首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymatic studies of DNA repair in Drosophila melanogaster   总被引:1,自引:0,他引:1  
Thus far, our studies in Drosophila have concentrated primarily on the various enzymes involved in the in vitro repair of modified or nonconventional DNA substrates. In some cases, our findings have led us to investigate events that may not have a bearing on DNA repair, but rather may be associated with developmental signals important to the maturation of the organism. As appealing as some of these models seem, however, they must await confirmation through detailed genetic studies before any substantial conclusions can be drawn. This combination of genetic and biochemical knowledge makes Drosophila an exciting organism for an eventual detailed understanding of the developmental expression and cellular location of DNA-repair systems.  相似文献   

2.
Methyl bromide is commonly used as a soil fumigant in greenhouses. In the framework of a toxicological evaluation, it was tested for possible genotoxic properties in two bacterial test systems (the fluctuation test using Klebsiella pneumoniae and the plate test using Salmonella typhimurium TA100 and TA98), two systems using mammalian cells in vitro (forward mutations at the TK and HPRT loci in L5178Y mouse lymphoma cells and unscheduled DNA synthesis in primary rat-liver cells) and in the sex-linked recessive lethal test using Drosophila melanogaster. Methyl bromide was active in all tests except the DNA-repair assay. The results indicate a relatively low mutagenic efficiency of the compound, as expected from its alkylating properties.  相似文献   

3.
The sequence of the SPF45 protein is significantly conserved, yet functional studies have identified it as a splicing factor in animal cells and as a DNA-repair protein in plants. Using a combined genetic and biochemical approach to investigate this apparent functional discrepancy, we unify and validate both of these studies by demonstrating that the Drosophila melanogaster protein is bifunctional, with independent functions in DNA repair and splicing. We find that SPF45 associates with the U2 snRNP and that mutations that remove the C-terminal end of the protein disrupt this interaction. Although animals carrying this mutation are viable, they are nevertheless compromised in their ability to regulate Sex-lethal splicing, demonstrating that Sex-lethal is an important physiological target of SPF45. Furthermore, these mutant animals exhibit phenotypes diagnostic of difficulties in recovering from exogenously induced DNA damage. The conclusion that SPF45 functions in the DNA-repair pathway is strengthened by finding both genetic and physical interactions between SPF45 and RAD201, a previously uncharacterized member of the RecA/Rad51 protein family. Together with our finding that the fly SPF45 protein increases the survival rate of mutagen-treated bacteria lacking the RecG helicase, these studies provide the tantalizing suggestion that SPF45 has an ancient and evolutionarily conserved role in DNA repair.  相似文献   

4.
Lymphocytes from 43 breast cancer patients were tested for their DNA-repair ability and in vitro chromosomal radiosensitivity. Lymphocytes were collected before and after treatment with radiotherapy or chemotherapy or both, and then irradiated in vitro. The aim was to detect alterations of these 2 indicators of radiosensitivity, in relation to cancer status or medical treatment. Patients before treatment were significantly deficient in DNA-repair ability but had a normal chromosomal radiosensitivity as compared to healthy donors. When assessed after treatment, DNA-repair ability and the frequency of in vitro-induced chromosome anomalies were modified according to the type of treatment. A reduced DNA-repair ability was observed for patients after radiotherapy but not after chemotherapy. In vitro-induced dicentrics and acentrics were not modified to the same extent according to the treatment. A decreased number of acentrics (the most frequently observed alteration) was preferentially associated with a more reduced DNA-repair ability. Interindividual differences of response to in vitro irradiation tested by both assays were observed between patients who had undergone similar treatments. The possibility that these assays could be used for predicting individual susceptibility to radiation or chemotherapy drug exposure is discussed.  相似文献   

5.
Low DNA-repair capacity has been associated with increased risk of several types of cancer. mRNA levels of the nucleotide excision repair genes ERCC1 and XPD have been shown to correlate with the DNA-repair capacity. Likewise, mRNA levels of several DNA-repair genes including ERCC1 have been shown to be lower in lymphocytes from patients with lung cancer and head and neck cancer compared with healthy persons. In these studies, the low DNA-repair gene expression levels could be either a risk factor for disease or a consequence of the same. In this nested case-cohort study, which to our knowledge, is the first prospective study of DNA-repair gene mRNA levels as predictors of lung cancer, we have investigated the occurrence of lung cancer in relation to the mRNA level of the two DNA-repair genes ERCC1 and XPD and the NF kappaB inhibitor RAI in blood samples prior to disease. Among 54,220 members of a Danish prospective cohort study, 265 lung cancer cases were identified and a sub-cohort comprising 272 individuals was used for comparison. The expression levels of the three adjacent genes were found to be highly inter-correlated, to be higher in women compared to men and to be lower in older individuals. The incidence rate ratios for lung cancer in association with one log-unit increase (natural logarithm) in mRNA levels were 1.12 (CI=0.89-1.41) for ERCC1, 1.00 (CI=0.83-1.21) for XPD and 1.25 (0.89-1.74) for RAI. In conclusion, this study indicated no association between mRNA expression of the DNA-repair genes ERCC1 and XPD and risk of subsequent development of lung cancer.  相似文献   

