首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porcine relaxin has been sought by localization in the corpus luteum of sows on Days 3, 7, 9, 11, 12, 15, 18, 19, and 21 of the estrous cycle, using the avidin-biotin immunoperoxidase method and an antiserum to purified porcine relaxin. Simultaneous localization of relaxin in corpora lutea from sows on Days 108 and 113 of pregnancy was used to compare the intensity of immunostaining with that of corpora lutea of cyclic animals. However, the antiserum dilution necessary for optimal localization differed considerably in these two states (1:10,000 in pregnancy and 1:750 in the cycle), suggesting that lower levels of antigen are present in the luteal cells of the cycle. Relaxin immunostaining was undetectable on Day 3 of the cycle but became evident by Days 7 and 9. At Day 11 staining intensity increased and persisted through Day 15. On Day 18 some stain was still evident, but by Days 19, 20, and 21 there was complete absence of immunostain. Relaxin immunostaining appeared to be located throughout the cytoplasm of the luteal cell, as clear areas in the nuclear region were often observed. The results suggest that relaxin is produced in low amounts by the luteal cells of the cyclic sow and that the levels fluctuate with stage of the cycle. Lack of evidence from radioimmunoassay for a surge of relaxin secretion into the systemic circulation prior to luteolysis in the pig estrous cycle suggests that the relaxin localized in the luteal cells of the cycle may have an intraovarian function.  相似文献   

2.
Relaxin was localized in corpora lutea of pregnant mouse ovaries by using the unlabeled antibody peroxidase-antiperoxidase technique and a highly specific rabbit antirat relaxin serum. Relaxin immunostaining was first observed in luteal cells located at the periphery of corpora lutea on Day 10 of gestation. The number of relaxin immunostained cells and the intensity of the stain gradually increased to reach a maximum between Days 16 and 18 of gestation. While a few luteal cells were specifically stained for relaxin on Day 1 postpartum, no luteal cells were stained on Day 2 postpartum. Ultrastructural studies of luteal cells from pregnant mouse ovaries revealed the presence of a distinct electron-dense, membrane-bound granule population, which was first observed on Day 12 of gestation. The granules increased in number to reach a maximum between Days 16 and 18 of gestation, and were absent by Day 2 postpartum. The appearance and disappearance of this granule population closely paralleled the relaxin immunostaining in the luteal cells. We suggest that the granules may be the subcellular sites of relaxin storage in the pregnant mouse ovary.  相似文献   

3.
Relaxin was localized in luteal cells of ovaries from nonpregnant, pseudopregnant, and pregnant pigs using porcine relaxin antiserum and peroxidase-antiperoxidase light microscopy immunohistochemistry. The number of immunoreactive cells seemed to increase from Days 17 to 106 of gestation. Luteal cells from pseudopregnant (Day 110) and nonpregnant (Day 14 of the estrous cycle) pigs were also positive for relaxin. However, less than 3% of the luteal cells in the nonpregnant animals were immunoreactive. Electron microscopy immunocytochemistry using porcine relaxin antiserum and goat antirabbit immunoglobulin G-colloidal gold demonstrated that relaxin was packaged in the small membrane-bound granules in luteal cells of pregnant as well as pseudopregnant and nonpregnant pigs. The intensity of labeling (number of gold particles) of the granules increased with pregnancy. There was a 10-fold increase in labeling of granules with the 10-nm versus 25-nm diameter gold. The goat antirabbit labeled with the smaller 10-nm gold particles was necessary to demonstrate the apparent low levels of relaxin in the luteal cells of the nonpregnant pigs. These data further indicate that pregnancy is not required for relaxin synthesis. However, physiologic significance of relaxin in corpora lutea of nonpregnant pigs has not been determined.  相似文献   

