首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A comparison was made of three different ways of preparing leaf material of Zea mays L. for the in vivo estimation of nitrate reductase activity. Slicing of lamineae into 1-mm strips gave the lowest overall activities and eliminated significant diurnal variation whilst the use of intact lamineae showed marked diurnal variation and the highest overall activity.  相似文献   

2.
The observation that oxygen represses nitrate reductase biosynthesis in a hemA mutant grown aerobically with or without delta-aminolevulinic acid indicates that cytochromes are not responsible for nitrate reductase repression in aerobically grown cells.  相似文献   

3.
The plasma membranes of Chlorella saccharophila (Krüger) Nadson cells contained a membrane-bound nitrate reductase. This form of nitrate reductase was purified and characterized. Several differences from the soluble form of nitrate reductase were apparent, the most important being: (i) the greater hydrophobicity, as proven using Triton X-114 phase separation, hydrophobic interaction chromatography and stimulation by phosphilipids; (ii) the differences in the native molecular mass compared with Chlorella sorokiniana (Krüger) Nadson; and (iii) the different polypeptide pattern obtained by two-dimensional polyacrylamide gel electrophoresis. Only the plasma-membrane-bound nitrate reductase could be found in both inside-out and right-side-out plasma-membrane vesicles.Abbreviations HIC hydrophobic interaction chromatography - IEF isoelectric focusing - MV methyl viologen - NR nitrate reductase - PM plasma membrane - PMNR plasma-membrane-bound nitrate reductase - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis This work is part of the Ph.D. Thesis of Christine Stöohr, University of Göttingen. This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

4.
Eick M  Stöhr C 《Protoplasma》2012,249(4):909-918
A specific form of plasma membrane-bound nitrate reductase in plants is restricted to roots. Two peptides originated from plasma membrane integral proteins isolated from Hordeum vulgare have been assigned as homologues to the subunit NarH of respiratory nitrate reductase of Escherichia coli. Corresponding sequences have been detected for predicted proteins of Populus trichocarpa with high degree of identities for the subunits NarH (75%) and NarG (65%), however, with less accordance for the subunit NarI. These findings coincide with biochemical properties, particularly in regard to the electron donors menadione and succinate. Together with the root-specific and plasma membrane-bound nitrite/NO reductase, nitric oxide is produced under hypoxic conditions in the presence of nitrate. In this context, a possible function in nitrate respiration of plant roots and an involvement of plants in denitrification processes are discussed.  相似文献   

5.
Once plant endogenous nitric oxide (NO) production had been proved, NO research was directed toward both the source and the targets of this extremely bioactive molecule. As in mammals, plant NO was first thought to be generated mainly by a NO synthase-like enzymatic activity. However, nitrate reductase (NR)-dependent NO production is now receiving much of the attention because of the ubiquity of this enzyme in higher plant tissues and the precise regulation of its NO-production activity. NO has been reported to be a signal in many and diverse physiological processes, such as growth and biotic and abiotic stresses. Recently, NO has been shown to affect stomatal closure and interact with abscisic acid signaling pathways. We propose NR as a putative component in the signaling cascade of ABA-induced stomatal closure.  相似文献   

6.
The function of two proteins (P67 and P100) required for the MgATP-dependent inactivation of nitrate reductase (NR) from spinach leaves (Spinacia oleracea L.) was studied. When NR was incubated with -[32P]ATP and P67, NR-protein was phosphorylated, but without a change in NR activity. Protein P100 by itself was neither able to phosphorylate nor to inactivate NR, and when added together with P67 it did not change the extent of NR phosphorylation. However, when NR was first phosphorylated with MgATP and P67, subsequent addition of P100 after removal of unreacted ATP caused an immediate NR inactivation. In presence of both P67 and P100 the time-course of ATP-dependent NR phosphorylation paralleled the time course of inactivation. The extent of NR phosphorylation and of NR inactivation (in the presence of P67 plus P100) was similarly affected by metabolites or high salt concentrations. Magnesium (Mg2+) played a dual role in the inactivation process: the phosphorylation of NR by P67 was strictly Mg2+-dependent. Further, phospho-NR (+P100) was inactive only in the presence of Mg2+, but active in the presence of excess EDTA. Dephospho-NR appeared to be Mg2+-insensitive. The observations suggest that phosphorylation of NR by P67 is obligatory, but not sufficient for inactivation. In addition to protein phosphorylation, inactivation requires binding of an inhibitor protein (P100) to phospho-NR.Abbreviations G6P glucose-6-phosphate - NR NADH-nitrate reductase - NRA nitrate reductase activity The skilled technical assistance of Elke Brendle-Behnisch is gratefully acknowledged. We also wish to thank Dr. C. MacKintosh, University of Dundee, UK, who supplied us with an immuno-affinity column for NR purification. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 251).  相似文献   

