreads. Molecular genetic analysis was consistent with biparental origin of the normal homologs. In metaphase spreads from skin fibroblasts a supernumerary chromosome was found in all 24 cells analyzed and could be identified as der(22)t(17;22)(q24.2;q11.23). Several possible segregation modes at meiosis I followed by meiosis II or postzygotic nondisjunction of the der(22) might have led to this unusual chromosomal mosaicism. We propose hidden mosaicism as a possible cause for MR/CM in patients who apparently carry a balanced familial reciprocal translocation.  相似文献   

11.
Understanding the segregational behaviour of reciprocal tranlocations in man is of both theoretical and clinical importance. Generally, information for genetic counselling is obtained from empirical data although knowledge of gametic output can now be obtained by karyotyping individual human spermatozoa. However, neither empirical studies nor sperm karyotyping data provide detailed information on how the combinations of normal, balanced and unbalanced gametes arise. For this knowledge of quadrivalent orientation and first meiotic segregation is required. We have used dual colour fluorescence in situ hybridisation (FISH) to identify normal and derived chromosomes during meiosis in testicular biopsy material from a 46,XY,t(15;20)(q11.2;q11.2) heterozygote. We were able to determine the frequencies of different quadrivalent structures at first metaphase (MI) and the proportion of first meiotic divisions subject to interstitial chiasmata. Having identified all 2:2, 3:1 and 4:0 segregation products at second metaphase, it was possible to correlate segregation categories with the various forms of MI quadrivalent possibly indicating their modes of orientation. Finally the ratios of normal:balanced:unbalanced gametes expected to be produced by this translocation heterozygote were calculated.by T.C. Hsu  相似文献   

12.
Summary The frequency and distribution of chiasmata was investigated in two fertile carriers of reciprocal translocations, one with a 46,XY,t(9;10)(p22;q24) karyotype and one with a 46,X,-Y,+der(Y),t(Y;10)(q12;q24) karyotype. In both cases the chromosomes involved in the translocation showed an increase in chiasma frequency in comparison to karyotypically normal controls and in both cases this increase was localised, affecting only one interstitial segment of each translocation quadrivalent. In the t(9;10) case chiasmata appeared in substantial numbers in a novel location, the proximal two thirds of 9p, while in the t(Y;10) case chiasmata appeared in a conventional location, the medial region of 10q, but at an increased frequency. Furthermore there was evidence for inter-chromosomal effects in the t(9;10) case.  相似文献   

13.
A family is reported in which a man with a balanced reciprocal translocation [46,XY,t(7;22)(q32;q13.3)] fathered a daughter who was trisomic for the region 7q32----7qter and monosomic for 22q13.3----22qter, and a male fetus who was monosomic for 7q32----qter and trisomic for 22q13.3----22qter. The meiotic segregation of this translocation, as well as the phenotypes of the unbalanced offspring, are discussed.  相似文献   

14.
Acute promyelocytic leukemia (APL) is characterized by a reciprocal translocation t(15;17)(q22;q21) leading to the disruption of Promyelocytic leukemia (PML) and Retionic Acid Receptor Alpha (RARA) followed by reciprocal PML-RARA fusion in 90% of the cases. Fluorescence in situ hybridization (FISH) has overcome the hurdles of unavailability of abnormal and/or lack of metaphase cells, and detection of cryptic, submicroscopic rearrangements. In the present study, besides diagnostic approach we sought to analyze these cases for identification and characterization of cryptic rearrangements, deletion variants and unknown RARA translocation variants by application of D-FISH and RARA break-apart probe strategy on interphase and metaphase cells in a large series of 200 cases of APL. Forty cases (20%) had atypical PML-RARA and/or RARA variants. D-FISH with PML/RARA probe helped identification of RARA insertion to PML. By application of D-FISH on metaphase cells, we documented that translocation of 15 to 17 leads to 17q deletion which results in loss of reciprocal fusion and/or residual RARA on der(17). Among the complex variants of t(15;17), PML-RARA fusion followed by residual RARA insertion closed to PML-RARA on der(15) was unique and unusual. FISH with break-apart RARA probe on metaphase cells was found to be a very efficient strategy to detect unknown RARA variant translocations like t(11;17)(q23;q21), t(11;17)(q13;q21) and t(2;17)(p21;q21). These findings proved that D-FISH and break-apart probe strategy has potential to detect primary as well as secondary additional aberrations of PML, RARA and other additional loci. The long-term clinical follow-up is essential to evaluate the clinical importance of these findings.  相似文献   

