首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mannose 6-phosphate receptor proteins mediate transport of lysosomal enzymes to lysosomes in eukaryotes. Two receptors designated as MPR 300 and MPR 46 based on their apparent molecular mass have been well studied from human and bovine liver. In humans, it has been shown that the receptors are present in different concentrations in different tissues. In the present study, MPR 300 and MPR 46 were purified from goat liver by phosphomannan affinity chromatography, and polyclonal antibodies were raised in rabbits. MPR 300 receptor specific antibodies have been purified from the antiserum using a goat-MPR 300-receptor gel. Using this affinity-purified antibody and the antiserum to goat MPR 46, as well as an affinity-purified MSC1 antibody that is specific for MPR 46, we developed an ELISA method to quantify both the receptors. The receptors could be measured in the concentration range of 1-10 ng using ELISA. The receptors could be quantified from membrane extracts of different tissues of goat and chicken using this method.  相似文献   

2.
The GGAs (Golgi-localized, gamma ear-containing, ADP ribosylation factor-binding proteins) are multidomain proteins implicated in protein trafficking between the Golgi and endosomes. We examined whether the three mammalian GGAs act independently or together to mediate their functions. Using cryo-immunogold electron microscopy, the three GGAs were shown to colocalize within coated buds and vesicles at the trans-Golgi network (TGN) of HeLa cells. In vitro binding experiments revealed multidomain interactions between the GGAs, and chemical cross-linking experiments demonstrated that GGAs 1 and 2 form a complex on Golgi membranes. RNA interference of each GGA resulted in decreased levels of the other GGAs and their redistribution from the TGN to cytosol. This was associated with impaired incorporation of the cation-independent mannose 6-phosphate receptor into clathrin-coated vesicles at the TGN, partial redistribution of the receptor to endosomes, and missorting of cathepsin D. The morphology of the TGN was also altered. These findings indicate that the three mammalian GGAs cooperate to sort cargo and are required for maintenance of TGN structure.  相似文献   

3.
Two mannose 6-phosphate receptors, cation-dependent and -independent receptors (CDMPR and CIMPR), play an important role in the intracellular transport of lysosomal enzymes. To investigate functional differences between the two in vivo, their distribution was examined in the rat liver using immunohistochemical techniques. Positive signals corresponding to CIMPR were detected intensely in hepatocytes and weakly in sinusoidal Kupffer cells and interstitial cells in Glisson's capsule. In the liver acinus, hepatocytes in the perivenous region showed a more intense immunoreactivity than those in the periportal region. On the other hand, positive staining of CDMPR was detected at a high level in Kupffer cells, epithelial cells of interlobular bile ducts, and fibroblast-like cells, but the corresponding signal was rather weak in hepatocytes. In situ hybridization analysis also revealed a high level of expression of CIMPR mRNAs in hepatocytes and of CDMPR mRNA in Kupffer cells. By double immunostaining, OX6-positive antigen-presenting cells in Glisson's capsule were co-labeled with the CDMPR signal but were only faintly stained with anti-CIMPR. These different distribution patterns of the two MPRs suggest distinct functional properties of each receptor in liver tissue.  相似文献   

4.
The cation-independent mannose 6-phosphate receptor (MPRCI) functions in the packaging of both newly made and extracellular lysosomal enzymes into lysosomes. The subcellular location of MPRCI reflects these two functions; receptor is found in the Golgi complex, in endosomes, and on the cell surface. To learn about the intracellular pathway followed by surface receptor and to study the relationship between the receptor pools, we examined the entry of the surface MPRCI into Golgi compartments that contain sialyltransferase. Sialic acid was removed from surface-labeled K562 cultured human erythroleukemia cells by neuraminidase treatment. When the cells were returned to culture at 37 degrees C, surface MPRCI was resialylated by the cells with a half-time of 1-2 h. Resialylation was inhibited by reduced temperature, a treatment that allows surface molecules to reach endosomes but blocks further transport. These results indicate that surface MPRCI is transported to the sialyltransferase compartment in the Golgi complex. After culture at 37 degrees C, a small fraction (10-20%) of the resialylated receptor was found on the cell surface. Because a similar fraction of the total receptor pool is found on the cell surface, it is likely that cell surface MPRCI mixes with the cellular pool after resialylation. These data also support the idea that extracellular and newly made lysosomal enzymes are transported to lysosomes through a common compartment.  相似文献   

