首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The FEM-1 protein of Caenorhabditis elegans functions within the nematode sex-determination pathway. Two mouse homologs, encoded by the Fem1a and Fem1b genes, have been reported. We report here the characterization of a novel human gene, designated FEM1B, that is highly homologous to the mouse Fem1b gene. FEM1B encodes a protein, designated FEM1beta, that shows >99% amino acid identity to the corresponding mouse Fem1b protein, including 100% amino acid identity in the N-terminal ANK repeat domain. FEM1beta represents the first characterized human member of the FEM-1 protein family. The human and mouse genes show conservation of coding sequence and its intron/exon organization, flanking untranslated and genomic sequences, and expression pattern in adult tissues. These findings suggest that there may be evolutionary conservation of regulation and function between the mouse and human FEM1B genes.  相似文献   

5.
K Ozawa  Y Murakami  T Eki  E Soeda  K Yokoyama 《Genomics》1992,12(2):214-220
The HSP90 family of heat-shock proteins (encoded by genes for HSP90 alpha and beta) constitutes one of the major groups of proteins that are synthesized at increased rates in response to heat and other forms of stress. We previously isolated two distinct cDNA clones for HSP90 alpha from human peripheral blood lymphocytes and from HeLa cells transfected with the adenovirus E1A gene, respectively. To determine the organization of this complex multigene family in the human genome, we used three complementary approaches: Southern analysis of a panel of human/hamster somatic cell hybrids, molecular cloning of the cosmid HSP90 alpha clones from libraries prepared with DNAs from human lymphoblastoid cells, and in situ hybridization to human chromosomes. We demonstrate here that nucleotide sequences that encode HSP90 alpha map to human chromosomes 1q21.2-q22, 4q35, 11p14.1-p14.2, and 14q32.3. The chromosomal mapping of the loci, HSPCAL1, HSPCAL2, HSPCAL3, HSPCAL4, and the characterization of the respective genes should facilitate clarification of the organization of this gene family and lead to a better understanding of the biological functions of the gene product.  相似文献   

6.
The ATP-binding cassette (ABC) transporter genes represent the largest family of transporters and these genes are abundant in the genome of all vertebrates. Through analysis of the genome sequence databases we have characterized the full complement of ABC genes from several mammals and other vertebrates. Multiple gene duplication and deletion events were identified in ABC genes in different lineages indicating that the process of gene evolution is still ongoing. Gene duplication resulting in either gene birth or gene death plays a major role in the evolution of the vertebrate ABC genes. The understanding of this mechanism is important in the context of human health because these ABC genes are associated with human disease, involving nearly all organ systems of the body. In addition, ABC genes play an important role in the development of drug resistance in cancer cells. Future genetic, functional, and evolutionary studies of ABC transporters will provide important insight into human and animal biology.  相似文献   

7.
The var gene family of Plasmodium falciparum encodes the immunodominant variant surface antigens PfEMP1. These highly polymorphic proteins are important virulence factors that mediate cytoadhesion to a variety of host tissues, causing sequestration of parasitized red blood cells in vital organs, including the brain or placenta. Acquisition of variant-specific antibodies correlates with protection against severe malarial infections; however, understanding the relationship between gene expression and infection outcome is complicated by the modular genetic architectures of var genes that encode varying numbers of antigenic domains with differential binding specificities. By analyzing the domain architectures of fully sequenced var gene repertoires we reveal a significant, non-random association between the number of domains comprising a var gene and their sequence conservation. As such, var genes can be grouped into those that are short and diverse and genes that are long and conserved, suggesting gene length as an important characteristic in the classification of var genes. We then use an evolutionary framework to demonstrate how the same evolutionary forces acting on the level of an individual gene may have also shaped the parasite's gene repertoire. The observed associations between sequence conservation, gene architecture and repertoire structure can thus be explained by a trade-off between optimizing within-host fitness and minimizing between-host immune selection pressure. Our results demonstrate how simple evolutionary mechanisms can explain var gene structuring on multiple levels and have important implications for understanding the multifaceted epidemiology of P. falciparum malaria.  相似文献   

8.
Extensive cDNA analysis demonstrated that all human and mouse protocadherin-beta genes are one-exon genes. The protein sequences of these genes are highly conserved, especially the three most membrane-proximal extracellular domains. Phylogenetic analysis suggested that this unique gene family evolved by duplication of one single protocadherin-beta gene to 15 copies. The final difference in the number of protocadherin-beta genes in man (#19) and mouse (#22) is probably caused by duplications later in evolution. The complex relationship between human and mouse genes and the lack of pseudogenes in the mouse protocadherin-beta gene cluster suggest a species-specific evolutionary pressure for maintenance of numerous protocadherin-beta genes.  相似文献   

