首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Core protein is the major component of the core particle (nucleocapsid) of human hepatitis B virus. Core particles and core proteins are involved in a number of important functions in the replication cycle of the virus, including RNA packaging, DNA synthesis, and recognition of viral envelope proteins. Core protein is a phosphoprotein with most, if not all, of the phosphorylation on C-terminal serine residues. In this study, we identified a serine kinase activity from the ribosome-associated protein fraction of cytoplasm that could specifically bind and phosphorylate the C-terminal portion of recombinant core protein. This kinase is referred to as core-associated kinase (CAK). CAK could be inhibited by the kinase inhibitors heparin and manganese ions but not by spermidine, DRB, H89, or H7, indicating that CAK is distinct from protein kinase A and protein kinase C. CAK could be partially purified by heparin-Sepharose CL-6B and phosphocellulose P11 columns. By using a far-Western assay, three specific proteins, of 46, 35, and 13 kDa, were shown to interact with the C-terminal part of the core protein. These three proteins were present only in the eluted fractions that contains the CAK activity. An in-gel kinase assay showed that a 46-kDa kinase in the same fraction could bind and phosphorylate the C-terminal part of the recombinant core protein. These results indicate that this 46-kDa kinase is most probably CAK. A similar 46-kDa kinase, which exhibits the same profile of sensitivity to kinase inhibitors as that of CAK, is present in both purified intracellular core particles and extracellular 42-nm virions, suggesting that CAK is a candidate for the core particle-associated kinase.  相似文献   

2.
3.
Molecular Biology - Hepatitis B virus (HBV) can cause chronic hepatitis B, one of the most prevalent infectious diseases in the world. Global estimates suggest that over 2 billion people are...  相似文献   

4.
5.
HBXIP基因对乙肝病毒X蛋白诱导细胞凋亡的影响   总被引:4,自引:2,他引:4  
探讨乙型肝炎病毒X蛋白结合蛋白(hepatitisBXinteractingprotein ,HBXIP)基因在乙型肝炎病毒X蛋白(HBX)诱导肝癌细胞凋亡时对细胞周期的影响.构建HBXIP基因真核表达载体pcDNA3 hbxip ,进行瞬时基因转染,将克隆有HBx基因的pCMV X (分别为1μg、2 μg和3μg)和pcDNA3 hbxip质粒分别和共转染至人H74 0 2肝癌细胞中(总体积分别为5 0 μl) .发现瞬时转染3μgpCMV X质粒后,肝癌细胞凋亡发生率为34 4 % ,肝癌细胞的细胞周期相关蛋白p2 7表达水平发生明显上调;与对照组相比,瞬时转染1μg、2 μg和3μg时,细胞周期蛋白D和细胞周期蛋白E的表达水平均发生明显上调,但随着HBX水平的增加细胞周期蛋白D和细胞周期蛋白E的表达水平发生明显下降;在稳定转染pCMV X质粒的H74 0 2 X肝癌细胞中无明显的细胞凋亡发生,研究发现p2 7的表达水平发生了明显下调,而细胞周期蛋白D和细胞周期蛋白E的表达水平发生了明显上调;当pcDNA3 hbxip质粒与pCMV X质粒进行共瞬时转染时,细胞凋亡发生率由pcDNA3质粒与pCMV X质粒共转染时的2 9 2 %下降为13 3% ,p2 7的表达水平发生了下调,但细胞周期蛋白D和细胞周期蛋白E的表达水平无明显变化.研究结果表明,瞬时转染一定剂量的x基因可导致肝癌细胞发生凋亡,细胞周期相关蛋白p2 7、细胞周期蛋白D和  相似文献   

6.
乙型肝炎病毒X蛋白(HBx):一种多功能的病毒调节因子   总被引:3,自引:0,他引:3  
乙型肝炎病毒(HBV)的慢性感染是导致肝细胞癌(HCC)的主要危险因子。X蛋白(HBx)被认为在肝细胞癌的发生发展中起重要作用。X基因是HBV基因组最小的开放读码框,它编码的X蛋白含154个氨基酸,分子量约为16.5kD。HBx是一种多功能的病毒调节因子,通过调节细胞和病毒的转录活性、信号传导途径、基因毒性压力反应、蛋白质降解等,直接或间接地影响HBV的复制和增殖。HBx亦可影响细胞周期调控、细胞凋亡,从而可能在慢性活动性肝炎和肝硬化的病程中起到起始肿瘤形成的作用。  相似文献   