4.
Watson ED 《Theriogenology》2000,53(7):1459-1466
The presence of cytochrome P450C17 within equine follicles and corpora lutea (CL) was detected by immunostaining. Two different antibodies were used which had previously been shown by immunoblotting to cross-react with equine P450C17. Strong positive immunostaining was present in the theca-derived cells of the CL during the estrous cycle and pregnancy. In the CL from mares after Day 40 of pregnancy there were also occasional bands of positively stained cells which resembled the polyhedral-shaped theca cells seen in preovulatory follicles. The pattern of immunostaining suggested compartmentalization of steroidogenesis within the equine CL with small cells possessing the potential to produce androgen which could then be aromatized to estrogen by the large luteal cells.  相似文献   

5.
After parturition, eight sows were zero weaned by removing all piglets 6 h after birth; a further 18 sows suckled at least ten piglets each. Blood samples were collected on Day 4 after zero weaning or on Days 4, 14 and 21 of lactation and the sampling frequency increased during suckling bouts. Ovaries were recovered from sows on these days and corpora lutea were either extracted for estimation of relaxin and progesterone concentration, fixed for immunohistochemical analysis or incubated in vitro in the presence or absence of luteinizing hormone (LH) or oxytocin. Luteal weight and progesterone were higher in the zero-weaned sows than in lactating sows (P less than 0.05 and less than 0.001, respectively); relaxin content was below detection by Day 14. This was supported by immunohistochemical staining for relaxin, which showed limited immunostaining in zero-weaned and Day 4 sows, but none in the tissue recovered on Days 14 and 21, which showed typical signs of regression. Secretion of progesterone and relaxin by luteal tissue in vitro was highest in zero-weaned sows (P less than 0.05), decreased as lactation progressed and neither LH nor oxytocin had any significant effect. Concentrations of plasma relaxin were all less than 0.2 ng/ml in three of the four zero-weaned and Day-4-suckled sows assayed; there was no detectable increase during suckling bouts. It was concluded that during lactation the old corpus luteum of pregnancy is not able to release relaxin in response to suckling in vivo or to oxytocin treatment in vitro.  相似文献   

6.
The distribution of androgen receptor (AR) and cytochrome P450 aromatase was investigated in paraffin sections of pregnant pig ovary. Ovarian follicles and corpora lutea were isolated from ovaries obtained on Days 10, 18, 32, 71 and 90 post coitum (p.c.). Androgen receptor was localized in the nuclei of granulosa cells of follicles of various sizes. In addition, some follicles demonstrated staining in the nuclei of theca interna cells. Stroma cells also exhibited a positive immunostaining. At early and mid pregnancy (up to Day 71) AR was expressed in the nuclei of luteal cells. Corpora lutea of Day 71 showed mainly cytoplasmic staining while on Day 90 almost all luteal cells showed staining exclusively in the cytoplasm. Immuno-staining for the presence of cytochrome P450 aromatase was very faint in all investigated ovarian structures. The results could suggest that the process of androgen aromatization plays a negligible role in the ovary of the pregnant pig.  相似文献   

7.
The occurrence of relaxin in corpora lutea (CL) throughout lactation was studied in rats and pigs using the avidin-biotin immunoperoxidase procedure and homologous antisera to purified relaxins. In the rat, both CL from the previous pregnancy (CLp) and CL formed after postpartum ovulation, termed CL of lactation (CLL), were studied. In the rat, relaxin was localized only in cells of the CLp in early lactation, and immunostaining declined with advancing lactation. In late lactation (Days 16-20), immunoreactive relaxin first appeared in cells of the CLL, although the intensity was less relative to that observed in the CLp in early lactation. Cells of the CLp were sensitive to the effects of exogenous prostaglandins (PG) as shown by a loss of relaxin immunostaining at both 12 and 48 h after a PGF2 alpha challenge. In the sow, the CLp showed highest immunostaining in early lactation with a gradual reduction as lactation progressed, such that by Day 20 lactation, immunostaining was lost. These localization studies show that immunoreactive relaxin is present in the CL during lactation. Low levels of relaxin localized in the CLL of late lactation in the rat probably represents newly formed hormone, whereas the immunostaining in the CLp of the pig and rat appears to be residual relaxin and an indicator of the degeneration of the CLp with advancing lactation.  相似文献   

