首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: An enzymic activity of rat brain that liberates radioactive free aldehydes from 1-[1-14C]alk-1'-enyl- sn -glycero-3-phosphoethanolamine (lysoplasmalogen) is described. It was present mainly in microsomal fractions (crude) of brains of rats of different ages. The highest specific enzyme activity was found in 21-day-old animals. The formation of free aldehyde was dependent on the amount of enzyme protein as well as the amount of substrate added, and was linear to the incubation time up to 60 min. The pH optimum was between 7.1 and 7.3. Bivalent cations (Mg2+, Ca2+) and detergents inhibited the reaction. However, the same cell fractions as well as extracts of acetone-dried powder of brain from young or old rats possessed no enzyme activity for liberating the aldehyde from the acylated substrates: 1-[1-14C]alk-1'-enyl-2-acyl- sn -glycero-3-phosphoethanolamine (plasmalogen) or plasmalogen of ox corpus callosum.  相似文献   

2.
Alkenylhydrolase (EC 3.3.2.2; EC 3.3.2.5) has been purified 200-fold to a specific activity of 8.0 mumol/min per mg from rat liver microsomes with 51% of the activity recovered. Purification was accomplished by solubilization of the membrane-associated enzyme with octylglucoside and chromatographic resolution on sequential DEAE cellulose and hydroxylapatite (HPLC) columns in the presence of octylglucoside. The partially purified enzyme, specific for the 2-deacylated plasmalogen, lysoplasmalogen (1-alk-1'-enyl-sn-glycero-3-phosphocholine or -ethanolamine), had no hydrolytic activity with intact plasmalogens or 1-acyl-sn-glycero-3-phosphoethanolamine. Kinetic analyses of enzymic activity demonstrated apparent Km values of 5.5 and 42 microM for 1-alk-1'-enyl-sn-glycero-3-phosphocholine and 1-alk-1'-enyl-sn-glycero-3-phosphoethanolamine, respectively. The Vmax values were 11.7 and 13.6 mumol/min per mg with the choline and ethanolamine substrates, respectively. The optimal pH range was between 6.6 and 7.1 with both substrates; the energy of activation for the purified enzyme was 15,200 cal. The enzyme required no cofactors and was unaffected by low millimolar concentrations of Ca2+, Mg2+, Mn2+ or EDTA. It was inhibited by the sulfhydryl-reacting reagent, p-chloromercuribenzoate. Mono- or diradylglycerophospholipids or sphingomyelin did not affect the enzymic activity at 37 degrees C. Activity of the purified enzyme, destroyed by freezing at -20 degrees C, was preserved if stored at this temperature in the presence of 300-600 microM diradylglycerophosphocholine or 50% glycerol. A continuous spectrophotometric assay, adapted in our laboratory for the assay of liver alkenylhydrolase, facilitated this purification. This is the first reported purification of alkenylhydrolase.  相似文献   

3.
A lysoplasmalogenase (EC 3.3.2.2; EC 3.3.2.5) that liberates free aldehyde from 1-alk-1'-enyl-sn-glycero-3-phospho-ethanolamine or -choline (lysoplasmalogen) was identified and characterized in rat gastrointestinal tract epithelial cells. Glycerophosphoethanolamine was produced in the reaction in equimolar amounts with the free aldehyde. The microsomal membrane associated enzyme was present throughout the length of the small intestines, with the highest activity in the jejunum and proximal ileum. The rate of alkenyl ether bond hydrolysis was dependent on the concentrations of microsomal protein and substrate, and was linear with respect to time. The enzyme hydrolyzed both ethanolamine- and choline-lysoplasmalogens with similar affinities; the Km values were 40 and 66 microM, respectively. The enzyme had no activity with 1-alk-1'-enyl-2-acyl-sn-glycero-3-phospho-ethanolamine or -choline (intact plasmalogen), thus indicating enzyme specificity for a free hydroxyl group at the sn-2 position. The specific activities were 70 nmol/min/mg protein and 57 nmol/min/mg protein, respectively, for ethanolamine- and choline-lysoplasmalogen. The pH optimum was between 6.8 and 7.4. The enzyme required no known cofactors and was not affected by low mM levels of Ca2+, Mg2+, EDTA, or EGTA. The detergents, Triton X-100, deoxycholate, and octyl glucoside inhibited the enzyme. The chemical and physical properties of the lysoplasmalogenase were very similar to those of the enzyme in liver and brain microsomes. In developmental studies the specific activities of the small intestinal and liver enzymes increased markedly, 11.1- and 3.4-fold, respectively, in the first approximately 40 days of postnatal life. A plasmalogen-active phospholipase A2 activity was identified in the cytosol of the small intestines (3.3 nmol/min/mg protein) and liver (0.3 nmol/min/mg protein) using a novel coupled enzyme assay with microsomal lysoplasmalogenase as the coupling enzyme.  相似文献   