7.
乙型肝炎病毒X蛋白(hepatitis B virus X protein,HBx)对肝癌的发生发展具有十分重要的作用. HBx 具有促进肝癌迁移的作用,但其作用的分子机制不清. 本研究对 HBx 促进肝癌细胞迁移的分子机制进行了探讨. 伤口愈合和 Boyden’s chamber结果表明,HBx 可明显促进肝癌 HepG2 细胞迁移. 在稳定转染 HBx 的 HepG2(HepG2-X)细胞中转染 HBx 结合蛋白(hepatitis B X-interacting protein,HBXIP)的 RNA 干扰片段,可明显抑制 HBx 的促迁移作用. 免疫组化和实时定量 PCR 结果表明,HBXIP 在肝癌组织中显著高表达,并且与 HBx 表达成正相关. 荧光素酶报告基因和免疫印迹结果表明,HBx 显著增强 HBXIP 的启动子活性和蛋白质表达水平. 应用 HBx 的 RNA 干扰处理 HepG2-X 细胞,HBXIP 的启动子活性和蛋白质表达水平明显下降.将 HBXIP 启动子区的cAMP效应元件结合因子(CREB)结合位点突变后,HBx 上调 HBXIP 的作用消失. 应用 CREB 的 RNA 干扰处理肝癌细胞,在启动子水平和蛋白质水平上, HBx 对 HBXIP 的上调作用被显著抑制. 染色质免疫共沉淀结果表明,HBx 能够通过 CREB 结合到 HBXIP 的启动子上,进而发挥激活 HBXIP 的功能. 本研究结果表明,HBx 促进肝癌细胞迁移的作用是通过 CREB 上调 HBXIP 实现的. 这一发现对进一步揭示 HBx 促进肝癌细胞迁移的分子机制具有重要意义.  相似文献   

8.
The PKR protein kinase is a critical component of the cellular antiviral and antiproliferative responses induced by interferons. Recent evidence indicates that the nonstructural 5A (NS5A) protein of hepatitis C virus (HCV) can repress PKR function in vivo, possibly allowing HCV to escape the antiviral effects of interferon. NS5A presents a unique tool by which to study the molecular mechanisms of PKR regulation in that mutations within a region of NS5A, termed the interferon sensitivity-determining region (ISDR), are associated with sensitivity of HCV to the antiviral effects of interferon. In this study, we investigated the mechanisms of NS5A-mediated PKR regulation and the effect of ISDR mutations on this regulatory process. We observed that the NS5A ISDR, though necessary, was not sufficient for PKR interactions; we found that an additional 26 amino acids (aa) carboxyl to the ISDR were required for NS5A-PKR complex formation. Conversely, we localized NS5A binding to within PKR aa 244 to 296, recently recognized as a PKR dimerization domain. Consistent with this observation, we found that NS5A from interferon-resistant HCV genotype 1b disrupted kinase dimerization in vivo. NS5A-mediated disruption of PKR dimerization resulted in repression of PKR function and inhibition of PKR-mediated eIF-2α phosphorylation. Introduction of multiple ISDR mutations abrogated the ability of NS5A to bind to PKR in mammalian cells and to inhibit PKR in a yeast functional assay. These results indicate that mutations within the PKR-binding region of NS5A, including those within the ISDR, can disrupt the NS5A-PKR interaction, possibly rendering HCV sensitive to the antiviral effects of interferon. We propose a model of PKR regulation by NS5A which may have implications for therapeutic strategies against HCV.  相似文献   

9.
丙型肝炎病毒非结构蛋白NS4B诱导细胞非折叠蛋白反应   总被引:1,自引:0,他引:1  
用RT-PCR和免疫印迹的方法检测稳定表达NS4B的HeLa细胞中的XBP1;通过RT-PCR的方法在表达NS4B的HeLa和Huh-7细胞中检测ATF6,Grp78和caspase-12的转录,并且通过报告基因的方法分析XBP1和Grp78启动子活性。实验结果表明:在表达NS4B的HeLa细胞中检测到XBP1的两种形式(剪接和未剪接),此外,在细胞中ATF6、Grp78的转录水平和XBP1、Grp78启动子的荧光素酶活性较没有表达NS4B的HeLa和Huh-7细胞中的量有所增加;通过染色质免疫沉淀实验(ChIP)分析,这些增加可能是由于XBP1结合到了这些基因的启动子上引起的。总之,实验结果可提示HCVNS4B通过ATF6或XBP1途径引起内质网压力,导致UPR反应。NS4B可能在HCV的致病性中起着重要的作用,特别是在慢性肝炎,甚至肝细胞癌中。  相似文献   