5.
Proliferin secreted by cultured cells binds to mannose 6-phosphate receptors   总被引:19,自引:0,他引:19  
Proliferin is a prolactin-related glycoprotein secreted by proliferating mouse cell lines and by mouse placenta. In an attempt to identify target sites for proliferin action, we looked for proliferin receptors in murine fetal and maternal tissues during pregnancy using proliferin purified from the conditioned medium of a constructed Chinese hamster ovary cell line carrying amplified copies of proliferin cDNA. Purified proliferin bound to membrane preparations from fetal or maternal liver and from placenta with a Kd of 1 to 2 nM. The amount of proliferin bound per microgram of membrane protein varied markedly during pregnancy; maximal binding to day 16 fetal liver membranes was approximately 25 times that to liver membranes from adult animals. Binding to fetal and maternal receptors was specifically and completely inhibited by mannose 6-phosphate, with half-maximal inhibition at 10 microM. Furthermore, non-glycosylated proliferin did not inhibit the binding of the glycosylated protein. A approximately 300 Kd proliferin receptor was purified from the liver of pregnant mice using a proliferin affinity column and elution with mannose 6-phosphate. This receptor reacted with antibodies directed against the rat cation-independent mannose 6-phosphate receptor. We conclude that 1) proliferin secreted by cultured cell binds to cation-independent mannose 6-phosphate receptors and therefore may be a lysosomal protein or targeted to lysosomes, and 2) the concentration or activity of mannose 6-phosphate receptors in murine fetal and maternal liver and in placenta is regulated during pregnancy.  相似文献   

6.
Dahms NM  Olson LJ  Kim JJ 《Glycobiology》2008,18(9):664-678
The two members of the P-type lectin family, the 46 kDa cation-dependent mannose 6-phosphate receptor (CD-MPR) and the 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR), are ubiquitously expressed throughout the animal kingdom and are distinguished from all other lectins by their ability to recognize phosphorylated mannose residues. The best-characterized function of the MPRs is their ability to direct the delivery of approximately 60 different newly synthesized soluble lysosomal enzymes bearing mannose 6-phosphate (Man-6-P) on their N-linked oligosaccharides to the lysosome. In addition to its intracellular role in lysosome biogenesis, the CI-MPR, but not the CD-MPR, participates in a number of other biological processes by interacting with various molecules at the cell surface. The list of extracellular ligands recognized by this multifunctional receptor has grown to include a diverse spectrum of Man-6-P-containing proteins as well as several non-Man-6-P-containing ligands. Recent structural studies have given us a clearer view of how these two receptors use related, but yet distinct, approaches in the recognition of phosphomannosyl residues.  相似文献   

7.
Following in vivo administration of cycloheximide (20 mg/kg body weight i.p.) protein synthesis was completely inhibited (99%) in rat liver. No newly synthesized asialoglycoprotein receptor (ASGP-R) could be detected by metabolic labeling. Fluorescence immunocytochemistry of several secretory proteins and plasma membrane proteins, including the receptors for polymeric IgA (IgA-R), demonstrated a rapid loss from the Golgi complex following cycloheximide administration. On the other hand, two membrane proteins, the receptors for ASGP-R and mannose 6-phosphate (MP-R), were not altered in their cellular localization including the Golgi. Using quantitative immunoelectron microscopy with colloidal gold, we found that 2 h and 4 h after cycloheximide administration, the densities of ASGP-R and MP-R in the membranes of the Golgi complex were unaltered compared with control liver. Similarly, there was no significant effect of cycloheximide on the receptor labeling in coated vesicles and compartment of uncoupling receptors and ligands (CURL). These observations are consistent with an involvement of the Golgi and CURL pools of the receptors in intracellular trafficking, endocytosis and receptor recycling.  相似文献   

8.
Mannose 6-phosphate is an important recognition site involved in transport of newly synthesized lysosomal enzymes from the endoplasmic reticulum to lysosomes. The current study is the first demonstration of functional mannose phosphate receptors in macrophages. The receptor appears to be similar in many respects to that expressed in fibroblasts. Binding at 4 degrees C of a mannose-6-P-containing ligand, alpha-mannosidase from Dictyostelium discoideum, was specific and saturable (KD = 1.6 nM). In the presence of permeabilizing agents (saponin and digitonin), macrophage mannose-6-P receptors gave a distribution of 15-20% on the surface and 80-85% inside. Uptake studies gave a Kuptake value of 4.9 nM. Mannose-6-P, Hansenula holstii phosphomannan, and fructose 1-phosphate were effective inhibitors of alpha-mannosidase uptake. Inhibitors of mannose uptake, such as beta-glucuronidase, mannose-bovine serum albumin, fucose-bovine serum albumin, or mannan had no effect on alpha-mannosidase uptake. Likewise, an inhibitor (fucoidin) of the macrophage receptor which recognizes negatively charged proteins did not inhibit alpha-mannosidase uptake. Uptake was linear over 90 min and inhibited by chloroquine, suggesting that surface receptors recycle. These data demonstrate that macrophages contain receptors which specifically recognize mannose-6-P units and are distinct from the well characterized mannose receptors. The finding that the mannose-6-P receptors play a role at the surface, together with the fact that most of the receptors are intracellular (similar to the mannose receptor) suggests that both carbohydrate receptors play a regulatory role at the surface and intracellularly in transport of lysosomal enzymes.  相似文献   

