首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Host-virus interactions control disease progression in human immunodeficiency virus-infected human beings and in nonhuman primates infected with simian or simian/human immunodeficiency viruses (SHIV). These interactions evolve rapidly during acute infection and are key to the mechanisms of viral persistence and AIDS. SHIV(89.6PD) infection in rhesus macaques can deplete CD4(+) T cells from the peripheral blood, spleen, and lymph nodes within 2 weeks after exposure and is a model for virulent, acute infection. Lymphocytes isolated from blood and tissues during the interval of acute SHIV(89.6PD) infection have lost the capacity to proliferate in response to phytohemagglutinin (PHA). T-cell unresponsiveness to mitogen occurred within 1 week after mucosal inoculation yet prior to massive CD4(+) T-cell depletion and extensive virus dissemination. The lack of mitogen response was due to apoptosis in vitro, and increased activation marker expression on circulating T cells in vivo coincided with the appearance of PHA-induced apoptosis in vitro. Inappropriately high immune stimulation associated with rapid loss of mature CD4(+) T cells suggested that activation-induced cell death is a mechanism for helper T-cell depletion in the brief period before widespread virus dissemination. Elevated levels of lymphocyte activation likely enhance SHIV(89.6PD) replication, thus increasing the loss of CD4(+) T cells and diminishing the levels of virus-specific immunity that remain after acute infection. The level of surviving immunity may dictate the capacity to control virus replication and disease progression. We describe this level of immune competence as the host set point to show its pivotal role in AIDS pathogenesis.  相似文献   

2.
We have isolated a biologically active molecular clone of simian immunodeficiency virus (SIV), SIVmac 1A11, originally obtained from a rhesus macaque at the New England Regional Primate Research Center. Virus derived from cells transfected with this clone is cytopathic for rhesus peripheral blood mononuclear cells, replicates in cultures of rhesus macrophages, and infects rhesus macaques when inoculated intravenously. Six macaques inoculated with SIVmac 1A11 all became infected and produced antibodies to viral envelope glycoproteins that neutralized virus. Antibodies to viral core proteins were detected in only one animal. No clinical signs of disease were observed throughout 7 months postinoculation.  相似文献   

3.
The presence of sperm in testicular tissue of rhesus macaques that died as a result of infection with simian immunodeficiency virus (SIV) was related to age and body weight. Depressed testosterone levels were not associated with elevated LH levels. The data suggest that azoospermia in the SIV-infected macaques was due to cachexia and not a direct effect of virus on the testis, supporting a similar hypothesis regarding azoospermia in men infected with human immunodeficiency virus.  相似文献   

4.
Comparative studies were performed to determine the neuropathogenesis of infection in macaques with simian human immunodeficiency virus (SHIV)89.6P and SHIV(KU). Both viruses utilize the CD4 receptor and CXCR4 co-receptor. However, in addition, SHIV89.6P uses the CCR5 co-receptor. Both agents are dual tropic for CD4+ T cells and blood-derived macrophages of rhesus macaques. Following inoculation into macaques, both caused rapid elimination of CD4+ T cells but they varied greatly in mechanisms of neuropathogenesis. Two animals infected with SHIV89.6P developed typical lentiviral encephalitis in which multinucleated giant cell formation, nodular accumulations of microglial cells, activated macrophages and astrocytes, and perivascular accumulations of mononuclear cells were present in the brain. Many of the macrophages in these lesions contained viral RNA. Three macaques infected with SHIV(KU) and killed on days 6, 11 and 18, respectively, developed a slowly progressive infection in the CNS but macrophages were not productively infected and there were no pathological changes in the brain. Two other animals infected with this virus and killed several months later showed minimal infection in the brain even though one of the two developed encephalitis of unknown etiology. The basic difference in the mechanisms of neuropathogenesis by the two viruses may be related to co-receptor usage. SHIV89.6P, in utilizing the CCR5 co-receptor, caused neuropathogenic effects that are similar to other neurovirulent primate lentiviruses.  相似文献   

