首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 105 毫秒
1.
Abstract— Glycine was a substrate for d -amino acid oxidase purified from extracts of cat spinal cord and sheep cerebellum. d -Aspartate and N -methyl- d -aspartate were oxidized at a rate similar to that of glycine by the purified sheep cerebellum extract; d -α-alanine and d -serine were oxidized appreciably faster than glycine, while GABA and d -glutamate were not oxidized at a measurable rate. p -Mercuribenzoate and kojate inhibited the oxidation of glycine by the purified sheep cerebellum extract.
d -Amino acid oxidase activity was higher in the grey than in the white matter of cat spinal cord, while the reverse was true for the cerebral cortex; the activity in the cord and cerebral cortex was much lower than that in the cerebellum.  相似文献   

2.
Two microbial oxidases of acidic -amino acids have been purified to homogeneity. One is a -aspartate oxidase of the yeast Cryptococcus humicolus UJ1 that was induced markedly with -aspartate and is far more active toward -aspartate than -glutamate. The other is a -glutamate oxidase of Candida boidinii 2201 that preferred -glutamate to -aspartate as a substrate in terms of kcat/Km, but was not induced very effectively by -glutamate. The most potent competitive inhibitor of the C. humicolus -aspartate oxidase was malonate, and that of the C. boidinii -glutamate oxidase was -malate. The former enzyme was a homotetramer of 160 kDa consisting of subunits of 40 kDa, each of which contained 1 mol of FAD, while the latter was a monomer of 45 kDa. The N-terminal sequences of both enzymes were similar to those of other FAD enzymes and contained a consensus sequence common to most enzymes binding ADP-containing nucleotides. Peroxisomal localization of the C. humicolus -aspartate oxidase was shown by subcellular fractionation and morphological analysis via electron microscopy of C. humicolus cells, where induction of the enzyme was accompanied by induction of catalase and development of peroxisomes. The apo-form of C. humicolus -aspartate oxidase, prepared by removal of FAD was a monomeric protein of 40 kDa, and its binding with FAD proceeded in two stages. The Kd for the apoprotein-FAD complex was very low (8.2×10−12 M) consistent with the observed tight binding. The C. humicolus -aspartate oxidase was essentially similar to other flavoprotein oxidases of acidic and neutral -amino acids with respect to its spectral properties and sensitivity to specific modifying reagents for arginyl and histidyl residues.  相似文献   

3.
L-Pipecolic acid oxidase activity is deficient in patients with peroxisome biogenesis disorders (PBDs). Because its role, if any, in these disorders is unknown, the authors cloned the human gene to order to further study its functions. BLAST search of the translated sequence showed greatest homology to Bacillus sp. NS-129 monomeric sarcosine oxidase. The purified enzyme could use either L-pipecolic acid or sarcosine as a substrate. No homology was found to the peroxisomal D-amino acid oxidases. A further comparison of L-pipecolic acid oxidase to the two D-amino acid oxidases in peroxisomes showed that the proteins differed in many ways. First, both D-amino acid oxidase and L-pipecolic acid oxidase showed no enzyme activity in liver from Zell-weger syndrome patients; D-aspartate oxidase activity was unchanged from control levels. Although all were targeted to peroxisomes, their targeting signals differed. No L-pipecolic acid oxidase was found in brain or other tissues outside of liver and kidney. The D-amino acid oxidases were similarly and more widely distributed. Finally, although D-amino acid degradation is limited to peroxisomes in mammals, L-pipecolic acid can be oxidized in either mitochondria or peroxisomes, or both.  相似文献   

4.
The acetylenic substrate, D-2-amino-4-pentynoic acid (D-propargylglycine), was oxidatively deaminated by hog kidney D-amino acid oxidase[EC 1.4.3.3], with accompanying inactivation of the enzyme. The flavin which was extracted by hot methanol from the inactivated enzyme was identical with authentic FAD by thin-layer chromatography and circular dichroism. The excitation spectrum of emission at 520 nm of the released flavin was very similar to the absorption spectrum of oxidized FAD. The released flavin was reduced by potassium borohydride. The apoenzyme prepared after propargylglycine treatment did not show restored D-amino acid oxidase activity on adding exogenous FAD. The absorption spectrum of this inactivated apoenzyme showed absorption peaks at 279 and 317 nm, and a shoulder at about 290 nm. These results strongly indicate that the inactivation reaction is a dynamic affinity labeling with D-propargylglycine which produces irreversible inactivation of the enzyme by a covalent modification of an amino acid residue at the active site.  相似文献   