6.
Praziquantel (Embay 8440, Droncit) a new, effective anti-schistosomal drug, was tested in various short-term assays that have shown a predictive value for the detection of potential carcinogens. Indicator organisms S. typhimurium strains, S. pombe, S. cerevisiae, cultured V79 Chinese hamster cells or human heteroploid cells and Drosophila melanogaster were treated with Praziquantel. The induction of reverse and forward mutations, mitotic gene conversions, X-linked recessive lethals, sister-chromatid exchanges and unscheduled DNA-repair synthesis was scored; rodent-liver microsome-, cell- and host-mediated assays were also performed. Hycanthone, another schistosomicide was included as a positive control. The absence of a genetic activity of Praziquantel uniformly observed in such a battery of tests (i) confirms the assumption that the anti-schistosomal effectiveness of this drug is not related to the mutagenic activity and (ii) should encourage the implementation of extended clinical and field trials.  相似文献   

7.
This paper describes the influence of changes in metabolic activity on the in-vivo mutagenic effectiveness of cyclophosphamide in Drosophila melanogaster. A dose-dependent increase in mutagenicity was observed until a plateau value is reached which was increased only slightly after enzyme induction with Aroclor 1254, whereas induction with phenobarbital resulted in a decrease, especially when cyclophosphamide was applied by injection. Treatment of the adult males with inhibitors of the monoamine oxidase (MAO, EC 1.4.3.4), such as iproniazid (Ipr), benzimidazole or tryptamine, led to a marked increase of the mutagenic effectiveness of cyclophosphamide especially in spermatocytes. This indicates the importance of metabolic de-activation processes for the limited mutagenicity of cyclophosphamide in Drosophila. The principal active metabolite of cyclophosphamide, phosphoramide mustard, is extensively de-activated by enzymes that can be inhibited by 1-phenylimidazole (PhI), presumably cytochrome P-450 (EC 1.14.14.1), but not by those blocked by MAO inhibitors. Inhibition of the FAD-containing dimethylaniline monooxygenase (FDMAM, EC 1.14.13.8) by N,N-dimethylbenzylamine (N,N-DMB) resulted in some increase in cyclophosphamide mutagenicity only in spermatids. The marginal mutagenicity of cyclophosphamide in Drosophila larvae could not be increased either by cytochrome P-450 induction with phenobarbital or by MAO inhibition with Ipr. In contrast to the failure of cyclophosphamide to induce rod-chromosome loss, a considerable activity was found when a ring-shaped chromosome was used. Similar to the sex-linked recessive lethal (SLRL) test, ring-X loss frequency could be enhanced by simultaneous treatment with MAO inhibitors. The observed ring-X loss frequency declined when males treated with cyclophosphamide were mated to DNA-repair deficient mei-9L1 females. Cyclophosphamide produces chromosome breaks, detected as 2-3 translocations, in Drosophila spermatocytes, the stage in spermatogenesis that is also the most sensitive to the induction of SLRL mutations.  相似文献   

8.
DNA-damage repair; the good, the bad, and the ugly   总被引:1,自引:0,他引:1  
Hakem R 《The EMBO journal》2008,27(4):589-605
Organisms have developed several DNA-repair pathways as well as DNA-damage checkpoints to cope with the frequent challenge of endogenous and exogenous DNA insults. In the absence or impairment of such repair or checkpoint mechanisms, the genomic integrity of the organism is often compromised. This review will focus on the functional consequences of impaired DNA-repair pathways. Although each pathway is addressed individually, it is essential to note that cross talk exists between repair pathways, and that there are instances in which a DNA-repair protein is involved in more than one pathway. It is also important to integrate DNA-repair process with DNA-damage checkpoints and cell survival, to gain a better understanding of the consequences of compromised DNA repair at both cellular and organismic levels. Functional consequences associated with impaired DNA repair include embryonic lethality, shortened life span, rapid ageing, impaired growth, and a variety of syndromes, including a pronounced manifestation of cancer.  相似文献   