5.
Comparative studies were performed to determine the neuropathogenesis of infection in macaques with simian human immunodeficiency virus (SHIV)89.6P and SHIVKU. Both viruses utilize the CD4 receptor and CXCR4 co-receptor. However, in addition, SHIV89.6P uses the CCR5 co-receptor. Both agents are dual tropic for CD4+ T cells and blood-derived macrophages of rhesus macaques. Following inoculation into macaques, both caused rapid elimination of CD4+ T cells but they varied greatly in mechanisms of neuropathogenesis. Two animals infected with SHIV89.6P developed typical lentiviral encephalitis in which multinucleated giant cell formation, nodular accumulations of microglial cells, activated macrophages and astrocytes, and perivascular accumulations of mononuclear cells were present in the brain. Many of the macrophages in these lesions contained viral RNA. Three macaques infected with SHIVKU and killed on days 6, 11 and 18, respectively, developed a slowly progressive infection in the CNS but macrophages were not productively infected and there were no pathological changes in the brain. Two other animals infected with this virus and killed several months later showed minimal infection in the brain even though one of the two developed encephalitis of unknown etiology. The basic difference in the mechanisms of neuropathogenesis by the two viruses may be related to co-receptor usage. SHIV89.6P, in utilizing the CCR5 co-receptor, caused neuropathogenic effects that are similar to other neurovirulent primate lentiviruses.  相似文献   

6.
Following DNA immunization of rhesus macaques with a plasmid encoding the human immunodeficiency virus (HIV)-1 third variable domain (V3) loop, presented by pseudo-viral envelope particles of hepatitis B virus, specific immune responses were induced. The primates were then inoculated with a chimeric simian/human immunodeficiency virus (SHIV). All the animals were infected, but the V3-specific immunization provided a relative attenuation of the acute phase of infection in the absence of neutralizing antibody. In all animals, SHIV-specific cytotoxic T-lymphocyte precursors (CTLp) were detected early in peripheral blood and lymph nodes. The viremia peak correlated significantly with the decrease in CD4+ T cells and with a transient increase in the percentage of natural killer cells. The infection induced an oligoclonalization of the CD8+ T-cell variable beta chain repertoire in the blood. Surprisingly, HIV envelope-specific CTLp generated by genetic immunization may be governed by distinct circulation rules compared to SHIV-specific CTLp induced by infection.  相似文献   

7.
The presence, at the time of challenge, of antiviral effector T cells in the vaginal mucosa of female rhesus macaques immunized with live-attenuated simian-human immunodeficiency virus 89.6 (SHIV89.6) is associated with consistent and reproducible protection from pathogenic simian immunodeficiency virus (SIV) vaginal challenge (18). Here, we definitively demonstrate the protective role of the SIV-specific CD8(+) T-cell response in SHIV-immunized monkeys by CD8(+) lymphocyte depletion, an intervention that abrogated SHIV-mediated control of challenge virus replication and largely eliminated the SIV-specific T-cell responses in blood, lymph nodes, and genital mucosa. While in the T-cell-intact SHIV-immunized animals, polyfunctional and degranulating SIV-specific CD8(+) T cells were present in the genital tract and lymphoid tissues from the day of challenge until day 14 postchallenge, strikingly, expansion of SIV-specific CD8(+) T cells in the immunized monkeys was minimal and limited to the vagina. Thus, protection from uncontrolled SIV replication in animals immunized with attenuated SHIV89.6 is primarily mediated by CD8(+) T cells that do not undergo dramatic systemic expansion after SIV challenge. These findings demonstrate that despite, and perhaps because of, minimal systemic expansion of T cells at the time of challenge, a stable population of effector-cytotoxic CD8(+) T cells can provide significant protection from vaginal SIV challenge.  相似文献   

8.
CD1c+ myeloid dendritic cells (mDCs) in the peripheral blood of 30 SHIV-SF162p4 and SIVmac251 sequentially infected Chinese rhesus macaques were examined by flow cytometry to obtain further insight into mDC alterations in HIV/AIDS. The CD1c+ cells were found to be mononuclear leukocytes rather than granulocytes, and most of them expressed CD20. CD1c+mDCs (CD1c+CD20−) consisted of two morphological subsets: the granular and the large CD1c+mDCs. The expression of HLA-DR, CD86, and CD11b, but no CCR7, CD83 and CD123, together with their endocytotic capacity indicated that they were immature mDCs. Their frequency at weeks 10 and 12 post-infection was significantly higher than that of un-infected ones; the large CD1c+mDC level was significantly different between time points and almost absent from un-infected rhesus monkeys; significant correlations between CD1c+mDCs and plasma viral load levels were also observed. These data indicated a possible role for CD1c+mDCs in the pathophysiological process of SIV/HIV infection.  相似文献   