5.
Inactivation ofd-amino acid oxidase occured by different mechanisms. The enzyme showed a rapid loss of activity in the presence of micromolar amounts of Cu2+ and Hg2+. It was also sensitive to oxidative inactivation by Fe2+ and H2O2 when both reagents were added in millimolar amounts. When oxidatively inactivatedd-amino acid oxidase and a corresponding non-treated control were modified with the sulfhydryl-modifying, fluorescent reagent monobromobimane and subsequently digested with endoproteinase Glu-C, Cys-298 was identified to be a target for oxidative modification according to differences in the known peptide profile of fluorescence intensity. Another reason for the observed loss of enzyme activity in crude extracts was the specific proteolytic digestion ofd-amino acid oxidase, which was dependent on the growth phase of the cells used. This cleavage was catalyzed by a serine-type proteinase and was the introductory step for the further complete degradation of the enzyme. In addition, a coenriched 50-kDa protein, identified as NADPH-specific glutamate dehydrogenase, significantly decreased the stability of thed-amino acid oxidase activity. Treatment of apo-d-amino acid oxidase fromT. variabilis with monobromobimane resulted in a significantly increased fluorescence of two peptides, neither of which contained any cysteine residue. Thus, an involvement of cysteine residues in binding the FAD coenzyme should be excluded.  相似文献   

6.
Abstract— Hog cerebellar d -amino acid oxidase (d -AAO; EC 1.4.3.3) has been purified to homogeneity. The enzyme was found to be indistinguishable from crystalline hog kidney d -AAO by a number of criteria, including electrophoresis in both cationic and anionic discontinuous buffer systems, FAD and sulfhydryl contents, and monomer molecular weights of about 40,000 as determined by SDS disc gel electrophoresis. Both preparations exhibited similar specific activities (23 μmol d -ala oxidized min?1 mg?1 protein), substrate specificities, and susceptibilities to competitive inhibitors. Rabbit antisera were prepared against each enzyme preparation. Double immunodiffusion revealed no antigenic differences between the two when antiserum against either preparation was used. Although a soluble protein, d -AAO activity in cerebellum is particulate. Two methods were utilized to study the histological localization of d -AAO activity in hog cerebellum: peroxidase-coupled histochemistry and immunofluorescence. The histochemical procedure seems specific for d -AAO since l -amino acids are inert and known competitive inhibitors of the purified flavoenzyme prevent staining. Rabbit antiserum prepared against purified hog cerebellar d -AAO was visualized indirectly with fluorescein-labeled goat antirabbit IgG antiserum. Control experiments with serum from unimmunized rabbits were negative. The results of both techniques were identical in three respects: (1) d -AAO was observed in many fibers emanating from cerebellar white matter; the white matter itself did not exhibit d -AAO, despite presence of the oxidase by biochemical assay; (2) intense d -AAO activity (or antigen) was found in mossy fiber rosettes (glomeruli) in the granular layer; (3) a peculiar and intense localization of d -AAO was noted at the level of, but not within, the Purkinje cell soma. The molecular layer was essentially devoid of d -AAO histochemical activity except for minimal staining near the pial surface. However, the more sensitive immunofluorescent technique revealed d -AAO containing fibers in the molecular layer running parallel to each other and perpendicular to the pial surface; the relatively large size and small number of these fibers do not suggest identification as granule cell axons. No d -AAO has been found in granule cell soma, Golgi Type-II cells, or Purkinje cell soma. These results are discussed in terms of the localization of d -AAO in mossy fibers and their terminals and in certain cell-type(s) of cerebellar origin.  相似文献   

7.
1. The isolation of an o-diphenol oxidase from an acetone-dried powder of late-third-instar larvae of Calliphora erythrocephala was investigated. An insoluble and micro-crystalline fraction containing the enzyme activity was obtained after fractionating extracts of the acetone-dried powder with (NH4)2SO4 and acetone. 2. This fraction can be solubilized in 0.1% sodium dodecyl sulphate without loss of activity. 3. Polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate shows that the o-diphenol oxidase is a minor component of the extracts from the acetone-dried powder. 4. The o-diphenol oxidase was purified by zonal centrifugation on a sucrose density gradient in the presence of sodium dodecyl sulphate. 5. The amino acid composition of the purified enzyme resembles that of some other o-diphenol oxidases. 6. The subunit composition of the o-diphenol oxidase is discussed.  相似文献   

