首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyclooxygenase 2 (COX-2) inhibitor celecoxib (also called celebrex), approved for the treatment of colon carcinogenesis, rheumatoid arthritis, and other inflammatory diseases, has been shown to induce apoptosis and inhibit angiogenesis. Because NF-kappa B plays a major role in regulation of apoptosis, angiogenesis, carcinogenesis, and inflammation, we postulated that celecoxib modulates NF-kappa B. In the present study, we investigated the effect of this drug on the activation of NF-kappa B by a wide variety of agents. We found that celecoxib suppressed NF-kappa B activation induced by various carcinogens, including TNF, phorbol ester, okadaic acid, LPS, and IL-1 beta. Celecoxib inhibited TNF-induced I kappa B alpha kinase activation, leading to suppression of I kappa B alpha phosphorylation and degradation. Celecoxib suppressed both inducible and constitutive NF-kappa B without cell type specificity. Celecoxib also suppressed p65 phosphorylation and nuclear translocation. Akt activation, which is required for TNF-induced NF-kappa B activation, was also suppressed by this drug. Celecoxib also inhibited the TNF-induced interaction of Akt with I kappa B alpha kinase (IKK). Celecoxib abrogated the NF-kappa B-dependent reporter gene expression activated by TNF, TNF receptor, TNF receptor-associated death domain, TNF receptor-associated factor 2, NF-kappa B-inducing kinase, and IKK, but not that activated by p65. The COX-2 promoter, which is regulated by NF-kappa B, was also inhibited by celecoxib, and this inhibition correlated with suppression of TNF-induced COX-2 expression. Besides NF-kappa B, celecoxib also suppressed TNF-induced JNK, p38 MAPK, and ERK activation. Thus, overall, our results indicate that celecoxib inhibits NF-kappa B activation through inhibition of IKK and Akt activation, leading to down-regulation of synthesis of COX-2 and other genes needed for inflammation, proliferation, and carcinogenesis.  相似文献   

2.
3.
4.
5.
6.
7.
No correlation exists in HL60 cells between NF-kappa B activation by tumor necrosis factor (TNF alpha) and TNF beta and intracellular levels of cyclic AMP. Cyclic AMP levels did not increase upon treatment of cells with each of these cytokines, although NF-kappa B was activated. Forskolin or 1-isobutyl-3-methylxanthine drastically increased intracellular levels of cyclic AMP, but neither activated NF-kappa B nor influenced TNF-induced NF-kappa B activation.  相似文献   

8.
9.
10.
11.
We report the effect of heat shock on lipopolysaccharide (LPS)-induced interleukin 12 (IL-12) expression. The augmentation of LPS-induced IL-12 p40 mRNA and p70 protein was significantly suppressed in both peritoneal macrophages and RAW264.7 cells after heat shock at 43 degrees C. The binding activity of nuclear factor kappa B (NF-kappa B) was reduced by prior heat shock. LPS did not induce degradation of the inhibitory protein I-kappa B alpha in the shocked cells, which might be a potential mechanism to block NF-kappa B activation. Furthermore, transient transfection assay in RAW264.7 cells demonstrated that LPS-induced activation of DM703 and DM138 (contains NF-kappa B motif) was highly sensitive to heat shock. These data suggest that heat shock influences expression of IL-12 through the I-kappa B/NF-kappa B pathway.  相似文献   

12.
The proliferation of human melanoma cell line A375-6 cells is inhibited by several cytokines, including interleukin-1 (IL-1). A375-R8 cells, a subclone of A375-6, are resistant to IL-1-induced growth inhibition. The proliferation of both cell lines is inhibitable by tumor necrosis factor (TNF). In this study, we characterized the mechanisms of TNF-induced growth inhibition. TNF-induced growth inhibition in both cell lines was partially suppressed by a selective p38 mitogen-activated protein kinase (MAPK) inhibitor (SB203580), whereas a combination of SB203580 and Z-VAD-fmk, an inhibitor for a wide range of caspases, completely blocked TNF-induced growth inhibition, indicating that TNF-induced growth inhibition is mediated by both p38 MAPK and caspases. However, Z-VAD-fmk alone suppressed TNF-induced growth inhibition in A375-R8, but not A375-6, cells, suggesting that there may exist a TNF-induced anti-apoptotic mechanism in A375-6 cells which is lost or mutated in A375-R8 cells. Evidence in support of this notion includes (1) TNF-induced apoptosis only in A375-R8, but not A375-6 cells; (2) cycloheximide enabled TNF to induce apoptosis even in A375-6 cells; and (3) somatic hybrid cells between A375-6 and A375-R8 cells are resistant to TNF-induced apoptosis. Since TNF-induced NF-kappa B activation, cell cycle arrest, RB dephosphorylation, and E2F downregulation are indistinguishable in both cell lines, none of these factors is likely to be involved in the TNF-induced anti-apoptotic mechanism in A375-6 cells. Our results indicate that TNF activates two distinct anti-proliferative pathways including p38 MAPK-dependent cell cycle arrest and caspase-mediated apoptosis, as well as an anti-apoptotic mechanism in melanoma cells.  相似文献   