9.
Both naive and vaccinated macaques acquired a virus-specific proliferative helper T-cell reactivity in response to infection with the nonpathogenic human immunodeficiency virus type 2 (HIV-2). In contrast, macaques infected with the pathogenic simian immunodeficiency virus of the macaque strain (SIVmac) did not develop a helper T-cell response. Furthermore, a vaccine-induced preexisting T-cell reactivity was abrogated after SIVmac infection in vaccine failures. These differences may reflect the different pathogenicity of the two closely related viruses.  相似文献   

10.
We have analyzed changes to proviral Env gp120 sequences and the development of neutralizing antibodies (NAbs) during 1 year of simian/human immunodeficiency virus SHIV-89.6P infection in 11 Macaca nemestrina macaques. Seven macaques had significant env divergence from that of the inoculum, and macaques with greater divergence had higher titers of homologous NAbs. Substitutions in sequons encoding potential N-linked glycosylation sites (PNGs) were among the first to be established, although overall the total number of sequons did not increase significantly. The majority (19 of 23) of PNGs present in the inoculum were conserved in the sequences from all macaques. Statistically significant variations in PNGs occurred in multiple macaques within constrained regions we term "hot spots," resulting in the selection of sequences more similar to the B consensus. These included additions on V1, the N-terminal side of V4, and the outer region of C2. Complex mutational patterns resulted in convergent PNG shifts in V2 and V5. Charge changes in Env V1V2, resulting in a net acidic charge, and a proline addition in V5 occurred in several macaques. Molecular modeling of the 89.6P sequence showed that the conserved glycans lie on the silent face of Env and that many are proximal to disulfide bonds, while PNG additions and shifts are proximal to the CD4 binding site. Nonsynonymous-to-synonymous substitution ratios suggest that these changes result from selective pressure. This longitudinal and cross-sectional study of mutations in human immunodeficiency virus (HIV) env in the SHIV background provides evidence that there are more constraints on the configuration of the glycan shield than were previously appreciated.  相似文献   

11.
A simian/human immunodeficiency virus (SHIV)-NM3n containing the human nef, but not the monkey nef, and vpr genes of SIV was inoculated into two cynomolgus monkeys, resulting in systemic infection with a minimum level of transient virus load. In order to study the nature of immune responses associated with the prevention of a pathogenic SHIV, the SHIV-NM3n-inoculated monkeys and three naive monkeys were intravenously challenged with a pathogenic SHIV containing the envelope gene of HIV-1 89.6. After the heterologous virus challenge, all of the SHIV-NM3n-inoculated animals completely avoided the loss of CD4+ T lymphocytes in PBMC as well as lymphoid tissues compared to pathogenic SHIV-injected control animals. The inhibition of CD4+ cell depletion was associated with maintaining the proliferative response of helper T-cells against SIV p27 in the previously nonpathogenic virus-inoculated animals following the pathogenic virus challenge. Furthermore, the decline of CD28+ cells, the increase in CD95+ cells, and the enhancement of in vitro apoptosis in PBMC were inhibited in the non-pathogenic virus-inoculated animals. These results suggest that nonpathogenic SHIV-NM3n infection induces the protection of monkeys from heterologous pathogenic viruses that may be associated with blocking the change in immune responses and the cell loss induced by a pathogenic virus.  相似文献   