9.
Y Goda  S R Pfeffer 《Cell》1988,55(2):309-320
Mannose 6-phosphate receptors carry soluble lysosomal enzymes from the trans Golgi network (TGN) to prelysosomes, and then return to the TGN for another round of lysosomal enzyme sorting. We describe here a complementation scheme that detects the vesicular transport of the 300 kd mannose 6-phosphate/IGF-II receptor from prelysosomes to the TGN in cell extracts. In vitro transport displays the same selectivity observed in living cells in that the transferrin receptor traverses to the TGN at a much lower rate than mannose 6-phosphate receptors. Furthermore, recycling of mannose 6-phosphate/IGF-II receptors to the TGN requires GTP hydrolysis and can be distinguished biochemically from the constitutive transport of proteins between Golgi cisternae by its resistance to the weak base, primaquine.  相似文献   

10.
11.
Using a semiquantitative immunogold technique on ultrathin cryosections, the in situ subcellular distributions of the cation-dependent, 46-kDa mannose 6-phosphate receptor (small MPR) and of the cation-independent, 270-kDa mannose 6-phosphate receptor (large MPR) were for the first time compared. U937 cells were chosen because of their relatively high content of both receptor species. Of each receptor, about 12% occurred at the cell surface, 2% in the Golgi stack, and about 25% in vacuoles resembling endosomal vacuoles. About half of both receptors was found in tubules, presumably belonging to endosomes and trans-Golgi reticulum. It was concluded that the distribution of the small and large MPR were roughly similar. The only exception was formed by electron-dense vesicles occurring in the trans-Golgi region and surrounding endosomes. Dense vesicles contained significantly less small MPR (7%) than large MPR (12%).  相似文献   

12.
We have isolated cDNA clones encoding the entire sequence of the bovine 46 kd cation-dependent mannose 6-phosphate (CD Man-6-P) receptor. Translation of CD Man-6-P receptor mRNA in Xenopus laevis oocytes results in a protein that binds specifically to phosphomannan-Sepharose, thus demonstrating that our cDNA clones encode a functional receptor. The deduced 279 amino acid sequence reveals a single polypeptide chain that contains a putative signal sequence and a transmembrane domain. Trypsin digestion of microsomal membranes containing the receptor and the location of the five potential N-linked glycosylation sites indicate that the receptor is a transmembrane protein with an extracytoplasmic amino terminus. This extracytoplasmic domain is homologous to the approximately 145 amino acid long repeating domains present in the 215 kd cation-independent Man-6-P receptor.  相似文献   

13.
Mannose 6-phosphate receptor deficient mice were generated by crossing mice carrying null alleles for Igf2 and the 300 kDa and 46 kDa mannose 6-phosphate receptors, Mpr300 and Mpr46. Pre- and perinatal lethality of mice nullizygous for Igf2, Mpr300 and Mpr46 was increased. Triple deficient mice surviving the first postnatal day had normal viability and developed a phenotype resembling human I-cell disease. The triple deficient mice were characterized by dwarfism, facial dysplasia, waddling gait, dysostosis multiplex, elevated lysosomal enzymes in serum and histological signs of lysosomal storage predominantly in fibroblasts, but also in parenchymal cells of brain and liver. A paternally inherited Mpr300 wild type allele that is normally inactive in mice due to imprinting was reactivated in some tissues of mice lacking IGF II and MPR 46 and carrying a maternal Mpr300 null allele. Inspite of the partial reactivation the phenotype of these mice was similar to that of triple deficient mice.  相似文献   

