首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Irvine  K.  Moss  B.  Stansfield  J. 《Hydrobiologia》1990,200(1):379-389
The Norfolk Broads are a series of shallow lakes which are highly eutrophic and typified by dense populations of phytoplankton and an absence of submerged aquatic plants. The zooplankton community is subject to intense predation pressure by young fish and is dominated by small-bodied organisms which have a low potential for reducing phytoplankton populations through grazing. Various designs and densities of artificial refugia for zooplankton against fish predation were established in Hoveton Great Broad in order to enhance populations of large-bodied Cladocera. Initially some of the refuges contained higher densities and larger individuals ofDaphnia andCeriodaphnia than the surrounding open water. However, towards the end of the first season and throughout the subsequent two years, population densities and size-structure were similar both within and outside the refuges, although there was still evidence of enhanced body-size ofDaphnia within the refuges compared with the open water. The provision of habitat structures designed as refugia from fish predation did not enhance large-bodied cladoceran populations enough to promote this restoration strategy as feasible for eutrophic and shallow lakes.  相似文献   

2.
Little Mere, a small shallow lake, has been monitored for four years, since its main source of nutrients (sewage effluent) was diverted. The lake has provided strong evidence for the persistence of a clear water state over a wide range of nutrient concentrations. It had clear water at extremely high nutrient concentrations prior to effluent diversion, associated with high densities of the large body-sized grazer, Daphnia magna, associated with low fish densities and fish predation. Following sewage effluent diversion in 1991, the nutrient concentrations significantly declined, the oxygen concentrations rose, and fish predation increased. The dominance of large body-sized grazers shifted to one of relatively smaller body-sized animals but the clear water state has been maintained. This is probably due to provision of refuges for grazers by large nymphaeid stands (also found prior to diversion). There has been a continued decrease in nutrient concentrations and expansion of the total macrophyte coverage, largely by submerged plants, following effluent diversion. The grazer community of Little Mere has also responded to this latter change with a decline in daphnids and increase in densities of weed-associated grazers. The presence of large densities of such open water grazers was the apparent main buffer mechanisms of the clear water state until 1994. The lake has, so far, maintained its clear water in the absence of such grazers. Thus, new buffer mechanisms appear to operate to stabilize the ecosystem. Little Mere appears to have shifted from previous top-down controlled clear water state to a bottom-up controlled clear water state.  相似文献   

3.
1. Alternative states are a widely recorded phenomenon in shallow lakes, which may shift between turbid‐ and clear‐water conditions. Here, we investigate whether such shifts in a tropical floodplain pond may be related to the effect of the flood pulse regime on the community structures of fish and macrophytes. 2. Using a long‐term data set, we demonstrate how benthic fish migration together with colonisation by submerged plants affected the transition from a turbid to a macrophyte‐dominated state in a floodplain pond without top‐down control. 3. In our study, the turbid state occurred mostly during low water phases and was largely characterised by high values for the biomass of benthic fish, chlorophyll‐a and total phosphorous. 4. During the period of rising water levels, the migration of benthic fish out of the pond occurs simultaneously with the establishment of submerged plants, while water turbidity decreases along with phytoplankton and nutrient concentrations, inducing a clear‐water phase. However, when submerged plants are absent and fish migration is low, a transient state is generated. 5. We suggest that, in contrast to temperate ponds and shallow lakes, where the main driving mechanisms establishing alternative states are related to cascading effects via the food chain, in tropical ponds and shallow lakes it is resuspension of sediments by benthic fish that plays the most significant role in establishing alternative states. However, the effect of the flood pulse regime plays an important role in the temporal dynamics of fish community structure by controlling benthic fish migration.  相似文献   

4.
Alternative equilibria in shallow lakes   总被引:10,自引:0,他引:10  
The turbidity of lakes is generally considered to be a smooth function of their nutrient status. However, recent results suggest that over a range of nutrient concentrations, shallow lakes can have two alternative equilibria: a clear state dominated by aquatic vegetation, and a turbid state characterized by high algal biomass. This bi-stability has important implications for the possibilities of restoring eutrophied shallow lakes. Nutrient reduction alone may have little impact on water clarity, but an ecosystem disturbance like foodweb manipulation can bring the lake back to a stable clear state. We discuss the reasons why alternative equilibria are theoretically expected in shallow lakes, review evidence from the field and evaluate recent applications of this insight in lake management.  相似文献   