12.
The development of anti-human immunodeficiency virus (anti-HIV) neutralizing antibodies and the evolution of the viral envelope glycoprotein were monitored in rhesus macaques infected with a CCR5-tropic simian/human immunodeficiency virus (SHIV), SHIVSF162P4. Homologous neutralizing antibodies developed within the first month of infection in the majority of animals, and their titers were independent of the extent and duration of viral replication during chronic infection. The appearance of homologous neutralizing antibody responses was preceded by the appearance of amino acid changes in specific variable and conserved regions of gp120. Amino acid changes first appeared in the V1, V2, C2, and V3 regions and subsequently in the C3, V4, and V5 regions. Heterologous neutralizing antibody responses developed over time only in animals with sustained plasma viremia. Within 2 years postinfection the breadth of these responses was as broad as that observed in certain patients infected with HIV type 1 (HIV-1) for over a decade. Despite the development of broad anti-HIV-1 neutralizing antibody responses, viral replication persisted in these animals due to viral escape. Our studies indicate that cross-reactive neutralizing antibodies are elicited in a subset of SHIVSF162P4 infected macaques and that their development requires continuous viral replication for extended periods of time. More importantly, their late appearance does not prevent progression to disease. The availability of an animal model where cross-reactive anti-HIV neutralizing antibodies are developed may facilitate the identification of virologic and immunologic factors conducive to the development of such antibodies.  相似文献   

13.
Nonhuman primate models are increasingly used in the screening of candidate AIDS vaccine and immunization strategies for advancement to large-scale human trials. The predictive value of such macaque studies is largely dependent upon the fidelity of the model system in mimicking human immunodeficiency virus (HIV) type 1 infection in terms of viral transmission, replication, and pathogenesis. Herein, we describe the efficient mucosal transmission of a CCR5-specific chimeric simian/human immunodeficiency virus, SHIV(SF162P3). Female rhesus macaques were infected with SHIV(SF162P3) after a single atraumatic application to the cervicovaginal mucosa. The disease course of SHIV(SF162P3)-infected monkeys is similar and as varied as natural HIV infection in terms of viral replication, gradual loss of CD4(+) peripheral blood mononuclear cells, and the development of simian AIDS-defining opportunistic infections. The SHIV(SF162P3)/macaque model should facilitate direct preclinical assessment of HIV vaccine strategies in addition to antiviral compounds directed towards envelope target cell interactions. Furthermore, this controlled model provides the setting to investigate immunologic responses and putative host-specific susceptibility factors that alter viral transmission and subsequent disease progression.  相似文献   

14.
An infectious, virulence-attenuated molecular clone of simian immunodeficiency virus (SIV), SIVMAC-1A11, was derived from an SIV isolate that causes fatal immunodeficiency in rhesus macaques. When inoculated intravenously in rhesus macaques, SIVMAC-1A11 induced transient viremia (1 to 6 weeks) without clinical disease and a persistent humoral antibody response. The antibodies were directed mainly against the viral envelope glycoproteins, as determined by immunoblots and virus neutralization. The potential of this virulence-attenuated virus to protect against intravenous challenge with a pathogenic SIVMAC strain was assessed. Five rhesus macaques were each given two intravenous inoculations with SIVMAC-1A11 7 months apart. Three of the five immunized monkeys and four naive control animals were then challenged with 100 to 1,000 100% animal infectious doses of pathogenic SIVMAC. All seven animals became persistently viremic following the challenge. Four of four unimmunized animals developed severe clinical signs of simian acquired immunodeficiency syndrome by 38 to 227 days after challenge and were euthanatized 91 to 260 days postchallenge. However, no signs of illness were seen in immunized monkeys until 267 to 304 days postchallenge, when two of three immunized animals developed mild thrombocytopenia and lymphopenia; one of these animals died with clinical signs of simian immunodeficiency disease at 445 days after challenge. The two SIVMAC-1A11-immunized monkeys that were not challenged were healthy and antibody positive 22 months after the initial immunization. Thus, although live SIVMAC-1A11 was immunogenic and did not induce any disease, it failed to protect rhesus macaques against infection with a moderately high dose of pathogenic virus. However, immunization prevented severe, early disease and prolonged the lives of monkeys subsequently infected with pathogenic SIV.  相似文献   