8.
In mammalian brains, -amino-acid oxidase activity is absent or scarce in the forebrain, is confined to the brain stem and cerebellum, and its localization is extended to the spinal cord. The oxidase-containing cells are astrocytes including Bergmann glial cells. Neither neurons, endothelial cells, oligodendrocytes nor ependymal cells show the oxidase activity. Free -serine, a potent activator of the N-methyl- -aspartate (NMDA) receptor, is in high levels in the forebrain (ca. 0.4 μmol/g wet weight), and in low levels in the hindbrain. Thus, the localization of the oxidase activity is inversely correlated with the distribution of -serine in mammalian brains. This inverse correlation is generally found in vertebrate brains. These results indicate that -amino-acid oxidase decomposes -amino acids including -serine in vertebrate brains, and that the magnitude of its activity is important in determining the regional concentrations of -amino acids in the steady states.  相似文献   

9.
We purified an extracellular pyranose dehydrogenase (PDH) from the basidiomycete fungus Agaricus xanthoderma using ammonium sulfate fractionation and ion-exchange and hydrophobic interaction chromatography. The native enzyme is a monomeric glycoprotein (5% carbohydrate) containing a covalently bound FAD as its prosthetic group. The PDH polypeptide consists of 575 amino acids and has a molecular mass of 65 400 Da as determined by MALDI MS. On the basis of the primary structure of the mature protein, PDH is a member of the glucose-methanol-choline oxidoreductase family. We constructed a homology model of PDH using the 3D structure of glucose oxidase from Aspergillus niger as a template. This model suggests a novel type of bi-covalent flavinylation in PDH, 9-S-cysteinyl, 8-alpha-N3-histidyl FAD. The enzyme exhibits a broad sugar substrate tolerance, oxidizing structurally different aldopyranoses including monosaccharides and oligosaccharides as well as glycosides. Its preferred electron donor substrates are D-glucose, D-galactose, L-arabinose, and D-xylose. As shown by in situ NMR analysis, D-glucose and D-galactose are both oxidized at positions C2 and C3, yielding the corresponding didehydroaldoses (diketoaldoses) as the final reaction products. PDH shows no detectable activity with oxygen, and its reactivity towards electron acceptors is rather limited, reducing various substituted benzoquinones and complexed metal ions. The azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid) cation radical and the ferricenium ion are the best electron acceptors, as judged by the catalytic efficiencies (k(cat)/K(m)). The enzyme may play a role in lignocellulose degradation.  相似文献   

10.
Cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentum has been purified to homogeneity by a new procedure. The carbohydrate and amino acid compositions of the enzyme have been determined. Cellobiose oxidase contains FAD and cytochrome b prosthetic groups. Mr of the enzyme has been estimated at 74400 by sedimentation equilibrium. The enzyme is a monomer. Optical, fluorescence and e.p.r. spectra of oxidized and reduced cellobiose oxidase have been determined. A preliminary investigation of the substrate specificity of cellobiose oxidase reveals that disaccharides and even some insoluble polysaccharides are substrates, but not monosaccharides. Strong substrate inhibition is seen at high concentrations of cellobiose. This effect is particularly marked when oxygen is the electron acceptor. Cellobiose oxidase is unusual among flavoproteins, since it stabilizes the red anionic flavin semiquinone and forms a sulphite adduct, yet appears to produce the superoxide anion as its primary reduced oxygen product.  相似文献   

11.
Data in the literature imply that some fish species evolved with the capacity to synthesize ascorbic acid. Gulonolactone oxidase activity has been reported in kidney and/or liver tissues. However, it is shown here that this microsomal enzyme activity is missing in common carp hepatopancreas and kidney, whereas high activity was confirmed in pigeon kidney, rat liver, bovine liver and amphibian (Xenopus) kidney tissues. A new assay using either the whole tissue homogenate or microsomes solubilized by sodium deoxycholate was developed to directly measure the formation of ascorbic acid spectrophotometrically. Identical values were found using this assay as well as the assay in which formed ascorbate was determined by the dinitrophenyl hydrazine (DNPH) method. In some experiments, these results were confirmed by polarographically measured oxygen consumption.  相似文献   