7.
The effect of a range of concentrations of nitrate (NO?3) on the growth rate and nitrate reductase (NR) activity of both young and mature sporophytes of Laminaria digitata (Huds.) Lamour has been studied by means of laboratory batch culture experiments. The growth rate of young sporophytes was found to increase in a hyperbolic fashion with increasing NO?3 availability, with a ks value of 19 μmol·dm?3. The potential in vivo NR activity of these plants (obtained under optimum assay conditions) remained constant over the range of NO?3 concentrations used, while the actual in vivo NR activity (sustained by the internal NO?3 pool within the cell) increased in a similar hyperbolic manner to that shown by the growth rate (ks 20 μmol·dm?3). The changes in the actual in vivo NR activity were consistent with those of the internal NO?3 content of these plants, which also increased with increasing external NO?3 concentration.The NR activity in the blade meristem of the mature sporophytes behaved in a similar manner to that of the entire young plants. In contrast, the potential in vivo NR activity of the old, non-meristematic region of the blades of mature plants (where the maximum NR activities were located) did respond to the external availability of NO?3, being greater in those plants grown in high concentrations of NO?3 than in those in which growth was nitrogen-limited. In addition to this trend, a similar dependence of the ratio of actual : potential NR activity on the degree of nitrogen limitation to that found in the young sporophytes occurred in this region of the blade of mature plants.Pronounced diurnal variations in NR activity, with maximum values in the light period and minimum in the dark, were observed in both field and laboratory populations of L. digitata. The amplitude of these fluctuations appeared to be controlled by the degree of nitrogen limitation experienced, being much greater when growth was light- rather than nitrogen-limited (minimum values 44 and 74% of maximum, respectively).Overall the data indicate that the ratio between the actual : potential in vivo NR activity in L. digitata provides an unambiguous indicator of the state of the nitrogen metabolism within the cells, the interpretation of which, unlike growth rate, is not affected by differences in other culture or environmental conditions. This finding is believed to have important implications for the commercial cultivation of this and other species of macroalgae.  相似文献   

8.
9.
Summary In-galactosidase ofEscherichia coli residues 820–934 are similar to residues in dihydrofolate reductase ofE. coli. Dihydrofolate reductase ofE. coli and chicken are also similar and have identical tertiary structures. I used the similarity of the three-dimensional structure of prokaryotic and eukaryotic dihydrofolage reductases to align the chicken dihydrofolate reductase and the similar residues of-galactosidase. The positions of introns 1 and 5 of the chicken dihydrofolate reductase gene correspond exactly to the start and the end of the dihydrofolate reductase-like domain in the-galactosidase polypeptide chain. This equivalence of intron positions in a eukaryotic gene and domain structure in a prokaryotic protein was interpreted as evidence for a common origin of both genes.  相似文献   

