首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To cross-link the 3′-terminus of 5 S RNA to its neighbouring proteins, ribosomal 60 S subunits of rat liver were oxidized with sodium periodate and reduced with sodium borohydride. 5 S RNP was then isolated by EDTA treatment followed by sucrose density-gradient centrifugation and subjected to SDS-polyacrylamide gel electrophoresis. The protein with a slower mobility than the L5 protein, which was thought to be cross-linked 5 S RNP, was labeled with 125I, treated with RNAase, and analyzed by two-dimensional polyacrylamide gel electrophoresis, followed by radioautography. A radioactive spot located anodically from L5 protein was observed, suggesting that it is the L5 protein-oligonucleotide complex. When analyzed by SDS slab polyacrylamide gel electrophoresis followed by radioautography, the peptide pattern of the α-chymotrypsin digest of this 125I-labeled protein-oligonucleotide complex was similar to that of the digest of 125I-labeled L5 protein. The results indicate that L5 protein binds to the 3′-terminal region of 5 S RNA in rat liver 60 S subunits.  相似文献   

2.
Proteins from the 30 S ribosomal subunit of Escherichia coli were fractionated by column chromatography and individually incubated with 16 S ribosomal RNA. Stable and specific complexes were formed between proteins S4, S7, S8, S15 and S20, and the 16 S RNA. Protein S13 and one or both proteins of the S16S17 mixture bound more weakly to the RNA, although these interactions too were apparently specific. The binding of S16S17 was found to be markedly stimulated by proteins S4, S8, S15 and S20. Limited digestion of the RNA-protein complexes with T1 or pancreatic ribonucleases yielded a variety of partially overlapping RNA fragments, which retained one or more of the proteins. Since similar fragments were recovered when 16 S RNA alone was digested under the same conditions, their stability could not be accounted for by the presence of bound protein. The integrity of the fragments was, however, strongly influenced by the magnesium ion concentration at which ribonuclease digestion was carried out. Each of the RNA fragments was characterized by fingerprinting and positioned within the sequence of the 1600-nucleotide 16 S RNA molecule. The location of ribosomal protein binding sites was delimited by the pattern of fragments to which a given protein bound. The binding sites for proteins S4, S8, S15, S20 and, possibly, S13 and S16S17 as well, lie within the 5′-terminal half of the 16 S RNA molecule. In particular, the S4 binding site was localized to the first 500 nucleotides of this sequence while that for S15 lies within a 140-nucleotide sequence starting about 600 nucleotides from the 5′-terminus. The binding site for the protein S7 lies between 900 and 1500 nucleotides from the 5′-terminus of the ribosomal RNA.  相似文献   

3.
Specific fragments of the 16 S ribosomal RNA of Escherichia coli have been isolated and tested for their ability to interact with proteins of the 30 S ribosomal subunit. The 12 S RNA, a 900-nucleotide fragment derived from the 5′-terminal portion of the 16 S RNA, was shown to form specific complexes with proteins S4, S8, S15, and S20. The stoichiometry of binding at saturation was determined in each case. Interaction between the 12 S RNA and protein fraction S16S17 was detected in the presence of S4, S8, S15 and S20; only these proteins were able to bind to this fragment, even when all 21 proteins of the 30 S subunit were added to the reaction mixture. Protein S4 also interacted specifically with the 9 S RNA, a fragment of 500 nucleotides that corresponds to the 5′-terminal third of the 16 S RNA, and protein S15 bound independently to the 4 S RNA, a fragment containing 140 nucleotides situated toward the middle of the RNA molecule. None of the proteins interacted with the 600-nucleotide 8 S fragment that arose from the 3′-end of the 16 S RNA.When the 16 S RNA was incubated with an unfractionated mixture of 30 S subunit proteins at 0 °C, 10 to 12 of the proteins interacted with the ribosomal RNA to form the reconstitution intermediate (RI) particle. Limited hydrolysis of this particle with T1 ribonuclease yielded 14 S and 8 S subparticles whose RNA components were indistinguishable from the 12 S and 8 S RNAs isolated from digests of free 16 S RNA. The 14 S subparticle contained proteins S6 and S18 in addition to the RNA-binding proteins S4, S8, S15, S20 and S16S17. The 8 S subparticle contained proteins S7, S9, S13 and S19. These findings serve to localize the sites at which proteins incapable of independent interaction with 16 S RNA are fixed during the early stages of 30 S subunit assembly.  相似文献   