12.
Triamcinoline acetonide (10 mg per kg of body weight a day) was administered to rabbit fed on a laboratory chow diet. The content of flavins in liver but not in kidney, muscle and brain started to decrease 24 h after a single dose. The activities of enzymes in the liver were determined: the activities of pyruvate dehydrogenase complex, lipoamide dehydrogenase (NADH : lipoamide oxidoreductase EC 1.6.4.3), NADH dehydrogenase (NADH : (acceptor) oxidoreductace EC 1.6.99.3) and -amino acid oxidase ( -amino acid : oxygen oxidoreductase (deaminating) EC 1.4.3.3) were decreased but those of succinate dehydrogenase (succinate : (acceptor) oxidoreductase EC 1.3.99.1) and xanthine oxidase (xanthine : oxygen oxidoreductase EC 1.2.3.2) remained unchanged. The activities of enzymes in the kidney, however, remained unchanged except the decrease in the activity of pyruvate dehydrogenase complex.  相似文献   

13.
《BBA》1986,849(2):203-210
A highly active O2-evolving Photosystem II complex which was greatly depleted of phycobiliproteins was isolated from the cyanobacterium Anacystis nidulans. This complex contained the flavoprotein with l-amino acid oxidase activity which we have previously shown to be present in thylakoid preparations of this cyanobacterium (Pistorius, E.K. and Voss, H. (1982) Eur. J. Biochem. 126, 203–209). One of the most prominent polypeptides in this O2-evolving Photosystem II complex had a molecular weight of 49 kDa. This polypeptide co-chromatographed on SDS-polyacrylamide gels with the purified l-amino acid oxidase which consists of two subunits of 49 kDa. The antagonistic effect of CaCl2 on the two examined reactions could also be demonstrated with this O2-evolving Photosystem II complex: CaCl2 stimulated photosynthetic O2 evolution, but inhibited the l-amino acid oxidase activity. Both reactions were inhibited by o-phenanthroline. These results further support a functional relationship between the flavoprotein with l-amino acid oxidase activity and Photosystem II activities in A. nidulans. However, we only found 1 mol FAD per 350–650 mol chlorophyll, although 1 gatom Mn per 5–10 mol chlorophyll was present. When we assume a photosynthetic unit of about 40 chlorophylls, then in most preparations the FAD values were more than a factor of 10 too low. Results which we obtained with the purified l-amino acid oxidase showed that the FAD values were in most enzyme samples lower than the theoretically expected value of 2 mol FAD per mol enzyme. Moreover, in some cases the absorption spectrum of the enzyme showed substantial deviations from the spectrum of oxidized FAD. These experiments indicated that the flavin in the enzyme could partly exist in a form which was different from ‘authentic oxidized FAD’. We do not yet know the chemical nature of this ‘modified flavin’.  相似文献   

14.
[1-3H]Allylamine was synthesized by sodium boro[3H]hydride reduction of acrolein followed by direct conversion of the [1-3H]allyl alcohol to N-allylphthalimide with triphenylphosphine, diethylazodicarboxylate, and phthalimide. The protecting group was removed with hydrazine. Inactivation of beef liver mitochondrial monoamine oxidase with [1-3H]allylamine led to incorporation of 1-6 eq of inactivator/active site depending upon the length of incubation time. Inactivation and radioactivity incorporation coincided; however, after 1 eq of tritium was incorporated and 5% enzyme activity remained, additional radioactivity continued to become incorporated into the enzyme. The optical spectrum of the FAD coenzyme changed during inactivation from that of oxidized to reduced flavin. Following dialysis of the inactivated enzyme, the spectrum remained reduced, but denaturation in urea rapidly resulted in reoxidation of the flavin. Under these same denaturing conditions, 96% of the radioactivity associated with the enzyme remained bound, therefore indicating that allylamine attachment is not to the flavin coenzyme but rather to an active site amino acid residue. The adduct also was stable to base and, to a lesser degree, acid treatment. Although allylamine and N-cyclopropylbenzylamine appear to be oxidized by monoamine oxidase to give 3-(amino acid residue) propanal adducts, two different amino acids seem to be involved because of a difference in stability of the adducts. The mechanisms for inactivation of monoamine oxidase by allylamine and reactivation by benzylamine are discussed in relation to previously reported results.  相似文献   