5.
OPINION Manipulating lake community structure: where do we go from here?   总被引:1,自引:0,他引:1  
SUMMARY. 1 More than 10 years experience with whole lake pelagic manipulation has suggested some general trends applicable to all freshwater pelagic communities and some specific trends related to lake depth.
2 Among the general trends is the observation that the trophic cascade is strongly damped. This means that changes in phytoplankton biomass can be assured only when the fish community is strongly manipulated.
3 Among the depth related trends is the observation that in shallow lakes, changes in fish community structure are more likely to have cascading impacts on phytoplankton than are changes in deep lakes.
4 In shallow lakes, fish removal frequently results in decreased turbidity which is associated with the development of dense macrophyte populations and significant reductions of algal standing stocks. The mechanisms involve: increased grazing by zooplankton, the removal of fish induced bioturbation and nutrient recycling, and direct and indirect macrophyte effects (shading, zooplankton refuges and competition for nutrients).
5 In shallow lakes, where planktivore biomass can be regulated and macrophyte development is acceptable, fish biomanipulalions are likely to result in reduced algal populations and improved water quality.
6 In deep lakes, where macrophytes are not as important, long-term effects of fish manipulations are strongly dependent upon the probability of non-grazable algal bloom development. This is determined by many factors (chemical, physical and grazer related) which modify the impact that grazers have on phytoplankton biomass.
7 In deep lakes, successful fish biomanipulations may only be effective when chemical and physical factors are altered to produce algal species compositions that permit strong top-down control of prey by predators.  相似文献   

6.
Shallow lakes, the most abundant lake type in the world, are very sensitive to climatic changes. The structure and functioning of shallow lakes are greatly impacted by submerged plants, and these may be affected by climate warming in various, contrasting, ways. Following a space‐for‐time substitution approach, we aimed to analyse the role of aquatic (submerged and free‐floating) plants in shallow lakes under warm climates. We introduced artificial submerged and free‐floating plant beds in five comparable lakes located in the temperate zone (Denmark, 55–57 °N) and in the subtropical zone (Uruguay, 30–35 °S), with the aim to study the structure and dynamics of the main associated communities. Regardless of differences in environmental variables, such as area, water transparency and nutrient status, we found consistent patterns in littoral community dynamics and structure (i.e. densities and composition of fish, zooplankton, macroinvertebrates, and periphyton) within, but substantial differences between, the two regions. Subtropical fish communities within the macrophyte beds exhibited higher diversity, higher density, smaller size, lower relative abundance of potentially piscivores, and a preference for submerged plants, compared with otherwise similar temperate lakes. By contrast, macroinvertebrates and cladocerans had higher taxon richness and densities, and periphyton higher biomass, in the temperate lakes. Several indicators suggest that the fish predation pressure was much stronger among the plants in the subtropical lakes. The antipredator behaviour of cladocerans also differed significantly between climate zones. Submerged and free‐floating plants exerted different effects on the spatial distribution of the main communities, the effects differing between the climate zones. In the temperate lakes, submerged plants promoted trophic interactions with potentially positive cascading effects on water transparency, in contrast to the free‐floating plants, and in strong contrast to the findings in the subtropical lakes. The higher impact of fish may result in higher sensitivity of warm lakes to external changes (e.g. increase in nutrient loading or water level changes). The current process of warming, particularly in temperate lakes, may entail an increased sensitivity to eutrophication, and a threat to the high diversity, clear water state.  相似文献   