4.
Six 50 S ribosomal subunit proteins, each unable to interact independently with the 23 S RNA, were shown to associate specifically with ribonucleoprotein complexes consisting of intact 23 S RNA, or fragments derived from it, and one or more RNA-binding proteins. In particular, L21 and L22 depend for attachment upon L20 and L24, respectively; L5, L10 and L11 interact individually with complexes containing L2 and L16; and one or both proteins of the L17L27 mixture are stimulated to bind in the presence of L1, L3, L6, L13 and L23. Moreover, L14 alone was found to interact with a fragment from the 3′ end of the 23 S RNA, even though it cannot bind to 23 S RNA. By correlating the data reported here with the findings of others, it has been possible to formulate a partial in vitro assembly map of the Escherichia coli 50 S subunit encompassing both the 5 S and 23 S RNAs as well as 21 of the 34 subunit proteins.  相似文献   

5.
Dimethylsuberimidate was used to crosslink 14C-labeled chain initiation factor 3 to E. coli 30S particles. The crosslinked ribosomal proteins were analyzed by dodecyl sulfate polyacrylamide gel electrophoresis, and one major radioactive aggregate was found corresponding to a molecular weight of 41,000. Ribosomal protein S12 was identified to be crosslinked to IF-3 by immunological cross-reactivity.  相似文献   

6.
When 30 S ribosomal subunits are irradiated with ultraviolet light, we have found that an RNA-protein crosslinking reaction occurs whose primary target is protein S7. This paper describes the identification of the oligopeptide and oligonucleotide at the crosslinking point, by direct analysis (a) of the peptide remaining attached to an oligonucleotide (after total digestion of the RNA in the crosslinked complex with ribonucleases A and T1, followed by digestion with trypsin), and (b) of the nucleotides remaining attached to the crosslinked protein (after digestion of the RNA in the complex with ribonuclease T1 alone).The crosslinking site was found to lie within a single short peptide, Ser-Met-Ala-Leu-Arg (positions 113 to 117 in the S7 sequence), with methionine as the probable amino acid concerned. The principal RNA site was found to lie within an oligonucleotide three to six bases long, the underlined portion of the partially ordered sequence C-U-A-C-A-A-U-G.G.C-G in section P of the 16 S RNA. The methodology involved has been designed with a view to being generally applicable in future RNA-protein crosslinking studies, where several proteins are simultaneously attached to the RNA.  相似文献   

7.
The invitro DNA dependent synthesis of ribosomal protein L12 and the β subunit of RNA polymerase has been investigated using DNA from a plasmid which contains the genetic information for ribosomal protein L12 and the β subunit of RNA polymerase. This DNA, however, lacks the promoter region and the genetic information for the first 26 amino acids of ribosomal protein L10. It was found that L12 and the β subunit of RNA polymerase are efficiently synthesized invitro from this DNA. These results suggest that L12 and the β subunit of RNA polymerase can be synthesized from a promoter situated within the L10 gene.  相似文献   

8.
From the studies on the spermidine stimulation of polyphenylalanine synthesis catalyzed by E. coli 50S and reconstituted 30S particles containing 16S RNA and 30S ribosomal proteins from E. coli and B. thuringiensis in different kinds of combinations, it is concluded that 16S RNA is mainly responsible for the stimulation of polypeptide synthesis by spermidine.  相似文献   

9.
E.coli 70S ribosomes uniformly labeled invivo with 32PO4 were subjected to varying doses of u.v. radiation and then to the combined action of the RNases A and T1. Following these treatments the ribosomal proteins were separated by trichloroacetic acid precipitation from the noncovalently attached RNA degradation fragments. Subsequent two-dimensional gel electrophoresis and autoradiography of these proteins revealed that significant 32PO4 was associated with unique ribosomal proteins, L2 was among these.  相似文献   