9.
10.
We isolated and mapped three new human homeoboxes located on chromosome 2 upstream from the reported seven HOX4 homeobox sequences. Two of them, HOX41 and HOX4H, clearly belong to the HOX gene family, in particular to homology groups 1 and 2, and possibly represent the most 5' HOX4 homeoboxes. A third homeobox 13 kb upstream from HOX41 was identified. Sequencing data show that this is the human homolog of the murine Evx-2 homeobox. Both homeoboxes are closely related to the murine Evx-1 and to the frog Xhox-3 homeoboxes. The four genes represent vertebrate homologs of Drosophila even-skipped (eve), a segmentation gene of the pair-rule class. Human EVX2 sequences belong to an active gene because they are transcribed and properly processed in cells and tissues. We have identified for the first time a homeogene of a different class at a HOX locus. These findings are relevant to the understanding of the evolution of HOX gene clusters and their regulation.  相似文献   

11.
12.
13.
14.
This paper describes the isolation and complete sequence of a novel expressed human beta-tubulin gene (beta 2). The sequence is compared with that of two other expressed human beta-tubulin genes (M40 and 5 beta). All are encoded by four exons. Though the boundaries of each exon are absolutely conserved among the three genes, the intervening sequences differ considerably in size and sequence content. Two of the genes (M40 and 5 beta) contain one (M40) or ten (5 beta) members of the middle repetitive Alu family sequences within one of their intervening sequences. Comparison of the amino acid sequences encoded by each gene reveals a high level of homology overall, though there is significant divergence between the carboxy termini of two of the genes. The pattern of expression of each beta-tubulin gene has been studied in several different human cell lines using unique non-crosshybridizing probes derived from the 3' untranslated regions. Two of the genes, M40 and beta 2, are expressed at varying levels in all of the cell lines examined, though the level of expression of one of these genes parallels the other in most cases. The third gene, 5 beta, is detectably expressed only in cells of neural origin. Thus, distinct human beta-tubulin isotypes are encoded by genes whose exon size and number has been conserved evolutionarily, but whose pattern of expression may be regulated either co-ordinately or uniquely. Of the approximately 15 sequences contained in the human beta-tubulin multigene family, nine have now been sequenced fully. The overall composition of the multigene family and the evolutionary relationships among its various members are discussed.  相似文献   

15.
We have determined the nucleotide sequence of the rat apolipoprotein (apo-) A-IV gene and analyzed its structural and evolutionary relationships to the human apolipoprotein A-I, E, and C-III genes. The rat A-IV gene is 2.4 kilobases in size and consists of three exons (142, 126, and 1157 base pairs) interrupted by two introns (277 and 673 base pairs). The 5'-nontranslated region and most of the signal peptide are encoded by the first exon. Thus, the apo-A-IV gene lacks an intron in the 5'-nontranslated region of its mRNA in contrast to all other known apolipoprotein genes. Sequences coding for amphipathic docosapeptides span both the second and third exons of the rat A-IV gene. We demonstrate that this is also true for the human apolipoprotein genes. This gene family seems to have evolved by the duplication of an ancestral minigene that resulted in the formation of two exons. Thereafter, evolution of these sequences was dominated by intraexonic amplification of repeating units coding for amphipathic peptides. Sequence divergence of these repeats resulted in the functional differentiation of the apolipoproteins. However, conservation of the fundamental amphipathic pattern allowed members of this protein family to retain their lipid-binding properties.  相似文献   

16.
The human KLK14 gene is one of the newly identified serine protease genes belonging to the human kallikrein family, which contains 15 members. KLK14 , like all other members of the human kallikrein family, is predicted to encode for a secreted serine protease already found in various biological fluids. This new kallikrein is mainly expressed in prostate and endocrine tissues, but its function is still unknown. Recent studies have demonstrated that KLK14 gene expression is up-regulated in prostate and breast cancer tissues, and that higher expression levels correlate with more aggressive tumors. In this work, we used phage-display substrate technology to study the substrate specificity of hK14. A phage-displayed random pentapeptide library with exhaustive diversity was screened with purified recombinant hK14. Highly specific and sensitive substrates were selected from the library. We show that hK14 has dual activity, trypsin- and chymotrypsin-like, with a preference for cleavage after arginine residues. A SwissProt database search with selected sequences identified six potential human protein substrates for hK14. Two of them, laminin alpha-5 and collagen IV, which are major components of the extracellular matrix, have been demonstrated to be hydrolyzed efficiently by hK14.  相似文献   

17.
Two human relaxin genes are on chromosome 9.   总被引:4,自引:0,他引:4       下载免费PDF全文
We have recently cloned two different human relaxin gene sequences. One of these (H1) was isolated from a human genomic clone bank and the other (H2) from a cDNA library prepared from human pregnant ovarian tissue. Southern gel analysis of the relaxin genes within the genomes of several unrelated individuals showed that all genomes contained both relaxin genes. Hence it is unlikely (p less than 0.001) that the two relaxin gene sequences are alleles. Rather, it is probable that there are two relaxin genes within the human genome. It is likely that relaxin and insulin genes have evolved from a common ancestral gene by gene duplication, since structural similarities between insulin and relaxin are evident at both the peptide and gene level. To investigate the evolutionary relationship between the two human relaxin genes and the insulin gene, we have determined the chromosomal position of the relaxin genes using mouse/human cell hybrids. We found that the human insulin and relaxin genes are on different chromosomes. Both human relaxin genes are located on the short arm region of chromosome 9.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号