13.
NF-kappa B plays a critical role in coordinating the control of gene expression during monocyte/macrophage activation. In this report we describe our investigation of the mechanisms of LPS-induced NF-kappa B activation and IL-12 expression in murine peritoneal suppressor macrophages. Treatment of these macrophages with LPS induced I kappa B alpha degradation and NF-kappa B activation. EMSAs demonstrated that NF-kappa B bound to a cis-acting element located in the murine IL-12 p40 promoter. LPS signal transduction has been shown to involve a variety of signal pathways. The results in this paper indicate that LPS-induced NF-kappa B binding activity was independent of PKC, PKA, ERK, and p38 MAPK, but was regulated by proteasome. Furthermore, Proteasome Inhibitor I abolished the LPS-induced mRNA expression of IL-12 p35 and p40, and SB203580 reduced these mRNA levels, whereas the blockade of PKC, PKA, and ERK had little effect. These data demonstrate that the LPS-induced activation of proteasome. I kappa B. NF-kappa B and p38 MAPK signal pathways regulate the IL-12 expression in murine peritoneal suppressor macrophages.  相似文献   

14.
15.
16.
Akt is a downstream target of NF-kappa B   总被引:8,自引:0,他引:8  
  相似文献   

17.
18.
IL-4 is a T cell-derived lymphokine that has multiple biologic functions, affecting B cells, T cells, mast cells, monocytes, macrophages, and hematopoietic progenitor cells. We report that IL-4 also affects human skin fibroblasts. These effects were primarily in modulating the effects of other mediators of inflammation on these cells, with IL-4 producing little or no effects by itself. Synthesis of C proteins in human skin fibroblasts is modulated by TNF and other mediators of inflammation. TNF increased synthesis of factor B by 18.6-fold; IL-4 reduced the TNF effect on factor B synthesis by 83%. This effect started with concentrations of IL-4 as low as 0.1 ng/ml. The effect of IL-4 on the TNF-induced increase in synthesis of factor B occurred after 2 h incubation, the time when the effects of TNF alone were first observed. IL-4 also abrogated the effects of IL-1 and LPS on factor B synthesis, but did not affect the increase in synthesis of factor B induced by IFN-gamma. In contrast to the pattern for effect of IL-4 on factor B synthesis, the TNF-induced rate of synthesis of C3 was augmented by IL-4. The specificity of the IL-4 effect was also apparent when comparing the effect of IL-4 on the TNF-induced synthesis of factor B to the effects on total protein synthesis (increased 1.5-fold) and the TNF-induced increases in synthesis in C1r, C1s, C1 inhibitor, C2, and factor H (no changes). The IL-4-induced decrease in synthesis of factor B was mediated at a pretranslational level and was dependent on synthesis of a new protein. This interaction between IL-4 and mediators of inflammation can potentially modulate the inflammatory response in the setting of activation of Th cells.  相似文献   

19.
20.
HIV-tat protein, like TNF, activates a wide variety of cellular responses, including NF-kappa B, AP-1, c-Jun N-terminal kinase (JNK), and apoptosis. Whether HIV-tat transduces these signals through the same mechanism as TNF is not known. In the present study we investigated the role of the T cell-specific tyrosine kinase p56lck in HIV-tat and TNF-mediated cellular responses by comparing the responses of Jurkat T cells with JCaM1 cells, an isogeneic lck-deficient T cell line. Treatment with HIV-tat protein activated NF-kappa B, degraded I kappa B alpha, and induced NF-kappa B-dependent reporter gene expression in a time-dependent manner in Jurkat cells but not in JCaM1 cells, suggesting the critical role of p56lck kinase. These effects were specific to HIV-tat, as activation of NF-kappa B by PMA, LPS, H2O2, and TNF was minimally affected. p56lck was also found to be required for HIV-tat-induced but not TNF-induced AP-1 activation. Similarly, HIV-tat activated the protein kinases JNK and mitogen-activated protein kinase kinase in Jurkat cells but not in JCaM1 cells. HIV-tat also induced cytotoxicity, activated caspases, and reactive oxygen intermediates in Jurkat cells, but not in JCaM1 cells. HIV-tat activated p56lck activity in Jurkat cells. Moreover, the reconstitution of JCaM1 cells with p56lck tyrosine kinase reversed the HIV-tat-induced NF-kappa B activation and cytotoxicity. Overall, our results demonstrate that p56lck plays a critical role in the activation of NF-kappa B, AP-1, JNK, and apoptosis by HIV-tat protein but has minimal or no role in activation of these responses by TNF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号