7.
Studies on shallow lakes from the north temperate zone show that they alternate between clear and turbid water states in response to control factors. However, the ecology of semi-arid to arid shallow Mediterranean lakes is less explored. Hydrological effects (e.g. water level fluctuations, water residence time) on major ions and nutrient dynamics and processes, and ecology of submerged macrophytes appear to have a crucial role for food webs in shallow Mediterranean lakes. Nutrient control may be of greater priority in eutrophicated warm shallow lakes than in similar lakes at higher latitudes. This will be relevant for the implementation of the European Water Framework Directive, and conservation and management of these ecosystems. Strong trophic cascading effects of fish resulting from dominance of omnivorous and benthivorous fish species, whose diversity is usually high, together with frequent spawning and absence of efficient piscivores, seem to be the reason for the lack of large-bodied grazers that could control phytoplankton. However, such effects may vary within the region depending on fish distribution and community. These factors need elaboration in order to allow shallow lake ecologists and managers to develop better restoration strategies for eutrophicated shallow Mediterranean lakes. Consequently, modifications for the implementation of the European Water Framework Directive for determining ecological status in shallow Mediterranean lakes appear to be necessary. Furthermore, the implications of climate warming may be even more challenging than in high latitude lakes since shallow lakes in the Mediterranean region are among the most sensitive to extreme climate changes. There is an urgent need for data on the ecology of shallow lakes in the region. An appeal is made for international cooperation, development of large-scale research and information exchange to facilitate this and a web-based discussion list has been implemented.  相似文献   

8.
Productivity and trophic structure of aquatic ecosystems result from a complex interplay of bottom‐up and top‐down forces that operate across benthic and pelagic food web compartments. Projected global changes urge the question how this interplay will be affected by browning (increasing input of terrestrial dissolved organic matter), nutrient enrichment and warming. We explored this with a process‐based model of a shallow lake food web consisting of benthic and pelagic components (abiotic resources, primary producers, grazers, carnivores), and compared model expectations with the results of a browning and warming experiment in nutrient‐poor ponds harboring a boreal lake community. Under low nutrient conditions, the model makes three major predictions. (a) Browning reduces light and increases nutrient supply; this decreases benthic and increases pelagic production, gradually shifting productivity from the benthic to the pelagic habitat. (b) Because of active habitat choice, fish exert top‐down control on grazers and benefit primary producers primarily in the more productive of the two habitats. (c) Warming relaxes top‐down control of grazers by fish and decreases primary producer biomass, but effects of warming are generally small compared to effects of browning and nutrient supply. Experimental results were consistent with most model predictions for browning: light penetration, benthic algal production, and zoobenthos biomass decreased, and pelagic nutrients and pelagic algal production increased with browning. Also consistent with expectations, warming had negative effects on benthic and pelagic algal biomass and weak effects on algal production and zoobenthos and zooplankton biomass. Inconsistent with expectations, browning had no effect on zooplankton and warming effects on fish depended on browning. The model is applicable also to nutrient‐rich systems, and we propose that it is a useful tool for the exploration of the consequences of different climate change scenarios for productivity and food web dynamics in shallow lakes, the worldwide most common lake type.  相似文献   

9.
Diel horizontal migration (DHM), where zooplankton moves towards macrophytes during daytime to avoid planktivorous fish, has been reported as a common migration pattern of zooplankton in shallow temperate freshwater lakes. However, in shallow eutrophic brackish lakes, macrophytes seem not to have the same refuge effect, as these lakes may remain turbid even at relatively high macrophyte abundances. To investigate the extent to which macrophytes serve as a refuge for zooplankton at different salinities, we introduced artificial plants mimicking submerged macrophytes in the littoral zone of four shallow lakes, with salinities ranging from almost freshwater (0.3) to oligohaline waters (3.8). Furthermore, we examined the effects of different salinities on the community structure. Diel samples of zooplankton were taken from artificial plants, from areas where macrophytes had been removed (intermediate areas) and, in two of the lakes, also in open water. Fish and macroinvertebrates were sampled amongst the artificial plants and in intermediate areas to investigate their influence on zooplankton migration. Our results indicated that diel vertical migration (DVM) was the most frequent migration pattern of zooplankton groups, suggesting that submerged macrophytes were a poor refuge against predation at all salinities under study. Presumably, this pattern was the result of the relatively high densities of small planktivorous fish and macroinvertebrate predators within the submerged plants. In addition, we found major differences in the composition of zooplankton, fish and macroinvertebrate communities at the different salinities and species richness and diversity of zooplankton decreased with increasing salinity. At low salinities both planktonic/free-swimming and benthic/plant-associated cladocerans occurred, whilst only benthic ones occurred at the highest salinity. The low zooplankton biomass and overall smaller-bodied zooplankton specimens may result in a lower grazing capacity on phytoplankton, and enhance the turbid state in nutrient rich shallow brackish lakes.  相似文献   