15.
The place of FISH in the monitoring of minimal residual disease (MRD) is yet to be fully characterised. Routine bone marrow cytogenetics at diagnosis in a 22 year old patient with acute myeloid leukemia FAB type M5 detected a translocation t(9;11)(p22;q23). We report our investigations to assess residual levels of translocation using a FISH probe designed to detect a gene split by the translocation. We used MLL (Oncor), a probe which spans the MLL gene at 11q23, in both metaphase and interphase preparations. At diagnosis, metaphase FISH showed 3 distinct cell lines-normal with 2 signals, abnormal with 3 signals and abnormal with 2 signals, while interphase FISH showed only 2 cell lines, one with 2 signals (which could be normal or abnormal) and one with 3 signals (split MLL). Following treatment, with the patient in clinical remission, 7 further cytogenetic analyses and 2 further FISH analyses were compared. Our results suggest that monitoring of the t(9;11) by metaphase FISH is feasible and straightforward compared to cytogenetics but interphase FISH may be problematic.  相似文献   

16.
A reciprocal translocation between chromosomes 11 and 22 is a site-specific translocation that has been seen in many families with no common ancestry. This translocation is of particular interest because balanced carriers have a 0.7–3.7% risk of having children with the supernumerary der(22), resulting from a 3:1 segregation. We have used a three color fluorescence in situ hybridization (FISH) with specific DNA probes to determine the chromosome segregation pattern of a male carrier of a translocation t(11;22)(q23;q11). The probes selected included a centromeric marker for chromosome 11, a marker closely linked to the centromere of chromosome 22, and a third probe distal to the translocation breakpoint of chromosome 22. The results showed that 3 : 1 segregation is preferential in this patient, with 40.1% of spermatozoa belonging to this segregation type. Alternate segregation followed with 27.4% of analyzed spermatozoa; 17.6% resulted from adjacent 1 and 12.5% resulted from adjacent 2 segregation. We detected 0.5% of presumably diploid spermatozoa. Complementary adjacent 1 products were observed at statistically different frequencies (P = 0.02). Complementary adjacent 2 products without recombination in the interstitial segments were also seen at different frequencies (P = 0.002). In 3 : 1 segregation, the products containing one chromosome were observed more frequently than those with three chromosomes (P = 0.0001). The 24,+der(22) gamete was seen more frequently than all of the other gametes combined which had 24 chromosomes resulting from 3 : 1 segregation. The results of this study demonstrate that in this t(11;22) carrier, 3 : 1 segregation is preferential but not exclusive. Received: 9 December 1998 / Accepted: 1 March 1999  相似文献   

17.
Chromosome analysis performed on a 30-year-old man revealed a 46,Y,der(X),t(X;Y)(qter-->p22::q11-->qter) karyotype, confirmed by fluorescence in situ hybridization (FISH). The man was of short stature, and no mental retardation was noticed; genitalia and testes were normal, as were the patient's FSH, LH, and testosterone blood levels. Sperm analysis showed azoospermia at the time of the first sampling and severe oligozoospermia, with 125,000 spermatozoa/milliliter, at the time of the second sampling. The sperm gonosomal complement of this patient and of a 46,XY donor were analyzed using multicolor FISH with X- and Y-chromosome probes. Our results clearly indicated that germinal cells carrying the translocation are able to complete the meiotic process by producing spermatozoa compatible with normal embryonic development, with more than 80% of the spermatozoa having either a Y chromosome or a der(X); however, a high level of spermatozoa with gonosomal disomies was observed. We also found a significant increase in the frequency of autosomal disomies in the carrier, which would suggest an interchromosomal effect. All previously reported cases in adult males were associated with azoospermia; testicular histological studies, performed in patients carrying the same X;Y translocation, showed spermatogenetic arrest after pachytene. To our knowledge, this is the first molecular analysis of the gonosomal complement in spermatozoa of men with a t(X;Y)(qter-->p22::q11-->qter).  相似文献   