10.
Nitrate reductase (NR) activity in spinach leaf extracts prepared in the presence of a protein phosphatase inhibitor (50 μM cantharidine) was measured in the presence of Mg2+ (NRact) or EDTA (NRmax), under substrate saturation. These in-vitro activities were compared with nitrate reduction rates in leaves from nitrate-sufficient plants. Spinach leaves containing up to 60 μmol nitrate per g fresh weight were illuminated in air with their petiole in water. Their nitrate content decreased with time, permitting an estimation of nitrate reduction in situ. The initial rates (1–2 h) of nitrate consumption were usually lower than NRact, and with longer illumination time (4 h) the discrepancy grew even larger. When leaves were fed through their petiole with 30 mM nitrate, initial in-situ reduction rates calculated from nitrate uptake and consumption were still lower than NRact. However, nitrate feeding through the petiole maintained the in situ-nitrate reduction rate for a longer time. Initial rates of nitrate reduction in situ only matched NRact when leaves were illuminated in 5% CO2. In CO2-free air or in the dark, both NRact and in-situ nitrate reduction decreased, but NRact still exceeded in-situ reduction. More extremely, under anoxia or after feeding 5-amino-4-imidazole carboxyamide ribonucleoside in the dark, NR was activated to the high light level; yet in spite of that, nitrate reduction in the leaf remained very low. It was examined whether the standard assay for NRact would overestimate the in-situ rates due to a dissociation of the inactive phospho-NR-14-3-3 complex after extraction and dilution, but no evidence for that was found. In-situ NR obviously operates below substrate saturation, except in the light at high ambient CO2. It is suggested that in the short term (2 h), nitrate reduction in situ is mainly limited by cytosolic NADH, and cytosolic nitrate becomes limiting only after the vacuolar nitrate pool has been partially emptied. Received: 19 June 1999 / Accepted: 12 October 1999  相似文献   

11.
In soybeans ( Glycine max L. Merr.), high levels of soil nitrate inhibit N2 fixation, and nitrate-tolerant symbioses have been identified within a chemically mutagenized line of cv. Bragg denoted nts382 and within the line K466, a genotype representative of a number of Korean soybean cultivars. The genotypes nts382 and K466 were examined to see if they could be used as a model system for studying the mechanism responsible for the short-term (i.e. 3-day) inhibition of specific nitrogenase activity, especially the mechanism behind the greater O2 limitation of nodule metabolism that is characteristic of nitrate inhibition of N2 fixation in soybean. In nts382, total nitrogenase activity (TNA = H2 production in Ar:O2) was inhibited to a lesser degree (48% of control) relative to Bragg (30% of control), and the nitrate-treated symbioses showed less of an O2 limitation of nodule metabolism in nts382 than in Bragg. However, the relative proportion of O2 limitation to the total nitrate inhibition was similar (40 and 41%) in nts382 and Bragg, respectively. Therefore, the nts382 symbioses may be useful in elucidating the general mechanism for down-regulation of nitrogenase activity in soybean, but would not be a useful model system for studying the control of O2-limited metabolism following nitrate exposure. The effects of nitrate on TNA and on the degree of O2 limitation of nodule metabolism were the same in K466 and a reference cultivar Maple Arrow. Consequently, the tolerance of K466 to nitrate reported previously was attributed to the ability of this symbiosis to maintain nodule biomass in the presence of nitrate, not to any ability to maintain specific nitrogenase activity in the presence of nitrate.  相似文献   

12.
d-Serine (0.05m) inhibited nitrification byAspergillus flavus in media containing either peptone, aspartate,a-alanine or -alanine as the sole nitrogen source. A similar inhibition was observed in an aspartate + peptone medium, but nitrate was formed in a -alanine + peptone medium in the presence of the inhibitor. Exceptionally high yields of nitrate were obtained in the -alanine + peptone medium. In replacement cultures,d-serine inhibited nitrification of aspartate but not of -alanine. Manometric studies indicated that aspartate was decarboxylated byA. flavus and that the reaction was inhibited byd-serine. In view of these results, it is suggested that aspartate is a precursor and -alanine is an intermediate in nitrification by this fungus.  相似文献   

13.
The structures of nitrite reductase from Paracoccus denitrificans GB17 (NiR-Pd) and Pseudomonas aeruginosa (NiR-Pa) have been described for the oxidized and reduced state (Fül?p, V., Moir, J. W. B., Ferguson, S. J., and Hajdu, J. (1995) Cell 81, 369-377; Nurizzo, D., Silvestrini, M. C., Mathieu, M., Cutruzzolà, F., Bourgeois, D., Fül?p, V., Hajdu, J., Brunori, M., Tegoni, M., and Cambillau, C. (1997) Structure 5, 1157-1171; Nurizzo, D., Cutruzzolà, F., Arese, M., Bourgeois, D., Brunori, M., Cambillau, C. , and Tegoni, M. (1998) Biochemistry 37, 13987-13996). Major conformational rearrangements are observed in the extreme states although they are more substantial in NiR-Pd. The four structures differ significantly in the c heme domains. Upon reduction, a His17/Met106 heme-ligand switch is observed in NiR-Pd together with concerted movements of the Tyr in the distal site of the d1 heme (Tyr10 in NiR-Pa, Tyr25 in NiR-Pd) and of a loop of the c heme domain (56-62 in NiR-Pa, 99-116 in NiR-Pd). Whether the reduction of the c heme, which undergoes the major rearrangements, is the trigger of these movements is the question addressed by our study. This conformational reorganization is not observed in the partially reduced species, in which the c heme is partially or largely (15-90%) reduced but the d1 heme is still oxidized. These results suggest that the d1 heme reduction is likely to be responsible of the movements. We speculate about the mechanistic explanation as to why the opening of the d1 heme distal pocket only occurs upon electron transfer to the d1 heme itself, to allow binding of the physiological substrate NO2- exclusively to the reduced metal center.  相似文献   