10.
The utility of shallow water bodies in urban environments is frequently compromised either by dense beds of submerged plants or cyanobacterial blooms associated with nutrient enrichment. Although submerged plants are often harvested to facilitate recreational uses, this activity may alter the phytoplankton community, which in turn, also may restrict the use of the lake. We tested whether (i) plant harvesting reduced the abundance of flagellate algae and increased the abundance of cyanobacteria, and (ii) whether increasing levels of nutrient enrichment caused shifts in the dominance of heterocytous cyanobacteria, non-heterocytous cyanobacteria and Chlorophyta, in a shallow urban lake in Southern Australia as has been observed for shallow Danish lakes in previous studies. These predictions were tested with large (3000 l), replicated mesocosms in a warm, highly productive, shallow lake densely colonised by the submerged angiosperm, Vallisnaria americana Michaux. The heterokont algae, Chlorophyta, Cyanobacteria and Cryptophyta were the most numerous algal divisions in the lake. The Euglenophyta, although uncommon in early summer, became more abundant towards the end of summer. The Dinophyta and Charophyta were rare. The abundance of the heterokont algae and Euglenophyta was significantly reduced by plant harvesting even after plants had partially re-established 18 weeks after initial harvesting. The decline in the Euglenophyta in response to plant harvesting is consistent with earlier findings, that the relative abundance of flagellate algae tends to be greater in the presence of submerged plants. Contrary to our prediction, we found that the Cyanobacteria did not increase in response to plant harvesting, however the response may be altered under higher nutrient levels. Algal responses to nutrient enrichment in the presence of dense V. americana plants generally followed the patterns observed in shallow Danish lakes despite the large differences in climatic conditions. Both studies found that the abundance of heterocytous cyanobacteria declined at higher levels of nutrient enrichment, whereas non-heterocytous cyanobacteria and chlorophytes increased.  相似文献   

11.
Eutrophication is common in shallow lakes in lowland areas. In their natural state, most shallow lakes would have clear water and a thriving aquatic plant community. However, eutrophication often causes turbid water, high algal productivity, and low species diversity and abundance of submerged macrophytes. A key indicator of the ecological state of lake ecosystems is the maximum growing depth (MGD) of aquatic plants. However, few studies have yet quantified the relationship between changes in external phosphorus (P) input to a lake and associated variation in MGD. This study examines the relationship between these variables in Loch Leven, a shallow, eutrophic loch in Scotland, UK. A baseline MGD value from 1905 and a series of more recent MGD values collected between 1972 and 2006 are compared with estimated P loads over a period of eutrophication and recovery. The results suggest a close relationship between changes in MGD of macrophytes and changes in the external P load to the loch. Variation in MGD reflected the ‘light history’ that submerged macrophytes had been exposed to over the 5-year period prior to sampling, rather than responding to short term, within year, variations in water clarity. This suggests that changes in macrophyte MGD may be a good indicator of overall, long term, changes in water quality that occur during the eutrophication and restoration of shallow lakes.  相似文献   

12.
Carvalho  Laurence 《Hydrobiologia》1994,275(1):53-63
Top-down control of phytoplankton by zooplankton is possible through reductions in density of zooplanktivorous fish. Little Mere is a shallow lake where the effects of sewage effluent caused such a reduction. This allowed the large-bodied cladoceran, Daphnia magna Straus, to develop huge populations, preventing potentially large algal crops from developing.Subsequent diversion of the effluent is anticipated to lead to recovery of the fish community, reduced numbers of large-bodied grazers, and increased phytoplankton biomass. Whether the aquatic plant community, present in Little Mere, is resilient to such changes may depend upon whether cyanophytes are favoured, or not.  相似文献   