4.
Microsomal fractions of 14-day-old rat brain were incubated at pH 7.1 with 1-[1'-14C]-alk-1'-enyl-sn-glycero-3-phosphoethanolamine (lysoplasmalogen). 1-[1'-14C]alkenylglycerol was produced by hydrolyzing enzyme activities, which were stimulated by Mg2 and inhibited by SH-group reagents. Hydrolysis of 1-[1'-14C]alkyl-sn-glycero-3-phosphoethanolamine is very similar in this respect, but the Km value is higher in the former case. The 1-alkyl compound acts as a non-competitive inhibitor of the hydrolyzing enzyme activity described, whereas the hydrolysis of the 1-alkyl derivative is not inhibited by the 1-alkenyl compound.  相似文献   

5.
The rate of hydrolysis of the 1-0-alkenyl group of sn-1-alk-1′-enyl-2-acyl-glycerylphosphorylethanolamine (alkenyl, acyl-GPE; ethanolamine plasmalogen) by plasmalogenase is higher in oligodendroglial cell-enriched fractions from bovine brain compared with fractions enriched in neuronal perikarya and astroglia. The distribution of plasmalogenase activity in membrane fractions isolated from bovine oligodendroglia has been compared with that of ‘marker’ enzymes. The highest specific activity was in a fraction enriched in plasma membranes, whilst most activity was recovered in an endoplasmic reticulum membrane fraction. In bovine oligodendroglial cell homogenates, the enzyme had a neutral pH optimum, had no requirement for divalent cations and its activity towards 1-alkenyl-GPE (lysoplasmalogen) was half that with alkenyl, acyl-GPE. C16 alkenyl groups were hydrolysed more rapidly than C18 alkenyl groups. With 3H-labelled alkenyl, acyl-GPE as substrate, radioactivity in released aldehydes appeared in fatty acids esterified in phospholipid while the oxidation of fatty aldehydes was blocked by the addition of NADH. An NAD-dependent aldehyde dehydrogenase was found to be present in oligodendroglia which exhibited highest activity towards C14C18 aldehydes (Km, 2 μM).  相似文献   

6.
1. Owing to a (3)H isotope effect, the mitochondrial sn-glycerol 3-phosphate oxidase (EC 1.1.99.5) had a mean activity which was 8.4 times less with sn-[2-(3)H]-rather than with sn-[1-(14)C]glycerol 3-phosphate as a substrate. 2. A method for measuring the simultaneous synthesis of lipid from glycerol phosphate and dihydroxyacetone phosphate in rat liver mitochondria is described. 3. The lipid synthesized by rat liver mitochondria from sn-[1-(14)C]glycerol 3-phosphate was mainly phosphatidate and lysophosphatidate, whereas that synthesized from dihydroxy[1-(14)C]acetone phosphate was mainly acyldihydroxyacetone phosphate. 4. Additions of NADPH facilitated the conversion of acyldihydroxyacetone phosphate into lysophosphatidate and phosphatidate. 5. Hydrazine (1.4mm) or KCN (1.4mm) inhibited the synthesis of lipids from dihydroxyacetone phosphate but not from glycerol phosphate. 6. Clofenapate (1-2.5mm) inhibited the synthesis of lipids from dihydroxyacetone phosphate but slightly stimulated synthesis from glycerol phosphate. 7. The methanesulphonate of N-(2-benzoyloxyethyl)norfenfluramine, at 0.25-0.75mm, inhibited lipid synthesis from both glycerol phosphate and dihydroxyacetone phosphate.  相似文献   