9.
The capacity of normal human cells to regulate DNA-repair pathways was examined. Synchronous populations of WI-38 human diploid fibroblasts were used to determine whether base-excision repair was increased as a function of the cell cycle. 2 parameters of the base-excision repair pathway were examined: (1) The induction of the DNA-repair enzyme uracil DNA glycosylase which functions in an initial step in base excision repair: (2) cell-mediated base-excision repair as measured by unscheduled DNA synthesis after exposure to sodium bisulfite or to methyl methanesulfonate. The glycosylase activity was increased 5-fold during cell proliferation; unscheduled DNA synthesis was enhanced 4- to 30-fold in a similar fashion. Equivalent results were observed where repair replication was quantitated using density-gradient analysis in the absence of hydroxyurea. The increase of the activity of the uracil DNA glycosylase and the enhancement of DNA repair occurred prior to the induction of DNA replication. Furthermore, at the maximal stimulation of DNA replication both glycosylase activity and DNA repair had substantially diminished. As the cells entered the second cell cycle, the glycosylase activity was again increased and then was again diminished. These results suggest that human cells actively modulate this DNA-repair pathway. The temporal stimulation of base-excision repair suggests the possibility that a DNA-repair complex may be formed prior to DNA replication to prescreen DNA and thus ensure the transfer of the correct genetic information to daughter cells.  相似文献   

10.
Chimeric RNA/DNA and modified DNA oligonucleotides have been shown to direct gene-conversion events in vitro through a process involving proteins from several DNA-repair pathways. Recent experiments have extended the utility of these molecules to plants, and we previously demonstrated that plant cell-free extracts are competent to support oligonucleotide-directed genetic repair. Using this system, we are studying Arabidopsis DNA-repair mutants and the role of plant proteins in the DNA-repair process. Here we describe a method for investigating mechanisms of plastid DNA-repair pathways. Using a genetic readout system in bacteria and chimeric or modified DNA oligonucleotides designed to direct the conversion of mutations in antibiotic resistance genes, we have developed an assay for genetic repair of mutations in a spinach chloroplast lysate system. We report genetic repair of point and frameshift mutations directed by both types of modified oligonucleotides. This system enables the mechanistic study of plastid gene repair and facilitates the direct comparison between plant nuclear and organelle DNA-repair pathways.  相似文献   

11.
Inactivation of bacterial strains derived from E. coli B, which differ in the DNA-repair capacity (exc-, pol- and rec-) was investigated after far and near UV irradiation. The same strains were also used as hosts for UV-irradiated phage T7. The injuries caused in bacteria and phages by radiation with longer wavelengths were reparable with greater difficulty and only to a lesser extent by the investigated repair mechanisms. We suppose that near UV affects cell proteins and that, as a result of this damage, the DNA-repair systems may be inhibited.  相似文献   

12.
Monolayer cultures of rat hepatocytes activated tris(2,3-dibromopropyl)phosphate (Tris-BP) more efficiently than 2-acetylaminofluorene (AAF), to genotoxic products which caused mutations in co-cultures of S. typhimurium. In contrast, AAF caused a greater genotoxic response in the hepatocytes than Tris-BP, as judged by the increase in DNA-repair synthesis measured by liquid scintillation counting of 3H-TdR incorporated into DNA isolated from the nuclei of the hepatocytes. Covalent binding of 0.05 mM 3H-Tris-BP to cellular proteins occurred at a similar rate as covalent binding of 0.25 mM 14C-AAF. Tris-BP was the more cytotoxic of the two compounds as determined by leakage of cellular lactate dehydrogenase into the culture medium. The observed differences in the cytotoxic and genotoxic responses between Tris-BP and AAF were probably caused by differences in the nature of their reactive metabolites with respect to stability, lipophilicity and/or their interactions with variuos cellular nucleophilic sites. The relative DNA-repair synthesis induced by an AAF exposure for 18 h decreased with time after plating of isolated hepatocytes. Tris-BP first caused an increase in the relative DNA-repair synthesis up to 27 h after plating, whereafter the response declined reaching control values using cultures 75 h after plating. In parallel with the decreased relative response in DNA-repair synthesis with time, the background radioactivity in isolated nuclei from untreated cells increased both when the hepatocytes were incubated in the presence or absence of hydroxyurea to inhibit replicative DNA synthesis. Increased DNA-repair synthesis was demonstrated as early as 3 h after commencing exposure to the test substances. While the induced DNA-repair synthesis caused by Tris-BP remained constant after 6 h of exposure, the response caused by AAF increased with increased exposure time beyond 6 h. To assess the role of different metabolic pathways in the genotoxic and cytotoxic responses of Tris-BP and AAF, the hepatocytes were exposed to test substances in the presence of various metabolic inhibitors for 3 h, whereafter the cell medium was removed and replaced by cell-culture medium containing 3H-TdR and hydroxyurea. The cytochrome P-450 inhibitor metyrapone decreased both the genotoxic and cytotoxic effects of Tris-BP, while α-naphthoflavone reduced the genotoxic effect of AAF. The addition of glutathione (GSH) or N-acetylcysteine decreased both the cytotoxic and genotoxic effects of Tris-BP, while cellular depletion of GSH by diethylmaleate increased these effects. Manipulations in the cellular levels of sulhydryl-containing substances in the hepatocytes by these agents had little effects on the DNA-repair synthesis caused by AAF. The results indicate that such a hepatocyte culture system may be very useful as a tool to study mechanisms involved in the formation of cytotoxic and/or genotoxic metabolites from various xenobiotics.  相似文献   