14.
Experiments with plasma-membrane vesicles were performed in order to identify the attachment of hydrophobic nitrate reductase at the plasma membrane of Chlorella saccharophila. The enzyme was successfully removed from the plasma membrane with phosphoinositol-specific phospholipase C, and showed cross-reactivity with a monoclonal antibody (clone aGPI-3) raised against the glycosyl-phosphatidylinositol (GPI) anchor of Trypanosoma variant surface protein. The enzyme was labelled in vivo by feeding [3H]ethanolamine to the cells and underwent an hydrophobicity shift after treatment with phosphoinositol-specific phospholipase C. The attachment of this form of nitrate reductase to the plasma membrane via a GPI anchor was demonstrated.Abbreviations GPI glycosyl-phosphatidylinositol - NR nitratereductase - PI-PLC phosphoinositol-specific phospholipase C - PMNR Plasma-membrane-bound nitrate reductase The research was supported by a grant from Deutsche Forschungsgemeinschaft to R.T.  相似文献   

15.
Two arginine modifying reagents, phenylglyoxal and 2,3-butanedione, inactivated fatty acid synthetase from goose uropygial gland. This inactivation could be partially prevented by NADP, 2′-AMP, and 2′,5′-ADP, whereas acetyl-CoA and/or malonyl-CoA provided very little protection. Ketoacyl reductase and enoyl reductase activities of fatty acid synthetase showed similar inactivation by phenylglyoxal and butanedione and protection by only NADP and its 2′-phosphate-containing analogs. Furthermore, 2′-AMP was found to be a competitive inhibitor of overall fatty acid synthetase, ketoacyl reductase, and enoyl reductase with apparent Ki values of 1.4, 0.2, and 14 mm, respectively. These results suggest that binding of NADPH to fatty acid synthetase involves specific interaction of the 2′-phosphate with the guanidino group of arginine residues at the active site of the two reductases. Quantitation of the number of arginine residues modified revealed that 4 out of 106 arginine residues per subunit of the synthetase showed high reactivity toward phenylglyoxal. Scatchard analysis showed that two rapidly reacting arginine residues had no effect on the catalytic activity, while modification of two additional arginine residues resulted in complete loss of enzyme activity. Under these conditions, of the seven partial reactions of fatty acid synthetase, only the ketoacyl reductase and enoyl reductase activities were inhibited by phenylglyoxal. The differential reversal of inhibition of the two reductases and the overall activity of fatty acid synthetase, resulting from dialysis of the modified enzyme, suggested that both ketoacyl reductase sites and enoyl reductase sites are required for the full expression of fatty acid synthetase activity. The results of the present chemical modification studies are consistent with the hypothesis that each subunit of fatty acid synthetase contains one ketoacyl reductase and one enoyl reductase and suggest that one essential arginine is present at each of these active sites.  相似文献   

16.
ζ-Crystallins are a Zn(2+)-lacking enzyme group with quinone reductase activity, which belongs to the medium-chain dehydrogenase/reductase superfamily. It has been recently observed that human ζ-crystallin is capable of reducing the α,β-double bond of alkenals and alkenones. Here we report that this activity is also shared by the homologous Zta1p enzyme from Saccharomyces cerevisiae. While the two enzymes show similar substrate specificity, human ζ-crystallin exhibits higher activity with lipid peroxidation products and Zta1p is more active with cinnamaldehyde. The presence of Zta1p has an in vivo protective effect on yeast strains exposed to the toxic substrate 3-penten-2-one. Analysis of ZTA1 gene expression indicates an induction under different types of cellular stress, including ethanol and dimethylsulfoxide exposure and by reaching the stationary growth phase. The role of Zta1p in the yeast adaptation to some stress types and the general functional significance of ζ-crystallins are discussed.  相似文献   