7.
1. Microsomal 1,2-diacylglycerol acyltransferase from lactating cow mammary gland incorporated equal molar amounts of microsomal-bound 1,2-dipalmitoyl [2-3H]glycerol and [1-14C]-butyrate, [1-14C]hexanoate or [1-14C]palmitate from their CoA esters into triacylglycerol. The enzyme could also utilize exogenous 1,2-diacylglycerols in the presence of ethanol. 2. The pH optimum of the enzyme was 6.1 and 6.4 with butyryl-CoA and hexanoyl-CoA respectively. Values of V were approximately the same (2.7 and 2.4 nmol-min-1-mg-1, respectively), but values of Km were different (34 and 10 muM, respectively) with these two substrates. Mg2+ was not required as cofactor. 3. The presence ofa Mg2+-dependent phosphatidate phosphatase in the microsomal fraction was demonstrated. 4. It is proposed that triacylglycerols containing butyric and hexanoic acid are biosynthesized in cow mammary gland by the glycerolphosphate pathway, in which long-chain 1,2-diacylglycerols derived from phosphatidic acid are acylated at the sn-3 position by short-chain acyl-CoA esters.  相似文献   

8.
In this study, we demonstrate the presence of a unique membrane-associated transacetylase that transfers the acetate group from platelet-activating factor (PAF) to lysoplasmalogen (in the presence of EDTA and sodium acetate) with the formation of 1-alk-1-enyl-2-acetyl-sn-glycero-3-phosphoethanolamine (alk-1-enylacetyl-GPE). The identity of alk-1-enylacetyl-GPE was confirmed by acid hydrolysis, phospholipases A2 or C treatment and derivatization by fluorodinitrobenzene. The transacetylase has no requirement for Ca2+, Mg2+, or CoA and a broad pH optimum (7.0-8.0) with Km values of 12.0 microM for PAF and 106.4 microM for lysoplasmalogens. The enzyme activity from the isolated membrane fraction is not changed when whole cells are supplemented with 20:4, induced to differentiate into granulocytes, or treated with ionophore A23187. Radyllyso-sn-glycero-3-phosphocholine (GPC), radyllyso-GPE, acyllyso-sn-glycero-3-phosphoserine (GPS), acyllyso-sn-glycero-3-phosphoinositol (GPI), alkyllyso-sn-glycero-3-phosphate (GP), acyllyso-GP, or cis-9-octadecen-1-ol can also serve as acetate acceptors, whereas alkylglycerol, acylglycerol, or cholesterol are inactive. Differences in substrate acceptor specificity, sensitivity toward phenylmethylsulfonyl fluoride, and response to temperature suggest that the CoA-independent transacetylase and the CoA-independent transacylase that transfers long-chain acyl moieties are two separate enzymes. With intact differentiated HL-60 cells, [3H]acetate from [3H]PAF can be incorporated into alk-1-enylacetyl-GPE in the presence of ionophore A23187, but not in its absence. Moreover, phospholipase A2 inhibitors (p-bromophenacyl bromide and mepacrine) block the transacetylation process in whole cell system. These results indicate the production of alk-1-enyllyso-GPE is a rate-limiting factor for the subsequent transacetylation step during cell activation. We conclude that the transacetylase may participate in the biosynthesis of ethanolamine plasmalogen and acyl analogs of PAF, in vivo, fine-tuning of PAF biological responses, and cross-talk between de novo and remodeling pathways of PAF biosynthesis.  相似文献   