13.
Pesticide exposure is associated with various neoplastic diseases and congenital malformations. Previous studies have indicated that pesticides may be metabolized by cytochrome P450 3A5 or glutathione S-transferases. DNA-repair genes, including X-ray repair cross-complementing group 1 (XRCC1) and xeroderma pigmentosum group D (XPD), may also be implicated in the process of pesticide-related carcinogenesis. Thus, we investigated whether various metabolic and DNA-repair genotypes increase the risk of DNA damage in pesticide-exposed fruit growers. Using the comet assay, the extent of DNA damage was evaluated in the peripheral blood of 135 pesticide-exposed fruit growers and 106 unexposed controls. The metabolic genotypes CYP3A5 (A(-44)G) and GSTP1 (Ile105Val) and DNA-repair genotypes XRCC1 (Arg399Gln, Arg194Trp, T(-77)C) and XPD (Asp312Asn, Lys751Gln) were identified by polymerase chain reaction. Our multiple regression model for DNA tail moment showed that age, high pesticide exposure, low pesticide exposure, GSTP1 Ile-Ile, and XRCC1 399 Arg-Arg genotype were associated with increased DNA tail moment (DNA damage). Further analysis of interaction between GSTP1 and XRCC1 genes that increase susceptibility revealed a significant difference in DNA tail moment for high pesticide-exposed subjects carrying both GSTP1 Ile-Ile with XRCC1 399 Arg-Arg genotypes (2.49+/-0.09 microm/cell; P=0.004), compared to those carrying GSTP1 Ile-Val/Val-Val with XRCC1 399 Arg-Gln/Gln-Gln genotypes (1.98+/-0.15 microm/cell). These results suggest that individuals with susceptible metabolic GSTP1 and DNA-repair XRCC1 genotypes may be at increased risk of DNA damage due to pesticide exposure.  相似文献   

14.
Genetic instability resulting from the disturbances in various mechanisms of DNA-repair is the characteristic feature of cancer cells. One of the possibilities to evaluate the effectiveness of DNA-repair system is the adaptive response (AR) analysis. The AR is a phenomenon by which cells exposed to low, non-genotoxic doses of a mutagen become significantly resistant to a subsequent higher dose of the same or another genotoxic agent. Generally, it is postulated that AR is related to a reduction of damage by the induction of free radical detoxification and/or DNA-repair systems.The existence of various DNA-repair mechanisms poses the question whether there are differences in AR induced by chemicals causing DNA-damage that requires different pathways for its repair. In this paper we present the study on the AR induced by two chemical mutagens, bleomycin (BLM) and mitomycin C (MMC), which differ in their action on DNA. BLM is a radiomimetic agent causing mainly single-strand breaks (SSB) and double-strand breaks (DSB) and, thus, inducing chromosomal aberrations (CA). MMC is a potent bifunctional mutagen acting as an alkylating agent, causing DNA cross-links and inducing sister chromatid exchanges (SCEs).The protective effect induced by low doses of tested chemicals was analysed in whole blood human lymphocytes using cytogenetic endpoints (CA for BLM and SCE for MMC, respectively) as a measure of chromosomal instability. There was a significant difference between the protective effects induced by BLM and MMC in the lymphocytes of the same group of donors. The pre-treatment with a low dose of BLM-induced almost 50% decrease in the frequency of CA induced by challenging dose (CD), while the protective effect of MMC was below 20%. The higher AR induced by BLM may be related to the repair processing of BLM-induced DNA-damages. There was also a variability in ARs among individuals, which may reflect the differences in individual DNA-repair capacity.  相似文献   