14.
The recent demonstration that a single mammalian receptor protein binds both mannose 6-phosphate (Man-6-P) and insulin-like growth factor II (IGF-II) with high affinity has suggested a multifunctional physiological role for this receptor, possibly including signal transduction. In order to better understand the functions of this receptor, we have investigated the properties of Man-6-P receptors from non-mammalian species. Receptors were affinity-purified from Triton X-100 extracts of total membranes from Xenopus and chicken liver as well as rat placenta using pentamannosyl 6-phosphate-Sepharose. The Man-6-P receptor was adsorbed to the pentamannosyl 6-phosphate-Sepharose and specifically eluted by Man-6-P in all three species, as evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by silver staining. When the purified receptors from these three species were cross-linked to 125I-IGF-II with disuccinimidyl suberate, only receptors isolated from rat membranes were affinity-labeled. To further evaluate the properties of these Man-6-P receptors, binding of 125I-rat-IGF-II and 125I-chicken Tyr-Gly-Thr-Ala-IGF-II to purified receptors from Xenopus, chicken, and rat was evaluated by polyethylene glycol precipitation. Only the rat Man-6-P receptor exhibited detectable binding of 125I-IGF-II. These data suggest that the emergence of a high affinity IGF-II binding site on the Man-6-P receptor occurred in evolution after the divergence of mammals from other vertebrates. Thus, the biological actions of IGF-II in chickens and frogs appear to be initiated by the type I IGF receptor.  相似文献   

15.
The interaction of the bovine cation-independent mannose 6-phosphate receptor with a variety of phosphorylated ligands has been studied using equilibrium dialysis and immobilized receptor to measure ligand binding. The dissociation constants for mannose 6-phosphate, pentamannose phosphate, bovine testes beta-galactosidase, and a high mannose oligosaccharide with two phosphomonoesters were 7 X 10(-6) M, 6 X 10(-6) M, 2 X 10(-8) M, and 2 X 10(-9) M, and the mol of ligand bound/mol of receptor monomer were 2.17, 1.85, 0.9, and 1.0, respectively. We conclude that the cation-independent mannose 6-phosphate receptor has two mannose 6-phosphate-binding sites/polypeptide chain.  相似文献   

16.
Cytotoxic T lymphocytes (CTL) and natural killer cells secrete granzymes to kill infected or transformed cells. The mannose 6-phosphate receptor (Mpr) 300 on target cells has been reported to function as receptor for secreted granzyme B. Using lymphoblasts and mouse embryonal fibroblast lines from Mpr300 and Mpr46 knockout mice, we show here that both receptors are not essential for CTL-induced apoptosis. Similarly, cells exposed to either monomeric granzyme B or granzyme B-serglycin complexes readily internalize the granzyme and undergo apoptosis in the absence of Mpr300 and Mpr46. Further, no colocalization of granzyme B and Mpr300 could be observed in target cells after internalization. In conclusion, these results strongly argue against an Mpr300- or Mpr46-dependent pathway of granzyme-mediated killing and provide new insight in the internalization of monomeric and complexed granzyme B.  相似文献   

17.
The two mannose 6-phosphate (Man-6-P) binding domains of the insulin-like growth factor II/mannose 6-phosphate receptor (Man-6-P/IGF2R), located in extracytoplasmic repeats 1-3 and 7-9, are capable of binding Man-6-P with low affinity and glycoproteins that contain more than one Man-6-P residue with high affinity. High affinity multivalent ligand binding sites could be formed through two possible mechanisms: the interaction of two Man-6-P binding domains within one Man-6-P/IGF2R molecule or by receptor oligomerization. To discriminate between these mechanisms, truncated FLAG epitope-tagged Man-6-P/IGF2R constructs, containing one or both of the Man-6-P binding domains, were expressed in 293T cells, and characterized for binding of pentamannose phosphate-bovine serum albumin (PMP-BSA), a pseudoglycoprotein bearing multiple Man-6-P residues. A construct containing all 15 repeats of the Man-6-P/IGF2R extracytoplasmic domain bound PMP-BSA with the same affinity as the full-length receptor (K(d) = 0.54 nm) with a curvilinear Scatchard plot. The presence of excess unlabeled PMP-BSA increased the dissociation rate of pre-formed (125)I-PMP-BSA/receptor complexes, suggesting negative cooperativity in multivalent ligand binding and affirming the role of multiple Man-6-P/IGF2R binding domains in forming high affinity binding sites. Truncated receptors containing only one Man-6-P binding domain and mutant receptor constructs, containing an Arg(1325) --> Ala mutation that eliminates binding to the repeats 7-9 binding domain, formed high affinity PMP-BSA binding, but with reduced stoichiometries. Collectively, these observations suggest that alignment of Man-6-P binding domains of separate Man-6-P/IGF2R molecules is responsible for the formation of high affinity Man-6-P binding sites and provide functional evidence for Man-6-P/IGF2R oligomerization.  相似文献   