8.
The objective of this study was to determine the tissue source of relaxin in pregnant hamsters by immunocytochemical techniques. Ovarian, uterine, and placental tissues were recovered from hamsters on Days 8, 10, 12, 14, and 15 of gestation and processed for light microscopy. Relaxin immunoreactivity was localized in tissue sections by the avidin-biotin-peroxidase technique using antiserum to porcine relaxin. On Day 8 of gestation, relaxin immunoreactivity was localized in primary giant trophoblast cells (GTC-1s) adjacent to the uterine decidua. On Day 10, relaxin immunoreactivity was localized in GTC-1s, secondary giant trophoblast cells (GTC-2s) adjacent to the ectoplacental cone, and endometrial granulocytes in the wall of sheathed arteries. On Day 12, relaxin immunoreactivity was observed primarily in GTC-2s interspersed among cells of the placental trophospongium but not in cells of the placental labyrinth. The intensity of staining and number of relaxin immunoreactive GTCs increased between Days 12 and 14 but was decreased by Day 15 PM. Relaxin was not localized in uterine glands or corpora lutea. These observations suggest that the placenta is the tissue source of relaxin in pregnant hamsters.  相似文献   

9.
The cellular distribution of neurophysin and oxytocin within ovine corpora lutea obtained on Days 4, 10 and 16 of the estrous cycle was examined immunocytochemically. Serial sections (8-10 micron-thick) prepared from corpora lutea that had been fixed in Bouin's solution and embedded in paraffin were immunostained for neurophysin or oxytocin using the peroxidase-antiperoxidase (PAP) procedure. Irrespective of the day of the cycle examined, immunoreactivity was restricted to large luteal cells. However, on Days 4 and 10 of the cycle, the intensity of staining in large luteal cells was highly variable; and, within the same section some cells were heavily stained, others were only lightly stained, and still others were not stained at all. In contrast, on Day 16 of the cycle, the intensity of staining was uniform and essentially all of the large luteal cells were immunoreactive. Based on the results obtained, it is evident that immunoreactive neurophysin and oxytocin can be detected as early as Day 4 of the cycle, persists through Day 15, and is restricted to large luteal cells.  相似文献   

10.
This study characterizes the expression of monocyte chemoattractant protein-1 (MCP-1) and the relative distribution of immune cell populations in the bovine corpus luteum throughout the estrous cycle. Immunodetectable MCP-1 was evident in corpora lutea of cows at Days 6, 12, and 18 postovulation (Day 0 = ovulation, n = 4 cows/stage). Day 6 corpora lutea contained minimal MCP-1 that was confined primarily to blood vessels. In contrast, relatively intense staining for MCP-1 was observed in corpora lutea from Days 12 and 18 postovulation. MCP-1 was again most evident in the cells of the vasculature, but it was also observed surrounding individual luteal cells, particularly by Day 18. An increase in immunohistochemical expression of MCP-1 on Days 12 and 18 postovulation corresponded with increases in MCP-1 mRNA and protein in corpora lutea as determined by Northern blot analysis and ELISA. Monocytes and macrophages were the most abundant immune cells detected in the bovine corpus luteum, followed by CD8+ and CD4+ T lymphocytes. In all instances, Day 6 corpora lutea contained fewer immune cells than corpora lutea from Days 12 and 18. In conclusion, increased expression of MCP-1 was accompanied by the accumulation of immune cells in the corpora lutea of cows during the latter half of the estrous cycle (Days 12-18 postovulation). These results support the hypothesis that MCP-1 promotes immune cell recruitment into the corpus luteum to facilitate luteal regression. These results also raise a provocative issue, however, concerning the recruitment of immune cells several days in advance of the onset of luteal regression.  相似文献   