13.
1. Structural complexity may stabilise predator–prey interactions and affect the outcome of trophic cascades by providing prey refuges. In deep lakes, vulnerable zooplankton move vertically to avoid fish predation. In contrast, submerged plants often provide a diel refuge against fish predation for large‐bodied zooplankton in shallow temperate lakes, with consequences for the whole ecosystem. 2. To test the extent to which macrophytes serve as refuges for zooplankton in temperate and subtropical lakes, we introduced artificial plant beds into the littoral area of five pairs of shallow lakes in Uruguay (30°–35°S) and Denmark (55°–57°N). We used plants of different architecture (submerged and free‐floating) along a gradient of turbidity over which the lakes were paired. 3. We found remarkable differences in the structure (taxon‐richness at the genus level, composition and density) of the zooplankton communities in the littoral area between climate zones. Richer communities of larger‐bodied taxa (frequently including Daphnia spp.) occurred in the temperate lakes, whereas small‐bodied taxa characterised the subtropical lakes. More genera and a higher density of benthic/plant‐associated cladocerans also occurred in the temperate lakes. The density of all crustaceans, except calanoid copepods, was significantly higher in the temperate lakes (c. 5.5‐fold higher). 4. Fish and shrimps (genus Palaemonetes) seemed to exert a stronger predation pressure on zooplankton in the plant beds in the subtropical lakes, while the pelagic invertebrate Chaoborus sp. was slightly more abundant than in the temperate lakes. In contrast, plant‐associated predatory macroinvertebrates were eight times more abundant in the temperate than in the subtropical lakes. 5. The artificial submerged plants hosted significantly more cladocerans than the free‐floating plants, which were particularly avoided in the subtropical lakes. Patterns indicating diel horizontal migration were frequently observed for both overall zooplankton density and individual taxa in the temperate, but not the subtropical, lakes. In contrast, patterns of diel vertical migration prevailed for both the overall zooplankton and for most individual taxa in the subtropics, irrespective of water turbidity. 6. Higher fish predation probably shapes the general structure and dynamics of cladoceran communities in the subtropical lakes. Our results support the hypothesis that horizontal migration is less prevalent in the subtropics than in temperate lakes, and that no predator‐avoidance behaviour effectively counteracts predation pressure in the subtropics. Positive effects of aquatic plants on water transparency, via their acting as a refuge for zooplankton, may be generally weak or rare in warm lakes.  相似文献   

14.
1. We tested whether increasing atmospheric nitrogen (N) deposition along a north–south gradient intensifies epilithic phosphorus (P) limitation in oligotrophic Swedish lakes from the north to the south. We examined the epilithic community at a shallow depth from seven northern and six southern Swedish lakes, and also compared the results with a lake located geographically between the two groups. We determined lake nutrient state, epilithic nutrient ratios and epilithic algal composition, as well as grazer N : P ratios, grazer-epilithon N : P imbalance, and N : P cycling ratios.
2. Epilithic communities appear to be generally more N-limited in the northern lakes and more P-limited in the southern lakes. Lake water total N (Tot-N) and epilithic N : P ratios were lower in northern than in southern lakes and the proportion of N2-fixing cyanobacteria was higher in northern than in southern lakes.
3. Gastropod grazers had lower N : P imbalances and cycled less N relative to P in northern than in southern lakes.
4. Atmospheric N-deposition showed a strong positive correlation with lake water Tot-N and a much weaker positive correlation with epilithon N : P ratios. Atmospheric N-deposition also correlated negatively with the proportion of N2-fixing cyanobacteria.
5. There are indications that increased atmospheric N-deposition towards the south might intensify P-limitation of epilithic algae and invertebrate grazers, although more studies are needed to show the strength and generality of our findings.  相似文献   

15.
1. To examine how the vertical distribution of periphytic biomass and primary production in the upper 0–1 m of the water column changes along an inter‐lake eutrophication gradient, artificial substrata (plastic strips) were introduced into the littoral zones of 13 lakes covering a total phosphorus (TP) summer mean range from 11 to 536 μg L?1. Periphyton was measured in July (after 8 weeks) and September (after 15 weeks) at three water depths (0.1, 0.5 and 0.9 m). 2. Periphyton chlorophyll a concentration and dry weight generally increased with time and the communities became more heterotrophic. Mean periphytic biomass was unimodally related to TP, reaching a peak between 60 and 200 μg L?1. 3. The proportion of diatoms in the periphyton decreased from July to September. A taxonomic shift occurred from dominance (by biovolume) of diatoms and cyanobacteria at low TP to dominance of chlorophytes at intermediate TP and of diatoms (Epithemia sp.) in the two most TP‐rich lakes. 4. The grazer community in most lakes was dominated by chironomid larvae and the total biomass of grazers increased with periphyton biomass. 5. Community respiration (R), maximum light‐saturated photosynthetic rate (Pmax), primary production and the biomass of macrograzers associated with periphyton were more closely related to periphyton biomass than to TP. Biomass‐specific rates of R, Pmax and production declined with increasing biomass. 6. Mean net periphyton production (24 h) was positive in most lakes in July and negative in all lakes in September. Net production was not related to the TP gradient in July, but decreased in September with increasing TP. 7. The results indicate that nutrient concentrations alone are poor predictors of the standing biomass and production of periphyton in shallow lakes. However, because periphyton biomass reaches a peak in the range of phosphorus concentration in which alternative states occur in shallow lakes, recolonisation by submerged macrophytes after nutrient reduction may potentially be suppressed by periphyton growth.  相似文献   