9.
13C-nuclear magnetic resonance (NMR) spectroscopy was used to investigate the products of glycerol and acetate metabolism released by Leishmania braziliensis panamensis promastigotes and also to examine the interaction of each of these substrates with glucose or alanine. The NMR data were supplemented by measurements of the rates of oxygen consumption and substrate utilization, and of 14CO2 production from 14C-labeled substrate. Cells incubated with [2-13C]glycerol released acetate, succinate and D-lactate in addition to CO2. Cells incubated with acetate released only CO2. More succinate C-2/C-3 than C-1/C-4 was released from both [2-13C]glycerol and [2-13C]glucose, indicating that succinate was formed predominantly by CO2 fixation followed by reverse flux through part of the Krebs cycle. Some redistribution of the position of labeling was also seen in alanine and pyruvate, suggesting cycling through pyruvate/oxaloacetate/phosphoenolpyruvate. Cells incubated with combinations of 2 substrates consumed oxygen at the same rate as cells incubated with 1 or no substrate, even though the total substrate utilization had increased. When promastigotes were incubated with both glycerol and glucose, the rate of glucose consumption was unchanged but glycerol consumption decreased about 50%, and the rate of 14CO2 production from [1,(3)-14C]glycerol decreased about 60%. Alanine did not affect the rates of consumption of glucose or glycerol, but decreased 14CO2 production from these substrates by increasing flow of label into alanine. Although glucose decreased alanine consumption by 70%, it increased the rate of 14CO2 production from [U-14C]- and [l-14C]alanine by about 20%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Female rats were injected i.v. with comparable trace amounts of [U-14C] glycerol, [2-3H] glycerol, [U-14C] glucose, or [1-14C] palmitate, and killed 30 min afterwards. The radioactivity remaining in plasma at that time was maximal in animals receiving [U-14C] glucose while the appearance of radioactive lipids was higher in the [U-14C] glycerol animals than in other groups receiving hydrosoluble substrates. The carcass, more than the liver, was the tissue where the greatest proportion of radioactivity was recovered, while the greatest percentage of radioactivity appeared in the liver in the form of lipids. The values of total radioactivity found in different tissues were very similar when using either labelled glucose or glycerol but the amount recovered as lipids was much greater in the latter. The maximal proportion of radioactive lipids appeared in the fatty-acid form in the liver, carcass, and lumbar fat pads when using [U-14C] glycerol as a hydrosoluble substrate, and the highest lipidic fraction appeared in adipose tissue as labelled, esterified fatty acids. In the spleen, heart, and kidney, most of the lipidic radioactivity from any of the hydrosoluble substrates appeared as glyceride glycerol. The highest proportion of radioactivity from [1-14C] palmitate appeared in the esterified fatty acid in adipose tissue, being followed in decreasing proportion by the heart, carcass, liver, kidney, and spleen. Thus at least in part, both labelled glucose and glycerol are used throughout different routes for their conversion in vivo to lipids. A certain proportion of glycerol is directly utilized by adipose tissue. The fatty acids esterification ability differs among the tissues and does not correspond directly with the reported activities of glycerokinase, suggesting that the alpha-glycerophosphate for esterification comes mainly from glucose and not from glycerol.  相似文献   

11.
The effect of bicuculline-induced convulsive seizures on lipid metabolism has been studied in four brain areas (cerebellum, cerebral cortex, hippocampus, and brainstem) using [2-3H]glycerol and [1,2-14C]ethanolamine as radioactive lipid precursors administered simultaneously with bicuculline. Twelve minutes after the administration, the uptake of radioactivity depended both on brain area and treatment, being generally higher in convulsing rats. The uptake of glycerol was influenced to a larger extent than that of ethanolamine and increased during convulsions, but its incorporation into lipids did not. In contrast, the amount of ethanolamine incorporated into lipids increased during bicuculline-induced seizures. The difference in behavior of glycerol and of ethanolamine is also indicated by the decrease of the 3H/14C ratio of phosphatidyl-ethanolamine in various brain areas during convulsions. It is, therefore, evident that the metabolism of the two precursors is affected differently by seizures.  相似文献   

12.
Metabolism of long-chain polyunsaturated alcohols in myelinating brain   总被引:1,自引:0,他引:1  
cis-9-[1-(14)C]Octadecenol, cis,cis-9,12-[1-(14)C]octadecadienol, and cis,cis,cis-9,12,15-[1-(14)C]octadecatrienol were administered intracerebrally to 18-day-old rats. Incorporation of radioactivity into the constituent alkyl, alk-1-enyl, and acyl moieties of the ethanolamine phosphatides of brain was determined after 3, 6, 24, and 48 hr. Incorporation of radioactivity from each precursor proceeded at approximately the same rate leading to mono-, di-, and triunsaturated alkyl and alk-1-enyl glycerols. In addition, the labeled alcohols were found to be oxidized to the corresponding fatty acids which were incorporated into acyl groups; radioactivity derived from di- and triunsaturated alcohols was found mainly in acyl moieties produced through chain elongation and desaturation reactions of di- and triunsaturated fatty acids.  相似文献   