11.
Large steroidogenic cells of the bovine corpora lutea were evaluated for morphological changes on Days 3, 7, 11, 14, 17, and 19 of the estrous cycle. Large cells were readily identified by size (25-50 microns diameter), numerous mitochondria, and the presence of dense secretory granules (150-300 nm in diameter). These granules were found in a discrete cluster and were not dispersed throughout the cytoplasm. Only 3% of the large cells contained a cluster of granules on Day 3. The percentage was highest during midcycle (Day 7, 84%; Day 11, 64%), dropped on Day 14 (26%), and was lowest on Days 17 (16%) and 19 (8%). Electron microscopic immunocytochemistry showed that oxytocin and neurophysin were co-localized in these granules on all days evaluated. As early as Day 14, large cells were observed with characteristics typical of regressing corpora lutea, i.e., a reduction in cells with secretory granules, large cytoplasmic lipid droplets, and swollen mitochondria with dense inclusions. However, since this was a time of the cycle when plasma concentrations of progesterone were very high, this corpus luteum is referred to as involutive rather than regressive. Our results may be summarized as follows: 1) from Day 7 to Day 14 there was a 69% decline in the number of large cells containing oxytocin-laden secretory granules. This occurred prior to the rise in uterine oxytocin receptors and the large luteolytic pulses of prostaglandin that reportedly occur after Day 14. The role of this apparent early release of oxytocin is not known. 2) Large steroidogenic luteal cells of the estrous cycle have morphological characteristics similar to those of large luteal cells during pregnancy. However, large luteal cells of the estrous cycle contain oxytocin whereas those of pregnancy are devoid of oxytocin.  相似文献   

12.
Changes in lipid contents and fatty acid compositions of each lipid fraction were examined in corpora lutea from 34 unmated ewes between Days 8 and 16 of the estrous cycle and from 6 ewes at Day 16 of pregnancy. Four patterns were observed during advancement of the estrous cycle. Luteal concentrations of free cholesterol and triglyceride (neutral lipids) increased between Days 14 and 16, during luteal regression, in a manner approximated by exponential functions of time, whereas luteal concentrations of phospholipid (polar lipids) increased and then decreased between Days 8 and 16 in a manner approximated by a sin function of time. Likewise, within the various lipid class component fatty acids, changes in palmitic acid weight percentages were approximated by sin functions of time, whereas arachidonic acid weight percentages increased between Days 14 and 16 in a manner approximated by exponential functions of time. Pregnancy either inhibited or reversed the changes in luteal lipid profiles, especially arachidonic acid percentages, between Days 14 and 16 of the estrous cycle. Luteal lipid profiles of corpora lutea from Day 16 pregnant sheep approximated lipid profiles of corpora lutea recovered from sheep between Days 12 and 14 of the estrous cycle. Comparison of luteal lipid profiles after tissue incubations at either 0 or 37 degrees C for 2 h revealed an effect of reproductive status on fatty acid metabolisms at Day 16. Changes observed in luteal lipid contents and fatty acid compositions during advancement of the estrous cycle represent aspects of lutein cell maturation and impending senescence that can be inhibited or reversed by pregnancy.  相似文献   

13.
Relaxin is one of the hormones present during pregnancy and it is synthesized primarily by corpora lutea (CL). Other reproductive tissues including CL of the menstrual cycle may also synthesize this hormone. Very little is known, however, about the cellular and subcellular distribution of relaxin in human CL and dependence of luteal relaxin on the reproductive state. The light and electron microscope immunocytochemical studies described here were undertaken to obtain this information using antisera to porcine and human relaxin. Immunostaining was found in large luteal cells (17-30 microns) but not in small luteal cells (7-16 microns) or in nonluteal cells in any of the reproductive states or in human hepatocytes. Luteal immunostaining was low in early luteal phase; it increased progressively, reaching the highest level in late luteal phase, and then decreased greatly in corpora albicantia. Term pregnancy CL contained similar immunostaining as early luteal phase CL. Mid luteal phase CL contained more immunostained cells than late luteal phase CL, but the late luteal phase CL contained a greater amount of immunostaining per cell than mid luteal phase CL. The immunogold particles due to relaxin were primarily present in secretory granules and to a small extent in rough endoplasmic reticulum. Quantitation revealed that secretory granules contained a much higher number of gold particles than did rough endoplasmic reticulum. These two organelles from late luteal phase CL contained greater numbers of gold particles than those from mid luteal phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Summary The presence of neurophysin, oxytocin and vasopressin in the bovine corpus luteum was examined immunocytochemically. Tissue blocks of corpora lutea from pregnant and non-pregnant animals were fixed with glutaraldehyde/paraformaldehyde fixative and immunostained by the peroxidase-antiperoxidase (PAP) method. The simultaneous presence of immunoreactive oxytocin and immunoreactive oxytocin-neurophysin was demonstrated in large luteal cells of non-pregnant animals, while no staining for vasopressin or vasopressin-neurophysin was observed. None of the peptides were detected in the corpus luteum of pregnant animals. The small luteal cells were not found to be stainable at any time.  相似文献   