16.
Bacterial community composition was monitored in four shallow eutrophic lakes during one year using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified prokaryotic rDNA genes. Of the four lakes investigated, two were of the clearwater type and had dense stands of submerged macrophytes while two others were of the turbid type characterized by the occurrence of phytoplankton blooms. One turbid and one clearwater lake had high nutrient levels (total phosphorus, >100 micro g liter(-1)) while the other lakes had relatively low nutrient levels (total phosphorus, <100 micro g liter(-1)). For each lake, seasonal changes in the bacterial community were related to bottom-up (resources) and top-down (grazers) variables by using canonical correspondence analysis (CCA). Using an artificial model dataset to which potential sources of error associated with the use of relative band intensities in DGGE analysis were added, we found that preferential amplification of certain rDNA genes over others does not obscure the relationship between bacterial community composition and explanatory variables. Besides, using this artificial dataset as well as our own data, we found a better correlation between bacterial community composition and explanatory variables by using relative band intensities compared to using presence/absence data. While bacterial community composition was related to phytoplankton biomass in the high-nutrient lakes no such relation was found in the low-nutrient lakes, where the bacterial community is probably dependent on other organic matter sources. We used variation partitioning to evaluate top-down regulation of bacterial community composition after bottom-up regulation has been accounted for. Using this approach, we found no evidence for top-down regulation of bacterial community composition in the turbid lakes, while grazing by ciliates and daphnids (Daphnia and Ceriodaphnia) was significantly related to changes in the bacterial community in the clearwater lakes. Our results suggest that in eutrophic shallow lakes, seasonality of bacterial community structure is dependent on the dominant substrate source as well as on the food web structure.  相似文献   

17.
SUMMARY. 1 Mechanisms which might have caused a switch from submerged plant dominance to phytoplankton dominance in a series of shallow lakes, the Norfolk Broads, during the 1950s and 1960s, are reviewed. It is argued that a likely mechanism was a poisoning of the community of Cladocera which graze on algae and are associated with the plants. This allowed phytoplankton to take advantage of the increased nutrient loadings and to increase. The 1950s and 1960s were periods of liberal organochlorine pesticide use. Cladocera are particularly susceptible to organochlorine toxicity.
2. Sediment cores were taken from Hoveton Great Broad, in which the switch to phytoplankton has occurred, and from two Broads (Upton and Martham South Broads) in which submerged plants are still dominant. Analyses were made for cladoceran remains, diatoms and molluscs. Cross dating with previously taken dated cores allowed time-scales to be applied.
3. In Hoveton Great Broad, a switch from clear-water-associated chydorids to turbid-water forms was found to coincide with the loss of aquatic plants in the 1950s. No Daphnia remains were found. In the other two Broads, clear-water chydorids, mostly plant-associated, were found throughout the cores.
4. Residues of dieldrin (HEOD), DDD and TDE were found in the Hoveton Great Broad cores, with the DDT derivatives particularly associated with the end of the phase of submerged plant dominance and the beginning of that of phytoplankton dominance. Bosmina remains became more abundant after this point. Pesticide residues were scarce in the cores from the other two Broads and did not form any particular pattern. Residues of polychlorinated biphenyls were widespread in all cores.
5. Calculation of DDT concentration in the water at the time the sediments with greatest concentrations of residue were laid down suggests that concentrations above typical LC50 values for Daphnia species could have been present.  相似文献   

