首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Cytoplasmic deadenylation: regulation of mRNA fate   总被引:1,自引:0,他引:1  
  相似文献   

5.
Deadenylation is often the rate-limiting event in regulating the turnover of cellular mRNAs in eukaryotes. Removal of the poly(A) tail initiates mRNA degradation by one of several decay pathways, including deadenylation-dependent decapping, followed by 5' to 3' exonuclease decay or 3' to 5' exosome-mediated decay. In trypanosomatids, mRNA degradation is important in controlling the expression of differentially expressed genes. Genomic annotation studies have revealed several potential deadenylases. Poly(A)-specific RNase (PARN) is a key deadenylase involved in regulating gene expression in mammals, Xenopus oocytes, and higher plants. Trypanosomatids possess three different PARN genes, PARN-1, -2, and -3, each of which is expressed at the mRNA level in two life-cycle stages of the human parasite Trypanosoma brucei. Here we show that T. brucei PARN-1 is an active deadenylase. To determine the role of PARN-1 on mRNA stability in vivo, we overexpressed this protein and analyzed perturbations in mRNA steady-state levels as well as mRNA half-life. Interestingly, a subset of mRNAs was affected, including a family of mRNAs that encode stage-specific coat proteins. These data suggest that PARN-1 functions in stage-specific protein production.  相似文献   

6.
7.
8.
9.
Traditionally, mRNA decay was considered a simple destruction step of mRNA. This view has been challenged in the past years and mRNA decay now appears as an essential step in the regulation of gene expression. We first present a short review of the different reactions involved in mRNA decay, as well as some indications on their cellular location. Then, we describe two processes in which mRNA decay plays an essential role: (1) the mRNA quality control mechanisms that get rid of aberrant mRNAs (nonsensE-mediated decay, non-stop decay, no-go decay); (2) the regulation of mRNA stability through the targeting of specific factors to the mRNA (proteins or small non-coding RNAs).  相似文献   

10.
11.
12.
13.
The control of mRNA stability in response to extracellular stimuli   总被引:8,自引:0,他引:8  
Regulated mRNA turnover is a highly important process in control of gene expression. The specific sequence elements in mRNA modulate the stability of different mRNAs, which varies considerably in response to extracellular stimuli. But the mechanistic basis for regulation of mRNA turnover remains nebulous. Recent works indicate that several signaling pathways have been implicated in regulating the decay of specific mRNA and certain ARE binding proteins mediate rapid degradation of the mRNAs. This review provides a current knowledge of diverse extracellular signals contributing to stabilization of short-lived mRNA.  相似文献   

14.
Messenger RNA degradation is a fundamental cellular process that plays a critical role in regulating gene expression by controlling both the quality and the abundance of mRNAs in cells. Naturally, viruses must successfully interface with the robust cellular RNA degradation machinery to achieve an optimal balance between viral and cellular gene expression and establish a productive infection in the host. In the past several years, studies have discovered many elegant strategies that viruses have evolved to circumvent the cellular RNA degradation machinery, ranging from disarming the RNA decay pathways and co-opting the factors governing cellular mRNA stability to promoting host mRNA degradation that facilitates selective viral gene expression and alters the dynamics of host–pathogen interaction. This review summarizes the current knowledge of the multifaceted interaction between viruses and cellular mRNA degradation machinery to provide an insight into the regulatory mechanisms that influence gene expression in viral infections. This article is part of a Special Issue entitled: RNA Decay mechanisms.  相似文献   

15.
16.
17.
18.
19.
20.
巨噬细胞极化是根据周围刺激环境做出表型调节的一个过程.一般极化为2个表型,分别为经典激活的M1巨噬细胞和替代激活的M2巨噬细胞.简而言之,M1巨噬细胞的特征是促炎和抗肿瘤;M2巨噬细胞是抗炎和促肿瘤.巨噬细胞极化被认为是人体生理和病理的关键调节器,其发挥作用的有效性依赖于关键因子的协调表达,而这些关键因子的表达在转录后...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号