10.
To investigate ribosome topography and possible function, 70S ribosomes of Escherichia coli were reacted with the dicarbonyl compound kethoxal. Ribosomal protein was extracted after reaction, and through two dimensional gel electrophoresis, the reactive proteins of the two subunits were identified. From the 30S subunit, the most reacted proteins were S2, S3, S4, S5 and S7 and from the 50S subunit, L1, L5, L16, L17, L18 and L27. The results with kethoxal are compared with other modifiers of ribosomal proteins.  相似文献   

11.
S1 is an acidic protein associated with the 3′ end of 16S RNA; it is indispensable for ribosomal binding of natural mRNA. We find that S1 unfolds single stranded stacked or helical polynucleotides (poly rA, poly rC, poly rU). It prevents the formation of poly (rA + rU) and poly (rI + rC) duplexes at 10–25 mM NaCl but not at 50–100 mM NaCl. Partial, salt reversible denaturation is also seen with coliphage MS2 RNA, E. coli rRNA and tRNA. Generally, only duplex structures with a Tm greater than about 55° are formed in the presence of S1. The protein unfolds single stranded DNA but not poly d(A·T).  相似文献   

12.
A new type of kasugamycin-resistant mutant has been isolated from E. coli K12, strain AB312 (Hfr, lac,thr,leu,thi,strA,fus). In a cell-free protein-synthetic system, the resistance is localized in the ribosome but not in the supernatant fraction. On initiation complex formation, the resistance is associated with the washed ribosome but not with initiation factors. In reconstitution of the 30S ribosomal subunit, the resistance is due to the protein(s) but not to 16S RNA. In two-dimensional electrophoresis, protein S2 is deficient in the 30S ribosomal subunit of kasugamycin-resistant mutant. The results indicate that the kasugamycin-resistance is attributed to alteration of ribosomal protein S2.  相似文献   

13.
The 70 S ribosomes of Escherichia coli were treated with 2-iminothiolane with the resultant addition of 110 sulfhydryl groups per ribosome. The modified ribosomes were oxidized to promote disulfide bond formation, some of which formed intermolecular crosslinks. About 50% of the crosslinked 70 S ribosomes did not dissociate when exposed to low concentrations of magnesium in the absence of reducting agent. Dissociation took place in the presence of reducing agents, which indicated that the subunits had become covalently linked by disulfide linkages. Proteins extracted from purified crosslinked 70 S ribosomes were first fractionated by polyacrylamide/urea gel electrophoresis. The proteins from sequential slices of these gels were analyzed by two-dimensional polyacrylamide/sodium dodecyl sulfate diagonal gel electrophoresis. Monomeric proteins derived from crosslinked dimers appeared below the diagonal containing non-crosslinked proteins, since the second electrophoresis, but not the first, is run under reducing conditions to cleave the crosslinked species. Final identification of the proteins in each dimer was made by radioiodination of the crosslinked proteins, followed by two-dimensional polyacrylamide/urea gel electrophoresis in the presence of non-radioactive total 70 S proteins as markers. This paper describes the identification of 23 protein dimers that contained one protein from each of the two different ribosomal subunits. The proteins implicated must have some part of their structure in proximity to the other ribosomal subunit and are therefore defined as “interface proteins”. The group of interface proteins thus defined includes 50 S proteins that are part of the 5 S RNA: protein complex and 30 S proteins at the initiation site. Correlations between the crosslinked interface proteins and other functional data are discussed.  相似文献   

14.
The effect of protein moiety on the conformation of 16S and 23S RNA of the E.coli ribosome has been studied by circular dichroic spectroscopy. Both rRNAs possess a comparable net content of ordered secondary structure which remains unchanged after association with ribosomal proteins into “core” particles or into complete 30S and 50S subunits, respectively. However, differences found in the stability and the cooperativity of melting of free and protein-associated rRNAs imply protein-caused variations in the distribution of the intramolecular hairpin stems and loops and/or changes in long range tertiary interactions which appear to be different for both rRNAs. While 23S RNA is maximally stabilized on the large subunit by the full set of proteins, 16S RNA on the complete small subunit shows lower stability but higher cooperativity in melting.  相似文献   