10.
丙型肝炎病毒非结构蛋白NS4B诱导细胞非折叠蛋白反应   总被引:4,自引:1,他引:4  
用RT-PCR和免疫印迹的方法检测稳定表达NS4B的HeLa细胞中的XBP1;通过RT-PCR的方法在表达NS4B的HeLa和Huh-7细胞中检测ATF6,Grp78和caspase-12的转录,并且通过报告基因的方法分析XBP1和Grp78启动子活性.实验结果表明在表达NS4B的HeLa细胞中检测到XBP1的两种形式(剪接和未剪接),此外,在细胞中ATF6、Grp78的转录水平和XBP1、Grp78启动子的荧光素酶活性较没有表达NS4B的HeLa和Huh-7细胞中的量有所增加;通过染色质免疫沉淀实验(ChIP)分析,这些增加可能是由于XBP1结合到了这些基因的启动子上引起的.总之,实验结果可提示HCV NS4B通过ATF6或XBP1途径引起内质网压力,导致UPR反应.NS4B可能在HCV的致病性中起着重要的作用,特别是在慢性肝炎,甚至肝细胞癌中.  相似文献   

11.
端粒(telomere)是真核细胞染色体末端的重复序列,对维持染色体的稳定性具有重要作用 .端粒酶(telomerase)是维持端粒长度必需的一种逆转录酶,在细胞增殖、衰老、永生化 和癌变等方面具有重要的作用.在肿瘤细胞中端粒酶发生明显变化,有较高水平的表达和很 强的活性,成为肿瘤细胞的重要特征之一.乙型肝炎病毒(hepatitis B virus)X蛋白(HBx )与肝癌的发生密切相关,HBx可以通过多种途径发挥致癌作用,其中一个重要的分子机制 ,即激活人端粒酶反转录酶hTERT(为端粒酶的催化亚单位)使细胞发生永生化而癌变.因此 ,详细阐明HBx与hTERT的关系对于揭示乙肝病毒致癌机制具有重要的意义.本文对HBV的分子 结构和HBx的分子生物学特性进行了详细的阐述,对HBx与hTERT及其调控因子的关系进行了 归纳和总结,有助于进一步阐明HBx的致癌机制.  相似文献   

12.
13.
14.
15.
16.
Persistent infection with hepatitis C virus (HCV) is a major cause of chronic liver diseases. The aim of this study was to identify host cell factor(s) participating in the HCV replication complex (RC) and to clarify the regulatory mechanisms of viral genome replication dependent on the host-derived factor(s) identified. By comparative proteome analysis of RC-rich membrane fractions and subsequent gene silencing mediated by RNA interference, we identified several candidates for RC components involved in HCV replication. We found that one of these candidates, creatine kinase B (CKB), a key ATP-generating enzyme that regulates ATP in subcellular compartments of nonmuscle cells, is important for efficient replication of the HCV genome and propagation of infectious virus. CKB interacts with HCV NS4A protein and forms a complex with NS3-4A, which possesses multiple enzyme activities. CKB upregulates both NS3-4A-mediated unwinding of RNA and DNA in vitro and replicase activity in permeabilized HCV replicating cells. Our results support a model in which recruitment of CKB to the HCV RC compartment, which has high and fluctuating energy demands, through its interaction with NS4A is important for efficient replication of the viral genome. The CKB-NS4A association is a potential target for the development of a new type of antiviral therapeutic strategy.Hepatitis C virus (HCV) infection represents a significant global healthcare burden, and current estimates suggest that a minimum of 3% of the world''s population is chronically infected (4, 19). The virus is responsible for many cases of severe chronic liver diseases, including cirrhosis and hepatocellular carcinoma (4, 16, 19). HCV is a positive-stranded RNA virus belonging to the family Flaviviridae. Its ∼9.6-kb genome is translated into a single polypeptide of about 3,000 amino acids (aa), in which the nonstructural (NS) proteins NS2, NS3, NS4A, NS4B, NS5A, and NS5B reside in the C-terminal half region (6, 34, 44). NS4A, a small 7-kDa protein, functions as a cofactor for NS3 to enhance NS3 enzyme activities such as serine protease and helicase activities. The hydrophobic N-terminal region of NS4A, which is predicted to form a transmembrane α-helix, is responsible for membrane anchorage of the NS3-4A complex (8, 44, 50), and the central region of NS4A is important for the interaction with NS3 (10, 44). A recent study demonstrated the involvement of the C terminus of NS4A in the regulation of NS5A hyperphosphorylation and viral replication (28).The development of HCV replicon technology several years ago accelerated research on viral RNA replication (7, 44). Furthermore, a robust cell culture system for propagation of infectious HCV particles was developed using a viral genome of HCV genotype 2a, JFH-1 strain, enabling us to study every process in the viral life cycle (27, 47, 54). RNA derived from genotype 1a, HCV H77, containing cell-culture adaptive mutations, also produces infectious viruses (52). Using these systems, it has been reported that the HCV genome replicates in a distinct, subcellular replication complex (RC) compartment, which includes NS3-5B and the viral RNA (2, 14, 33). The RC forms in a distinct compartment with high concentrations of viral and cellular components located on detergent-resistant membrane (DRM) structures, possibly a lipid-raft structure (2, 41), which may protect the RC from external proteases and nucleases. Almost all processes in viral replication are dependent on the host cell''s machinery and involve intimate interaction between viral and host proteins. However, the functional roles of host factors interacting with the HCV RC in viral genome replication remain ambiguous.To gain a better understanding of cellular factors that are components of the HCV RC and that function as regulators of viral replication, a comparative proteomic analysis of DRM fractions from HCV replicon and parental cells and subsequent RNA interference (RNAi) silencing of selected genes were performed. We identified creatine kinase B (CKB) as a key factor for the HCV genome replication. CKB catalyzes the reversible transfer of the phosphate group of phosphocreatine (pCr) to ADP to yield ATP and creatine and is known to play important roles in local delivery and cellular compartmentalization of ATP (48, 51). The findings obtained here suggest that recruitment of CKB to the HCV RC, through CKB interaction with NS4A, is essential for maintenance or enhancement of viral replicase activity.  相似文献   