17.
Sulfate assimilation provides reduced sulfur for the synthesis of the amino acids cysteine and methionine and for a range of other metabolites. The key step in control of plant sulfate assimilation is the reduction of adenosine 5′-phosphosulfate to sulfite. The enzyme catalyzing this reaction, adenosine 5′phosphosulfate reductase (APR), is found as an iron sulfur protein in plants, algae, and many bacteria. In the moss Physcomitrella patens, however, a novel isoform of the enzyme, APR-B, has recently been discovered lacking the co-factor. To assess the function of the novel APR-B we used homologous recombination to disrupt the corresponding gene in P. patens. The knock-out plants were able to grow on sulfate as a sole sulfur source and the content of low molecular weight thiols was not different from wild type plants or plants where APR was disrupted. However, when treated with low concentrations of cadmium the APR-B knockout plants were more sensitive than both wild type and APR knockouts. In wild type P. patens, the two APR isoforms were not affected by treatments that strongly regulate this enzyme in flowering plants. The data thus suggest that in P. patens APS reduction is not the major control step of sulfate assimilation.  相似文献   

18.
Sepiapterin reductase (EC 1.1.1.153; SPR) is an enzyme involved in the biosynthesis of tetrahydrobiopterin; and SPR has been identified as a member of the NADP(H)-preferring short-chain dehydrogenase/reductase (SDR) family based on its catalytic properties for exogenous carbonyl compounds and molecular structure. To examine possible differences in the catalytic sites of SPR for exogenous carbonyl compounds and the native pteridine substrates, we investigated by site-directed mutagenesis the role of the highly conserved Ser–Tyr–Lys triad (Ser and YXXXK motif) in SPR, which was shown to be the catalytic site of SDR-family enzymes. From the analysis of catalytic constants for single- and double-point mutants against the triad, Ser and YXXXK motif, in the SPR molecule, participate in the reduction of the carbonyl group of both pteridine and exogenous carbonyl compounds. The Ser and the Tyr of the triad may co-act in proton transfer and stabilization for the carbonyl group of substrates, as was demonstrated for those in the SDR family. But either the Tyr or the Ser of SPR can function alone for proton transfer to a certain extent and show low activity for both substrates.  相似文献   

19.
20.
Superoxide reductase (SOR) is a non-heme iron metalloenzyme that detoxifies superoxide radical in microorganisms. Its active site consists of an unusual non-heme Fe2+ center in a [His4Cys1] square pyramidal pentacoordination, with the axial cysteine ligand proposed to be an essential feature in catalysis. Two NH peptide groups from isoleucine 118 and histidine 119 establish hydrogen bonds involving the sulfur ligand (Desulfoarculus baarsii SOR numbering). To investigate the catalytic role of these hydrogen bonds, the isoleucine 118 residue of the SOR from Desulfoarculus baarsii was mutated into alanine, aspartate, or serine residues. Resonance Raman spectroscopy showed that the mutations specifically induced an increase of the strength of the Fe3+–S(Cys) and S–Cβ(Cys) bonds as well as a change in conformation of the cysteinyl side chain, which was associated with the alteration of the NH hydrogen bonding involving the sulfur ligand. The effects of the isoleucine mutations on the reactivity of SOR with O2 ?? were investigated by pulse radiolysis. These studies showed that the mutations induced a specific increase of the pK a of the first reaction intermediate, recently proposed to be an Fe2+–O2 ?? species. These data were supported by density functional theory calculations conducted on three models of the Fe2+–O2 ?? intermediate, with one, two, or no hydrogen bonds involving the sulfur ligand. Our results demonstrated that the hydrogen bonds between the NH (peptide) and the cysteine ligand tightly control the rate of protonation of the Fe2+–O2 ?? reaction intermediate to form an Fe3+–OOH species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号