18.
Whyte JR  Munro S 《Current biology : CB》2001,11(13):1074-1078
The soluble hydrolases of the mammalian lysosome are marked for delivery to this organelle by the addition of mannose 6-phosphate to their N-glycans. Two related mannose 6-phosphate receptors (MPRs) recognize this feature in the trans Golgi network (TGN) and deliver the hydrolases to the late endosome. In contrast, the vacuolar hydrolases of the yeast Saccharomyces cerevisiae do not contain 6-phosphate monoesters on their N-glycans, and the only sorting receptor so far identified in this organism is the product of the VPS10 gene. This protein also cycles between the Golgi and the late endosome, but is unrelated to the vertebrate MPRs, and recognizes a specific amino acid sequence of carboxypeptidase Y (CPY). This has led to the notion that although yeast and mammals share many components in Golgi to endosome traffic, they use unrelated receptor systems to sort their abundant soluble hydrolases. In this paper, we report that the yeast genome does in fact contain an uncharacterized ORF (YPR079w) that encodes a membrane protein that is distantly related to mammalian MPRs. The protein encoded by this gene (which we term MRL1) cycles through the late endosome. Moreover, there is a strong synergistic effect on the maturation of proteinases A and B when both MRL1 and VPS10 are deleted, which suggests that Mrl1p may serve as a sorting receptor in the delivery of vacuolar hydrolases.  相似文献   

19.
The interactions of the bovine cation-dependent mannose 6-phosphate receptor with monovalent and divalent ligands have been studied by equilibrium dialysis. This receptor appears to be a homodimer or a tetramer. Each mole of receptor monomer bound 1.2 mol of the monovalent ligands, mannose 6-phosphate and pentamannose phosphate with Kd values of 8 X 10(-6) M and 6 X 10(-6) M, respectively and 0.5 mol of the divalent ligand, a high mannose oligosaccharide with two phosphomonoesters, with a Kd of 2 X 10(-7) M. When Mn2+ was replaced by EDTA in the dialysis buffer, the Kd for pentamannose phosphate was 2.5 X 10(-5) M. By measuring the affinity of the cation-dependent and cation-independent mannose 6-phosphate receptors for a variety of mannose 6-phosphate analogs, we conclude that the 6-phosphate and the 2-hydroxyl of mannose 6-phosphate each contribute approximately 4-5 kcal/mol of Gibb's free energy to the binding reaction. Neither receptor appears to interact substantially with the anomeric oxygen of mannose 6-phosphate. The receptors differ in that the cation-dependent receptor displays no detectable affinity for N-acetylglucosamine 1'-(alpha-D-methylmannopyranose 6-monophosphate) whereas this ligand binds to the cation-independent receptor with a poor, but readily measurable Kd of about 0.1 mM. The spacing of the mannose 6-phosphate-binding sites relative to each other may also differ for the two receptors.  相似文献   

20.
We have analyzed the surface polarity of both the cation-independent (CI-MPR) and the cation-dependent (CD-MPR) mannose 6-phosphate receptors in the epithelial Madin-Darby canine kidney (MDCK) cell line grown on polycarbonate filters. The surface localization was studied by plasma membrane domain-specific surface labeling methods and by confocal microscopy using MPR-specific antibodies. The CI-MPR was shown to be exclusively present on the basolateral cell surface. In contrast, the CD-MPR was expressed neither apically nor basolaterally. However, an intracellular pool of CD-MPR could be detected. In MDCKII-RCAr cells, cell surface CI-MPR was shown to recycle between the basolateral plasma membrane and the trans-Golgi network. After exogalactosylation, cell surface CI-MPR acquired sialic acid residues in a time-dependent manner. Furthermore, the basolateral CI-MPR was shown to be functional. Lysosomal enzymes, bearing the mannose 6-phosphate recognition marker, were taken up from the basolateral medium and endocytosed into the cells. Uptake of lysosomal enzymes from the apical side was insignificant and not MPR mediated. These results extend previous immunoelectron microscopic studies on the intracellular polarity of the CI-MPR (Parton, R. G., Prydz, K., Bomsel, M., Simons, K., and Griffiths, G. (1989) J. Cell Biol. 109, 3259-3272) which showed that the CI-MPR was present in basolateral early endosomes and in late endosomes but absent from apical early endosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号