18.
We collected quantitative data on macrophyte abundance and water quality in 319 mostly shallow, polymictic, Florida lakes to look for relationships between trophic state indicators and the biomasses of plankton algae, periphyton, and macrophytes. The lakes ranged from oligotrophic to hypereutrophic with total algal chlorophylls ranging from 1 to 241 mg m–3. There were strong positive correlations between planktonic chlorophylls and total phosphorus and total nitrogen, but there were weak inverse relationships between the densities of periphyton and the trophic state indicators total phosphorus, total nitrogen and algal chlorophyll and a positive relationship with Secchi depth. There was no predictable relationship between the abundance of emergent, floating-leaved, and submersed aquatic vegetation and the trophic state indicators. It was only at the highest levels of nutrient concentrations that submersed macrophytes were predictably absent and the lakes were algal dominated. Below these levels, macrophyte abundance could be high or low. The phosphorus–chlorophyll and phosphorus–Secchi depth relationships were not influenced by the amounts of aquatic vegetation present indicating that the role of macrophytes in clearing lakes may be primarily to reduce nutrient concentrations for a given level of loading. Rather than nutrient concentrations controlling macrophyte abundance, it seems that macrophytes acted to modify nutrient concentrations.  相似文献   

19.
1. Fish play a key role in the functioning of temperate shallow lakes by affecting nutrient exchange among habitats as well as lake trophic structure and dynamics. These processes are, in turn, strongly influenced by the abundance of submerged macrophytes, because piscivorous fish are often abundant at high macrophyte density. Whether this applies to warmer climates as well is virtually unknown. 2. To compare fish community structure and dynamics in plant beds between subtropical and temperate shallow lakes we conducted experiments with artificial submerged and free‐floating plant beds in a set of 10 shallow lakes in Uruguay (30°–35°S) and Denmark (55°–57°N), paired along a gradient of limnological characteristics. 3. The differences between regions were more pronounced than differences attributable to trophic state. The subtropical littoral fish communities were characterised by higher species richness, higher densities, higher biomass, higher trophic diversity (with predominance of omnivores and lack of true piscivores) and smaller body size than in the comparable temperate lakes. On average, fish densities were 93 ind. m−2 (±10 SE) in the subtropical and 10 ind. m−2 (±2 SE) in the temperate lakes. We found a twofold higher total fish biomass per unit of total phosphorus in the subtropical than in the temperate lakes, and as fish size is smaller in the former, the implication is that more energy reaches the littoral zone fish community of the warmer lakes. 4. Plant architecture affected the spatial distribution of fish within each climate zone. Thus, in the temperate zone fish exhibited higher densities among the artificial free‐floating plants while subtropical fish were denser in the artificial submerged plant beds. These patterns appeared in most lakes, regardless of water turbidity or trophic state. 5. The subtropical littoral fish communities resembled the fish communities typically occurring in temperate eutrophic and hypertrophic lakes. Our results add to the growing evidence that climate warming may lead to more complex and omnivory‐dominated food webs and higher density and dominance of smaller‐sized fish. This type of community structure may lead to a weakening of the trophic cascading effects commonly observed in temperate shallow lakes and a higher risk of eutrophication.  相似文献   

20.
《Aquatic Botany》2002,72(3-4):249-260
The capability of Chara beds to act as nutrient sinks in shallow lakes is reviewed. Under favorable conditions charophytes form dense meadows. Biomass and nutrient content in such beds are comparable or even higher than in beds of vascular aquatic macrophytes. As some Chara species are capable of overwintering, the nutrient storage in plant biomass may extend beyond the growing season. Some commonly observed phenomena in vascular plants (nutrient uptake and mobilization of nutrients from the sediment) appear to be unlikely or negligible in Characeae. Charophytes have been reported to decompose slower than their vascular counterparts prolonging nutrient storage in plant biomass.Charophytes may also indirectly affect nutrient cycling in lakes. Utilization of bicarbonate is accompanied by precipitation of calcite during periods of intensive photosynthesis, favoring immobilization of P by binding in the crystal structure or sorption on sedimenting mineral particles. Charophytes are able to deliver oxygen to the sediment, thus potentially enhancing nitrification/denitrification processes and preventing iron-bound sediment phosphorus from being released to the overlying water. Furthermore, dense Chara meadows restrict sediment resuspension, consequently blocking an important internal source of nutrients to planktonic algae. We conclude that Chara meadows probably are an efficient nutrient trap in shallow lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号