15.
The uptake of radioactive ribosomal proteins by isolated HeLa cell nuclei has been studied. Ribosomal proteins are taken up by nuclei in vitro more rapidly than are cytosol proteins, suggesting that the uptake is selective. In addition, the ribosomal proteins are found associated with the nucleolus to a greater extent than are the cytosol proteins.  相似文献   

16.
Purified 50 S ribosomal subunits were found to contain significant amounts of protein coincident with the 30 S proteins S9 and/or S11 on two-dimensional polyacrylamide/urea electropherographs. Peptide mapping established that the protein was largely S9 with smaller amounts of S11. Proteins S5 and L6 were nearly coincident on the two-dimensional polyacrylamide/urea electropherographs. Peptide maps of material from the L6 spot obtained from purified 50 S subunits showed the presence of significant amounts of the peptides corresponding to S5. Experiments in which 35S-labelled 30 S subunits and non-radioactive 50 S subunits were reassociated to form 70 S ribosomes showed that some radioactive 30 S protein was transferred to the 50 S subunit. Most of the transferred radioactivity was associated with two proteins, S9 and S5. Sulfhydryl groups were added to the 50 S subunit by amidination with 2-iminothiolane (methyl 4-mercaptobutyrimidate). These were oxidized to form disulfide linkages, some of which crosslinked different proteins of the intact 50 S ribosomal subunit. Protein dimers were partially fractionated by sequential salt extraction and then by electrophoresis of each fraction in polyacrylamide gels containing urea. Slices of the gel were analysed by two-dimensional polyacrylamide/sodium dodecyl sulfate diagonal gel electrophoresis. Final identification of the constituent proteins in each dimer by two-dimensional polyacrylamide/urea gel electrophoresis showed that 50 S proteins L5 and L27 were crosslinked to S9. The evidence suggests that proteins S5, S9, S11, L5 and L27 are located at the interface region of the 70 S ribosome.  相似文献   

17.
Phosphoprotein phosphatase activities which remove phosphoryl groups from ribosomal protein have been partially purified from rabbit reticulocytes by chromatography on DEAE-cellulose. Two major peaks of phosphoprotein phosphatase activity were observed when 40S ribosomal subunits, phosphorylated in vitro with cyclic AMP-regulated protein kinases and (γ-32P)ATP, were used as substrate. The phosphatase activity eluting at 0.14 M KCl was characterized further using ribosomal subunits phosphorylated in situ by incubation of intact reticulocytes with radioactive inorganic phosphate. Phosphate covalently bound to 40S ribosomal subunits and 80S ribosomes was removed by the phosphatase activity. The enzyme was not active with phosphorylated proteins associated with 60S ribosomal subunits.  相似文献   

18.
Evidence for distinct mRNAs for ferritin subunits   总被引:5,自引:0,他引:5  
Poly A enriched RNA from iron loaded HeLa cells and rat liver were translated separately and together in wheat germ lysates to investigate the origins of the H and L subunits of ferritin. Most of the ferritin translated from the HeLa RNA was of the H type, while that from the liver RNA was mostly L type. Mixtures of these RNAs gave HL ratios which correlated with the relative amounts of added HeLa and rat RNAs. These results indicate that the H and L subunits of ferritin are not derived by post-translational modification but from distinct mRNA species.  相似文献   

19.
20.
An Escherichia coli mutant (JE14373) carrying decreased stability of stable RNA species was found to have altered electrophoretic mobility of a 30S ribosomal protein (S10). Recombinants covering str gene (76 min on E. coli linkage map by Bachmann, Low and Taylor, 1976 (ref. 1)) obtained from a cross of CSH64 × JE14373, restored normal S10 protein. The size analysis of RNAs labeled for 15 min with [3H]uridine showed 50 to 60 % decrease of 16S RNA in this mutant strain, but almost no decrease of 23S RNA at 10 or 40 min after addition of rifampicin. On the other hand, no change was observed in the stability of both rRNA pieces in its parental PA3092 strain even at 40 min after addition of rifampicin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号