13.
Reductive and oxidative biosynthesis of plasmalogens in myelinating brain   总被引:2,自引:0,他引:2  
Palmitic acid-1-(14)C and hexadecanol-1-(14)C were administered intracerebrally to 18-day-old rats. Incorporation of radioactivity into the constituent alkyl, alk-1-enyl, and 1-acyl moieties, as well as into the 2-acyl moieties, of the ethanolamine phosphatides of brain was determined after 1, 2, 3, 6, and 22 hr. Incorporation of radioactivity from hexadecanol into both alkyl ethers and alk-1-enyl ethers proceeded at a rate more than 10 times higher than from palmitic acid. Hexadecanol was rapidly oxidized to fatty acids which were incorporated into the acyl moieties of the ethanolamine phosphatides. When palmitic acid was used as a precursor, labeled long-chain alcohols could be isolated from the lipid extract. As labeled long-chain aldehydes could not be detected in any of the lipid extracts, alcohols appear to be key intermediates for the biosynthesis of both alkyl and alk-1-enyl glycerophosphatides.  相似文献   

14.
Bis(monoacylglycero)phosphate (BMP) has the unique stereoconfiguration of 3-acyl-sn-glycero-1-phosphoryl-1'-sn-[3'-acylglycerol] (Brotherus, J., Renkonen, O., Herrmann, J., and Fischer, W. (1974) Chem. Phys. Lipids 13, 178-182) which differs from other known mammalian phospholipids that have the sn-glycero-3-phosphoryl configuration. This stereochemistry may contribute to its physiologic function. Here we describe studies using the macrophage-like cell line RAW 264.7 designed to determined how this unique stereoconfiguration occurs. These studies show that the stereoconfiguration of BMP produced from exogenous phosphatidylglycerol (PG) by RAW 264.7 cells has the expected stereoconfiguration of 3-acyl-sn-glycero-1-phosphoryl-1'-sn-[3'-acylglycerol]. Experiments using diacyl-sn-[2-3H]glycero-3-phosphoryl-sn-1'-[2-3H]glycerol demonstrate that this unique stereoconfiguration is not produced due to an oxidation/reduction mechanism involving the sn-2-glycerol carbon. When dioleoyl-sn-[1-14C]glycero-3-phosphoryl-rac-glycerol was converted to 14C-labeled BMP, the 14C label was found esterified to the phosphate moiety. These results suggest that a stereospecific enzyme is capable of reorienting the radiolabeled glycerol backbone of this PG substrate, effectively changing the stereochemistry of the lipid. We also show that this enzyme is stereoselective with regard to the base glycerol moiety of the substrate PG used. Finally, we propose a new pathway for the synthesis of BMP from PG.  相似文献   

15.
1. Ten bacteria utilizing [2-14C]ethanol-2-amine as the sole or major source of nitrogen for growth on glycerol + salts medium incorporated radioactivity into a variety of bacterial substances. A high proportion was commonly found in lipid fractions, particularly in the case of Erwinia carotovora. 2. Detailed studies of [14C]ethanolamine incorporation into lipids by five bacteria, including E. carotovora, showed that all detectable lipids were labelled. Even where phosphatidylethanolamine was the major lipid labelled, radioactivity was predominantly in the fatty acid rather than the base moiety. The labelled fatty acids were identified in each case. 3. The addition of acetate to growth media decreased the incorporation of radioactivity from ethanolamine into both fatty acid and phosphatidyl-base fragments of lipids from all the bacteria except Mycobacterium smegmatis. Experiments with [3H]ethanolamine and [14C]acetate confirmed that unlabelled acetate decreased the incorporation of both radioactive isotopes into lipids, except in the case of M. smegmatis. 4. Enzyme studies suggested one of two metabolic routes between ethanolamine and acetyl-CoA for each of four bacteria. A role for ethanolamine O-phosphate was not obligatory for the incorporation of [14C]ethanolamine into phospholipids, but correlated with CoA-independent aldehyde dehydrogenase activity.  相似文献   