15.
Synthesis of the genetic material of the cell is achieved by a large number of DNA polymerases. Besides replicating the genome, they are involved in DNA-repair processes. Recent studies have indicated that certain DNA-polymerase-X-family members can synthesize unusual DNA structures, and we propose that these DNA structures might serve as 'flag wavers' for the induction of DNA-repair and/or DNA-damage-checkpoint pathways.  相似文献   

16.
Genetic instability resulting from the disturbances in various mechanisms of DNA-repair is the characteristic feature of cancer cells. One of the possibilities to evaluate the effectiveness of DNA-repair system is the adaptive response (AR) analysis. The AR is a phenomenon by which cells exposed to low, non-genotoxic doses of a mutagen become significantly resistant to a subsequent higher dose of the same or another genotoxic agent. Generally, it is postulated that AR is related to a reduction of damage by the induction of free radical detoxification and/or DNA-repair systems.The existence of various DNA-repair mechanisms poses the question whether there are differences in AR induced by chemicals causing DNA-damage that requires different pathways for its repair. In this paper we present the study on the AR induced by two chemical mutagens, bleomycin (BLM) and mitomycin C (MMC), which differ in their action on DNA. BLM is a radiomimetic agent causing mainly single-strand breaks (SSB) and double-strand breaks (DSB) and, thus, inducing chromosomal aberrations (CA). MMC is a potent bifunctional mutagen acting as an alkylating agent, causing DNA cross-links and inducing sister chromatid exchanges (SCEs).The protective effect induced by low doses of tested chemicals was analysed in whole blood human lymphocytes using cytogenetic endpoints (CA for BLM and SCE for MMC, respectively) as a measure of chromosomal instability. There was a significant difference between the protective effects induced by BLM and MMC in the lymphocytes of the same group of donors. The pre-treatment with a low dose of BLM-induced almost 50% decrease in the frequency of CA induced by challenging dose (CD), while the protective effect of MMC was below 20%. The higher AR induced by BLM may be related to the repair processing of BLM-induced DNA-damages. There was also a variability in ARs among individuals, which may reflect the differences in individual DNA-repair capacity.  相似文献   

17.
The genotoxicities of a series of N-nitrosamines were assayed in the wing spot test and a new short-term test of Drosophila melanogaster. In the spot test, larval flies trans-heterozygous for the somatic cell markers mwh and flr3 were fed the test reagents and the wing hairs in adults were inspected for clones expressing the phenotypes of the markers. In the other test, larval stock consisting of meiotic recombination-deficient (Rec-) double mutant mei-9a and mei-41D5 males and repair-proficient Rec+ females were grown on feed containing the reagents and the DNA damages were detected with the preferential killing of the Rec- larvae as an endpoint. The carcinogenic nitrosamines tested, N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-butylamine (NDBA), N-nitrosomorpholine (NMOR), N-nitro-sopiperidine (NPIP) and N-nitrosopyrrolidine (NPYR), all showed clearly positive activities in both tests. The activities in the wing spot test were ranked in a sequence of NDMA much greater than NMOR greater than NPIP greater than NDEA greater than NPYR greater than NDBA. A similar ranking was obtained in the repair assay. The genotoxicity of N-nitrosodiphenylamine (NDPhA), carcinogenicity studies of which are inconclusive, was marginal in the spot test. The non-carcinogenic N-nitrosoproline (NPRO) and the non-mutagenic N-nitrosothioproline (NTPRO) were negative in the spot test. NDPhA and NPRO were negative in the repair test as well. The DNA-repair test is thus a convenient technique for estimating the mutagenicity of compounds because of its simplicity compared with the wing spot test. These Drosophila tests may be useful in predicting carcinogenic potentials of compounds.  相似文献   

18.
19.
20.
A brief review of the available information concerning age-related genomic (DNA) damage and its repair, with special reference to brain tissue, is presented. The usefulness of examining the validity of DNA-damage and repair hypothesis of aging in a postmitotic cell like neuron is emphasized. The limited number of reports that exist on brain seem to overwhelmingly support the accumulation of DNA damage with age. However, results regarding the age-dependent decline in DNA-repair capacity are conflicting and divided. The possible reasons for these discrepancies are discussed in light of the gathering evidence, including some human genetic disorders, to indicate how complex is the DNA-repair system in higher animals. It is suggested that assessment of repair potential of neurons with respect to a specific damage in a specific gene might yield more definitive answers about the DNA-repair process and its role in aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号