17.
18.
HBV X蛋白 (HBx)是由乙型肝炎病毒(HBV)基因组编码的调控蛋白,与由乙肝引起的肝癌发生具有密切的关系。血清HBx对乙型肝炎、肝癌的诊断及发病机理研究有较高的临床应用价值。在表达并纯化HBx、制备出HBx单克隆抗体与酶标抗体的基础上,研制了HBx定量检测试剂盒(增强化学发光法),对其灵敏度、特异性等指标进行分析,并将该试剂盒应用于临床研究。结果表明,原核表达并纯化的HBx纯度≥94%;试剂盒灵敏度达0.1ng/ml;线性范围达到0.5ng/ml -600ng/ml;特异性高,与球蛋白、脂蛋白、血红蛋白、酸性糖蛋白、HBc、HBe、HBs、HBV preS2不发生交叉反应;批间CV≤6.5%;临床标本检验慢性乙型肝炎阳性率为55%、肝硬化阳性率为68%、肝癌阳性率70%,表明此试剂盒可应用于乙肝、肝硬化、肝癌的临床诊断及发病机理研究。  相似文献   

19.
Protein Kinase Activity in Equine Herpesvirus   总被引:1,自引:24,他引:1  
A protein kinase which is intimately associated with equine herpesvirus (equine abortion virus) was found by using adenosine triphosphate-gamma-(32)P as a phosphate donor and virus protein as an acceptor. Consistent demonstration of the activity requires prior removal of phosphohydrolase. The kinase activity requires Mg(2+), is not stimulated by cyclic adenosine monophosphate, but is enhanced by added protamine or arginine-rich histone. The labeled product is resistant to ribonuclease, deoxyribonuclease, and chloroform-methanol but is sensitive to Pronase. Other tests suggest that serine and threonine residues are the acceptor sites. In the in vitro reaction, the incorporation represents an average of approximately 4,500 phosphate residues per virion, and all 17 virus protein bands resolved by polyacrylamide gel electrophoresis appear to be labeled.  相似文献   

20.
Hepatitis B Virus X Protein Interferes with Cellular DNA Repair   总被引:25,自引:2,他引:25       下载免费PDF全文
The hepatitis B virus X protein (HBx) is a broadly acting transactivator implicated in the development of liver cancer. Recently, HBx has been reported to interact with several different cellular proteins, including our report of its binding to XAP-1, the human homolog of the simian repair protein UVDDB. In the present study, several HBx mutants were used to localize the minimal domain of HBx required for binding to XAP-1/UVDDB to amino acids 55 to 101. The normal function of XAP-1/UVDDB is thought to involve binding to damaged DNA, the first step in nucleotide excision repair (NER); therefore, we hypothesized that this interaction may affect the cell’s capacity to correct lesions in the genome. When tested in two independent assays that measure NER (unscheduled DNA synthesis and host cell reactivation), the expression of HBx significantly inhibited the ability of cells to repair damaged DNA. Under the assay conditions, HBx was expressed at a level similar to that previously observed during natural viral infection and was able to transactivate several target reporter genes. These results are consistent with a model in which HBx acts as a cofactor in hepatocarcinogenesis by preventing the cell from efficiently repairing damaged DNA, thus leading to an accumulation of DNA mutations and, eventually, cancer. An adverse effect on cellular DNA repair processes suggests a new mechanism by which a tumor-associated virus might contribute to carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号