16.
rac-1-[1-14C]Lauroyl-2-oleylglycero-3-phospho[methyl-3H]choline and rac-1-lauroyl-2-[1-14C]oleoylglycero-3-phospho[methyl-3H]choline along with rac-1-palmitoyl-2-oleylglycero-3-phosphocholine and sn-1-palmitoyl-2-oleylglycero-3-phosphocholine were synthesized and subjected to hydrolysis with phospholipase C (EC 3.1.4.3) from Clostridium perfringens and phospholipase D (EC 3.1.4.4) from cabbage. Kinetics of hydrolysis of the radioactive substrates were determined by measuring the 3H radioactivity retained in the aqueous phase due to free choline and phosphocholine and the 3H and 14C radioactivity recovered in the organic phase due to the released diacylglycerols and phosphatidic acids and the residual phosphatidylcholines. The rate of hydrolysis of the unlabelled substrates by phospholipase C was determined by thin-layer chromatography and gas-liquid chromatography of the methanolysis products. The relative initial rates of hydrolysis of sn-1,2,- and sn-2,3-enantiomers were 100-200:1 for phospholipase C and 40-50:1 for phospholipase D using rac-1-lauroyl-2-oleoylglycero-3-phosphocholine as the substrate. The substitution of the 2-acyl group by an alkyl group resulted in a loss of stereospecificity, which was partial for phospholipase C (relative rates equal to 8-13:1) and total for phospholipase D. There was a parallel dramatic decrease (500-1000-fold) in the initial rate of hydrolysis with phospholipase C but the activity of phospholipase D was only moderately reduced (18-fold). These findings are consistent with the earlier observed loss of the stereospecificity of lipoprotein lipase following introduction of a 2-alkyl group into triacylycerols, and point to a general unsuitability of 2-alkyl-linked acylglycerols as substrates for the assay of the stereospecificity of lipases, as well as for the isolation of enantiomeric 2-alkylacylglycerols by means of stereospecific lipases.  相似文献   

17.
The lipases from Rhizopus and Rhizomucor are members of the family of Mucorales lipases. Although they display high sequence homology, their stereoselectivity toward triradylglycerols (sn-2 substituted triacylglycerols) varies. Four different triradylglycerols were investigated, which were classified into two groups: flexible substrates with rotatable O'-C1' ether or ester bonds adjacent to C2 of glycerol and rigid substrates with a rigid N'-C1' amide bond or a phenyl ring in sn-2. Although Rhizopus lipase shows opposite stereopreference for flexible and rigid substrates (hydrolysis in sn-1 and sn-3, respectively), Rhizomucor lipase hydrolyzes both groups of triradylglycerols preferably in sn-1. To explain these experimental observations, computer-aided molecular modeling was applied to study the molecular basis of stereoselectivity. A generalized model for both lipases of the Mucorales family highlights the residues mediating stereoselectivity: (1) L258, the C-terminal neighbor of the catalytic histidine, and (2) G266, which is located in a loop contacting the glycerol backbone of a bound substrate. Interactions with triradylglycerol substrates are dominated by van der Waals contacts. Stereoselectivity can be predicted by analyzing the value of a single substrate torsion angle that discriminates between sn-1 and sn-3 stereopreference for all substrates and lipases investigated here. This simple model can be easily applied in enzyme and substrate engineering to predict Mucorales lipase variants and synthetic substrates with desired stereoselectivity.  相似文献   