15.
Through rapid serial transfer in vivo, the chimeric CCR5-tropic simian/human immunodeficiency virus SHIV(SF162) evolved from a virus that is nonpathogenic and poorly transmissible across the vaginal mucosa to a variant that still maintains CCR5 usage but which is now pathogenic and establishes intravaginal infection efficiently. To determine whether envelope glycoprotein gp120 is responsible for increased pathogenesis and transmissibility of the variant SHIV(SF162P3), we cloned and sequenced the dominant envelope gene (encoding P3 gp120) and characterized its functions in vitro. Chimeric SHIV(SF162) virus expressing P3 gp120 of the pathogenic variant, designated SHIV(SF162PC), was also constructed and assessed for its pathogenicity and mucosal transmissibility in vivo. We found that, compared to wild-type SHIV(SF162) gp120, P3 gp120 conferred in vitro neutralization resistance and increased entry efficiency of the virus but was compromised in its fusion-inducing capacity. In vivo, SHIV(SF162PC) infected two of two and two of three rhesus macaques by the intravenous and intravaginal routes, respectively. Nevertheless, although peak viremia reached 10(6) to 10(7) RNA copies per ml of plasma in some infected animals and was associated with depletion of gut-associated CD4(+) lymphocytes, none of the animals maintained a viral set point that would be predictive of progression to disease. Together, the data from this study suggest a lack of correlation between entry efficiency and cytopathic properties of envelope glycoproteins with viral pathogenicity. Furthermore, whereas env gp120 contains the determinant for enhanced mucosal transmissibility of SHIV(SF162P3), the determinant(s) of its increased virulence may require additional sequence changes in env gp41 and/or maps to other viral genes.  相似文献   

16.
A primate lymphotropic lentivirus was isolated on the human T-cell line HuT 78 after cocultivation of a lymph node from a pig-tailed macaque (Macaca nemestrina) that had died with malignant lymphoma. This isolate, originally designated M. nemestrina immunodeficiency virus (MnIV) and now classified as simian immunodeficiency virus (SIV/Mne), was inoculated intravenously into three juvenile rhesus monkeys (Macaca mulatta), three juvenile pig-tailed macaques (M. nemestrina), and two juvenile baboons (Papio cynocephalus). All six macaques became viremic by 3 weeks after inoculation, whereas neither of the baboons developed viremia. One pig-tailed macaque died at 15 weeks with suppurative peritonitis secondary to ulcerative, necrotizing colitis. Immunologic abnormalities included a marked decrease in CD4+ peripheral blood lymphocytes. Although five macaques mounted an antibody response to SIV/Mne, the animal that died at 15 weeks remained antibody negative. Three other macaques (two rhesus and one pig-tailed) died 66 to 87 weeks after inoculation after exhibiting progressive weight loss, anemia, and diarrhea. Histopathologic findings at necropsy included various manifestations of immune deficiency, nephropathy, subacute encephalitis, pancreatitis, adenocarcinoma, and lymphoid atrophy. SIV/Mne could be readily isolated from the spleens and lymph nodes of all necropsied macaques, and from the cerebrospinal fluid, brains, bone marrow, livers, and pancreas of some of the animals. SIV antigens were localized by avidin-biotin immunohistochemistry to pancreatic islet cells and to bone marrow endothelial cells. The data suggest that African baboons may be resistant to infection by SIV/Mne, whereas Asian macaques are susceptible to infection with this pathogenic primate lentivirus.  相似文献   

17.
18.
There is an urgent need to develop new pathogenic R5 simian/human immunodeficiency viruses (SHIVs) for the evaluation of candidate anti-HIV vaccines in nonhuman primates. Here, we characterize swarm SHIVAD8 stocks, prepared from three infected rhesus macaques with documented immunodeficiency at the time of euthanasia, for their capacity to establish durable infections in macaques following inoculation by the intravenous (i.v.) or intrarectal (i.r.) route. All three viral stocks (SHIVAD8-CE8J, SHIVAD8-CK15, and SHIVAD8-CL98) exhibited robust replication in vivo and caused marked depletion of CD4+ T cells affecting both memory and naïve CD4+ T lymphocyte subsets following administration by either route. Eleven of 22 macaques inoculated with the new SHIVAD8 stocks were euthanized with clinical symptoms of immunodeficiency and evidence of opportunistic infections (Pneumocystis, Candida, and Mycobacterium). A single but unique founder virus, also present in the SHIVAD8-CE8J swarm stock, was transmitted to two animals following a single i.r. inoculation of approximately 3 50% animal infectious doses, which is close to the threshold required to establish infection in all exposed animals. Because the three new SHIVAD8 viruses are mucosally transmissible, exhibited tier 2 sensitivity to anti-HIV-1 neutralizing antibodies, deplete CD4+ T lymphocytes in vivo, and induce AIDS in macaques, they are eminently suitable as challenge viruses in vaccine experiments.  相似文献   