15.
Recently, using a highly specific radioimmunoassay, we have demonstrated that the concentration of oxytocin in the corpus luteum of the human and cynomolgus monkey are several fold higher than in the peripheral circulation. In this study, we have examined the corpora lutea and ovarian stroma from the ovaries of normal adult cycling baboons (Papio anubis) for the presence of oxytocin through the use of immunocytochemical procedures. Tissues obtained at laparotomy were fixed in Bouin's solution and embedded in paraffin; immunoreactive oxytocin was localized with peroxidase-antiperoxidase and 3.3' diaminobenzidine. Six corpora lutea with stroma were obtained--two each from the early (Day 14-20), mid-(Day 21-24), and late (Day 25-30) stages of the luteal phase. Immunoreactive oxytocin was localized in all corpora lutea examined but was absent from all stroma samples. Larger areas of the corpus luteum from the mid-luteal phase showed staining for oxytocin, and the intensity of staining for this peptide was maximal in this phase of the cycle.  相似文献   

16.
As a step towards understanding the role of prostaglandin F2 alpha (PGF2 alpha) in ovarian function, a rabbit antiserum against purified PGF2 alpha receptor (PGF2 alpha-R) was produced. This report details the use of this antiserum in immunohistochemical staining of ovaries of non-pregnant and pregnant rats to ascertain which cell types, in vivo, possess PGF2 alpha-R. In non-pregnant rats, three ovarian cell subpopulations contain immunoreactive PGF2 alpha-R. These include: a subpopulation of the cells found in corpora lutea, a subpopulation of the thecal cells surrounding secondary and mature (Graafian) follicles, and a subpopulation of primary and secondary interstitial cells. The ovarian tissues and cell types in which immunoreactive PGF2 alpha-R cannot be demonstrated include: the serosa overlying the ovary and its vessels, the coelomic epithelium and its underlying cortical stroma, medullary stroma and vessels, granulosa cells of primary, secondary and mature follicles, the oocyte, and the blood vessels and stroma within corpora lutea. PGF2 alpha-R immunohistochemical staining of corpora lutea from non-pregnant animals was examined both prior to the start of luteolysis and during luteolysis. During luteolysis, cells undergoing apoptosis stained for the presence of PGF2 alpha-R. PGF2 alpha-R immunohistochemical staining was also examined in corpora lutea during pregnancy and until 4 days postpartum. The major findings here were the apparent large increase in staining intensity of granulosa-lutein cells during pregnancy, and the loss of PGF2 alpha-R immunopositivity of the granulosa-lutein cells during the postpartum period. In summary, three ovarian cell subpopulations, all of which can secrete steroids, possess immunoreactive PGF2 alpha-R.  相似文献   