18.
Lysoplasmalogenase (EC 3.3.2.2 and EC 3.3.2.5) is an enzyme that catalyzes hydrolytic cleavage of the vinyl ether bond of lysoplasmalogen, forming fatty aldehyde and glycerophosphoethanolamine or glycerophosphocholine and is specific for the sn-2-deacylated form of plasmalogen. Here we report the purification, characterization, identification, and cloning of lysoplasmalogenase. Rat liver microsomal lysoplasmalogenase was solubilized with octyl glucoside and purified 500-fold to near homogeneity using four chromatography steps. The purified enzyme has apparent K(m) values of ~50 μm for both lysoplasmenylcholine and lysoplasmenylethanolamine and apparent V(m) values of 24.5 and 17.5 μmol/min/mg protein for the two substrates, respectively. The pH optimum was 7.0. Lysoplasmalogenase was competitively inhibited by lysophosphatidic acid (K(i) ~20 μm). The predominant band on a gel at ~19 kDa was subjected to trypsinolysis, and the peptides were identified by mass spectrometry as Tmem86b, a protein of unknown function. Transient transfection of human embryonic kidney (HEK) 293T cells showed that TMEM86b cDNA yielded lysoplasmalogenase activity, and Western blot analyses confirmed the synthesis of TMEM86b protein. The protein was localized in the membrane fractions. The TMEM86b gene was also transformed into Escherichia coli, and its expression was verified by Western blot and activity analyses. Tmem86b is a hydrophobic transmembrane protein of the YhhN family. Northern blot analyses demonstrated that liver expressed the highest level of Tmem86b, which agreed with tissue distribution of activity. Overexpression of TMEM86b in HEK 293T cells resulted in decreased levels of plasmalogens, suggesting that the enzyme may be important in regulating plasmalogen levels in animal cells.  相似文献   

19.
To facilitate investigation of the metabolism of lysophosphatidylcholine and choline lysoplasmalogen in small quantities of tissue, a method for the quantification of these phospholipid species that is capable of accurate and reproducible analysis in samples which contain less than 1 nmol of total choline lysophospholipid was developed. The procedure employs chloroform and methanol extraction of phospholipids from isolated tissue with subsequent separation of the choline lysophospholipid fraction by high-performance liquid chromatography. The choline lysophospholipids are then acetylated with [3H]acetic anhydride and the [3H]acetyl-lysophosphatidylcholine product is isolated by thin-layer chromatography and quantified by liquid scintillation counting. The choline lysophospholipid content in the sample is determined from a standard curve constructed from samples containing a known amount of synthetic lysophosphatidylcholine with correction for recovery based on the inclusion of [14C]lysophosphatidylcholine as an internal standard.  相似文献   

20.
1. Rat liver slices were employed to study the relative rates of incorporation of a mixture of [2-(3)H]- or [1,3-(3)H]-glycerol and [1-(14)C]glycerol into lipids. 2. With 0.1mm-glycerol approx. 82% of the newly synthesized lipid, calculated from (14)C incorporation, was present as neutral lipid, 13% as phosphatidylcholine and 5% as phosphatidylethanolamine. Increasing the glycerol concentration to 40mm caused a decrease in the percentage of neutral lipid to 59% and a corresponding increase in the percentage of phosphatidylcholine to 36% of the newly synthesized lipid. 3. The (d.p.m. of 2-(3)H)/(d.p.m. of 1-(14)C) ratio in glycerolipid was considerably higher than that in precursor glycerol throughout the range of experimental conditions. In contrast the incorporation of a mixture of [1,3-(3)H]glycerol and [1-(14)C]glycerol into lipid occurred with little or no change in the (3)H/(14)C ratio. 4. Respiring rat liver mitochondria were found to oxidize a mixture of sn-[2-(3)H]- and sn-[1-(14)C]-glycerol 3-phosphate with a resultant increase in the (3)H/(14)C ratio of the remaining sn-glycerol 3-phosphate. This increase is due to a (3)H isotope effect of the mitochondrial sn-glycerol 3-phosphate dehydrogenase (EC 1.1.99.5), which discriminates against sn-[2-(3)H]glycerol 3-phosphate during oxidation. 5. A method is described for the simultaneous determination of the relative contributions of the glycerol phosphate and dihydroxyacetone phosphate pathways of glycerolipid biosynthesis in rat liver slices. The method involves measurement of the (d.p.m. of 2-(3)H)/(d.p.m. of 1-(14)C) ratio in both sn-glycerol 3-phosphate and glycerolipid after incubation of rat liver slices with a mixture of [2-(3)H]glycerol and [1-(14)C]glycerol for various times. 6. By using this method it was shown that 40-50% of the glycerol incorporated into lipid by rat liver slices proceeded via the sn-glycerol 3-phosphate pathway and 50-60% was incorporated via dihydroxyacetone phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号