19.
We previously demonstrated that replication-competent adenovirus (Ad)-simian immunodeficiency virus (SIV) recombinant prime/protein boost regimens elicit potent immunogenicity and strong, durable protection of rhesus macaques against SIV(mac251). Additionally, native Tat vaccines have conferred strong protection against simian/human immunodeficiency virus SHIV(89.6P) challenge of cynomolgus monkeys, while native, inactivated, or vectored Tat vaccines have failed to elicit similar protective efficacy in rhesus macaques. Here we asked if priming rhesus macaques with replicating Ad-human immunodeficiency virus (HIV) tat and boosting with the Tat protein would elicit protection against SHIV(89.6P). We also evaluated a Tat/Env regimen, adding an Ad-HIV env recombinant and envelope protein boost to test whether envelope antibodies would augment acute-phase protection. Further, expecting cellular immunity to enhance chronic viremia control, we tested a multigenic group: Ad-HIV tat, -HIV env, -SIV gag, and -SIV nef recombinants and Tat, Env, and Nef proteins. All regimens were immunogenic. A hierarchy was observed in enzyme-linked immunospot responses (with the strongest response for Env, followed by Gag, followed by Nef, followed by Tat) and antibody titers (with the highest titer for Env, followed by Tat, followed by Nef, followed by Gag). Following intravenous SHIV(89.6P) challenge, all macaques became infected. Compared to controls, no protection was seen in the Tat-only group, confirming previous reports for rhesus macaques. However, the multigenic group blunted acute viremia by approximately 1 log (P = 0.017), and both the multigenic and Tat/Env groups reduced chronic viremia by 3 and 4 logs, respectively, compared to controls (multigenic, P = 0.0003; Tat/Env, P < 0.0001). The strikingly greater reduction in the Tat/Env group than in the multigenic group (P = 0.014) was correlated with Tat and Env binding antibodies. Since prechallenge anti-Env antibodies lacked SHIV(89.6P)-neutralizing activity, other functional anti-Env and anti-Tat activities are under investigation, as is a possible synergy between the Tat and Env immunogens.  相似文献   

20.
The antibody responses elicited in rhesus macaques immunized with soluble human immunodeficiency virus (HIV) Env gp140 proteins derived from the R5-tropic HIV-1 SF162 virus were analyzed and compared to the broadly reactive neutralizing antibody responses elicited during chronic infection of a macaque with a simian/human immunodeficiency virus (SHIV) expressing the HIV-1 SF162 Env, SHIV(SF162P4), and humans infected with heterologous HIV-1 isolates. Four gp140 immunogens were evaluated: SF162gp140, DeltaV2gp140 (lacking the crown of the V2 loop), DeltaV3gp140 (lacking the crown of the V3 loop), and DeltaV2DeltaV3gp140 (lacking both the V2 and V3 loop crowns). SF162gp140 and DeltaV2gp140 have been previously evaluated by our group in a pilot study, but here, a more comprehensive analysis of their immunogenic properties was performed. All four gp140 immunogens elicited stronger anti-gp120 than anti-gp41 antibodies and potent homologous neutralizing antibodies (NAbs) that primarily targeted the first hypervariable region (V1 loop) of gp120, although SF162gp140 also elicited anti-V3 NAbs. Heterologous NAbs were elicited by SF162gp140 and DeltaV2gp140 but were weak in potency and narrow in specificity. No heterologous NAbs were elicited by DeltaV3gp140 or DeltaV2DeltaV3gp140. In contrast, the SHIV(SF162P4)-infected macaque and HIV-infected humans generated similar titers of anti-gp120 and anti-gp41 antibodies and NAbs of significant breadth against primary HIV-1 isolates, which did not target the V1 loop. The difference in V1 loop immunogenicity between soluble gp140 and virion-associated gp160 Env proteins derived from SF162 may be the basis for the observed difference in the breadth of neutralization in sera from the immunized and infected animals studied here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号