17.
18.
To examine possible mechanisms involved in resistance of the ovine corpus luteum to the luteolytic activity of prostaglandin (PG)F(2alpha), the enzymatic activity of 15-hydroxyprostaglandin dehydrogenase (PGDH) and the quantity of mRNA encoding PGDH and cyclooxygenase (COX-2) were determined in ovine corpora lutea on Days 4 and 13 of the estrous cycle and Day 13 of pregnancy. The corpus luteum is resistant to the action of PGF(2alpha) on Days 4 of the estrous cycle and 13 of pregnancy while on Day 13 of the estrous cycle the corpus luteum is sensitive to the actions PGF(2alpha). Enzymatic activity of PGDH, measured by rate of conversion of PGF(2alpha) to PGFM, was greater in corpora lutea on Day 4 of the estrous cycle (P < 0.05) and Day 13 of pregnancy (P < 0.05) than on Day 13 of the estrous cycle. Levels of mRNA encoding PGDH were also greater in corpora lutea on Day 4 of the estrous cycle (P < 0. 01) and Day 13 of pregnancy (P < 0.01) than on Day 13 of the estrous cycle. Thus, during the early estrous cycle and early pregnancy, the corpus luteum has a greater capacity to catabolize PGF, which may play a role in the resistance of the corpus luteum to the actions of this hormone. Levels of mRNA encoding COX-2 were undetectable in corpora lutea collected on Day 13 of the estrous cycle but were 11 +/- 4 and 44 +/- 28 amol/microgram poly(A)(+) RNA in corpora lutea collected on Day 4 of the estrous cycle and Day 13 of pregnancy, respectively. These data suggest that there is a greater capacity to synthesize PGF(2alpha), early in the estrous cycle and early in pregnancy than on Day 13 of the estrous cycle. In conclusion, enzymatic activity of PGDH may play an important role in the mechanism involved in luteal resistance to the luteolytic effects of PGF(2alpha).  相似文献   

19.
Bovine ovaries were obtained from the abattoir and corpora lutea were classified as: (1) early luteal phase (approximately Days 1-4); (2) mid-luteal phase (Days 5-10); (3) late luteal phase (Days 11-17); (4) regressing (Days 18-20) and (5) pregnant (Days 90-230). In addition, preovulatory follicles and whole ovaries without luteal tissue were collected. Concentrations of oxytocin, vasopressin, bovine neurophysin I and progesterone were measured in each corpus luteum by radioimmunoassay. Progesterone and neurophysin I levels increased from Stage 1 to Stage 2, plateaued during Stage 3 and declined by Stage 4. Oxytocin and vasopressin concentrations increased from Stage 1 to Stage 2 but declined during Stage 3 and were low (oxytocin) or undetectable (vasopressin) in follicles, whole ovaries and pregnancy corpora lutea. Therefore the concentrations of both peptide hormones were maximal during the first half of the cycle and declined before those of progesterone. The high concentration of oxytocin within the corpus luteum coupled with the presence of bovine neurophysin I suggests that oxytocin is synthesized locally.  相似文献   

20.
The present study investigates changes in the activity and enzyme content of ovarian carbonyl reductase (CR), which catalyzes the reduction of 9-keto and 15-ketoprostaglandins in rats during pseudopregnancy and pregnancy. The activity of ovarian CR decreased from the onset of pseudopregnancy and pregnancy, reaching 20-30% of the Day 1 value by Day 12 of pseudopregnancy and 50-60% of the Day 1 value by Day 14 of pregnancy. In the case of pregnant rats, the enzyme activity maintained a minimal level between Day 14 of pregnancy and Day 22 of parturition. An acute increase of the enzyme activity was found on the morning after parturition. The CR content in the ovary maintained a constant level from Day 1 to Day 12 of pseudopregnancy and to Day 18 of pregnancy. In pregnant rats, there was a gradual decrease after 18 days and then a surge during parturition. CR was primarily localized in interstitial gland cells and in theca interna cells but was not found in corpora lutea cells in the ovary during the estrous cycle. Additional immunostaining was also observed in corpora lutea cells during pseudopregnancy and pregnancy. The changes in ovarian CR activity, i.e. the rapid decrease with progressing pseudopregnancy and pregnancy, correlated with the increase in progesterone and the decrease in LH. These results indicate that rat ovarian CR may be regulated via the hypothalamo-pituitary-ovarian axis and may also be involved in luteal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号