18.
We report on a 9-year-old female patient presenting with muscle weakness, facial dysmorphism and mild mental retardation. She had low birth weight, developmental delay, hypotonia and hyporeflexia and difficulties in climbing the stairs. EMG revealed axonal polyneuropathy affecting both upper and lower limbs. She was the child of non-consanguineous parents, her cytogenetic findings revealed 46,XX,t(12;14)(q14;q23). The mother's karyotype was normal 46,XX while the father's karyotype was 46,XY,t(12;14)(q14;q23) the same as his daughter. Her normal sister's karyotype was also 46,XX,t(12; 14) (q14;q23). Fluorescence in situ hybridization (FISH) was used to elucidate the breakpoints and Array-CGH was done for the patient to confirm the balanced translocation. This observation is of interest because it represents a rare case of a balanced translocation with abnormal phenotype. Mutant genes causing axonal neuropathy have been located on various chromosomes other than 12q14 or 14q24. This report shows the importance of molecular cytogenetics and its correlation with abnormal phenotype and the possibility of another gene locus at the presently studied chromosomal breakpoints. Detailed correlations between chromosome aberrations and their phenotypes are of invaluable help in localising genes for axonal polyneuropathy.  相似文献   

19.
Translocation t(11;22)(q23;q11) is the most common constitutional reciprocal translocation in man. Balanced carriers are phenotypically normal, except for decreased fertility, an increased spontaneous abortion rate and a possible predisposition to breast cancer in some families. Here, we report the high resolution mapping of the t(11;22)(q23;q11) breakpoint. We have localised the breakpoint, by using fluorescence in situ hybidisation (FISH) walking, to a region between D11S1340 and WI-8564 on chromosome 11, and D22S134 and D22S264 on chromosome 22. We report the isolation of a bacterial artificial chromosome (BAC) clone spanning the breakpoint in 11q23. We have narrowed down the breakpoint to an 80-kb sequenced region on chromosome 11 and FISH analysis has revealed a variation of the breakpoint position between patients. In 22q11, we have sequenced two BACs (BAC2280L11 and BAC41C4) apparently mapping to the region; these contain low copy repeats (LCRs). Southern blot analysis with probes from BAC2280L11 has revealed different patterns between normal controls and translocation carriers, indicating that sequences similar/identical to these probes flank the translocation breakpoint. The occurrence of LCRs has previously been associated with genomic instability and "unclonable" regions. Hence, the presence of such repeats renders standard translocation breakpoint cloning techniques ineffective. Thus, we have used high resolution fiber-FISH to study this region in normal and translocation cases by using probes from 22q11, LCRs and 11q23. We demonstrate that the LCR containing the gap in 22q11 is probably substantially larger than the previous estimates of 100 kb. Using fiber-FISH, we have localised the breakpoint in 22q11 to approximately 20-40 kb from the centromeric border of the LCR (i.e. the telomeric end of AC006547) and have confirmed the breakpoint position on 11q23.  相似文献   

20.
Summary A family is reported in which the propositus has an extra G-like chromosome with an unusual G-banding pattern. Cytogenetic family studies showed that the mother is a carrier of a balanced reciprocal translocation t(13;22), which does not affect the size and morphology of the chromosomes involved. The propositus has a 47,XY,+der(22),t(13;22)(q22;q11) karyotype and is therefore partially trisomic for the distal third of the long arm of chromosome 13 and for a very small part of chromosome 22. The clinical findings are presented and compared with those of other reported cases of partial trisomies 13 and 22.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号