15.
The Amphibacillus xylanus NADH oxidase, which catalyzes the reduction of oxygen to hydrogen peroxide with beta-NADH, can also reduce hydrogen peroxide to water in the presence of free flavin adenine dinucleotide (FAD) or the small disulfide-containing Salmonella enterica AhpC protein. The enzyme has two disulfide bonds, Cys128-Cys131 and Cys337-Cys340, which can act as redox centers in addition to the enzyme-bound FAD (K. Ohnishi, Y. Niimura, M. Hidaka, H. Masaki, H. Suzuki, T. Uozumi, and T. Nishino, J. Biol. Chem. 270:5812-5817, 1995). The NADH-FAD reductase activity was directly dependent on the FAD concentration, with a second-order rate constant of approximately 2.0 x 10(6) M(-1) s(-1). Rapid-reaction studies showed that the reduction of free flavin occurred through enzyme-bound FAD, which was reduced by NADH. The peroxidase activity of NADH oxidase in the presence of FAD resulted from reduction of peroxide by free FADH(2) reduced via enzyme-bound FAD. This peroxidase activity was markedly decreased in the presence of oxygen, since the free FADH(2) is easily oxidized by oxygen, indicating that this enzyme system is unlikely to be functional in aerobic growing cells. The A. xylanus ahpC gene was cloned and overexpressed in Escherichia coli. When the NADH oxidase was coupled with A. xylanus AhpC, the peroxidase activity was not inhibited by oxygen. The V(max) values for hydrogen peroxide and cumene hydroperoxide reduction were both approximately 150 s(-1). The K(m) values for hydrogen peroxide and cumene hydroperoxide were too low to allow accurate determination of their values. Both AhpC and NADH oxidase were induced under aerobic conditions, a clear indication that these proteins are involved in the removal of peroxides under aerobic growing conditions.  相似文献   

16.
A general l-amino acid oxidase (l-amino acid: oxygen oxidoreductase (deaminating), EC 1.4.3.2.) has been characterized in Corynebacterium. The enzyme is soluble (MW 130 000–140 000) and is active with most l-α-amino acids but not with aspartate, threonine, proline and glycine. It is subject to substrate inhibition. This amino acid oxidase is induced along with catalase by growth in the presence of amino acids as a nitrogen source and is repressed when ammonium ions are present in the medium. Its probable physiological function is to allow the utilization of amino acids as a nitrogen source.  相似文献   

17.
Abstract: We have analyzed free chiral amino acids (aspartate and serine) in the human frontal cortex at different ontogenic stages (from 14 weeks of gestation to 101 years of age) by HPLC with fluorometric detection after derivatization with N-tert -butyl-oxycarbonyl- l -cysteine and o -phthaldialdehyde. Exceptionally high levels of free d -aspartate and d -serine were demonstrated in the fetal cortex at gestational week 14. The ratios of d -aspartate and of d -serine to the total corresponding amino acids were also high, at 0.63 and 0.27, respectively. The concentration of d -aspartate dramatically decreased to a trace level by gestational week 41 and then remained very low during all postnatal stages. In contrast, the frontal tip contained persistently high levels of d -serine throughout embryonic and postnatal life, whereas the d -amino acid content in adolescents and aged individuals was about half of that in the fetuses. Because d -aspartate and d -serine are known to have selective actions at the NMDA-type excitatory amino acid receptor, the present data suggest that these d -amino acids might play a pivotal role in cerebral development and functions that are related to the NMDA receptor.  相似文献   

18.
Zeng J  Liu Y  Wu L  Li D 《Biochimica et biophysica acta》2007,1774(12):1628-1634
Medium-chain acyl-CoA dehydrogenase (MCAD) and acyl-CoA oxidase (ACO) are key enzymes catalyzing the rate-determining step for the beta-oxidation of fatty acids. Tyr375 of MCAD is conserved in all acyl-CoA dehydrogenases and is an important residue for substrate binding. Four Tyr375 variant enzymes of rat liver MCAD were obtained through site-directed mutagenesis. Y375K was found to have intrinsic acyl-CoA oxidase activity, which was confirmed using HPLC analysis, while the wild-type and other Tyr375 variant enzymes did not show detectable oxidase activity. The kinetic parameters for the oxidase activity of Y375K variant enzyme were determined to be k(cat) of 320+/-80 h(-1) and K(M) of 30+/-15 microM using hexanoyl-CoA as the substrate. The oxidase activity of Y375K increased more than 200 times compared with that reported for the MCAD wild-type enzyme from mammalian sources. Molecular modeling study shows that the solvent accessible area for Y375K variant enzyme is wider than that of the wild-type enzyme, which indicates that Tyr375 may function as a switch against solvent accession. The mutation of this residue to Lys375 allows molecular oxygen to enter into the catalytic site serving as the electron acceptor for the reduced FAD cofactor.  相似文献   

19.
The NMDAR (N-methyl-D-aspartate receptor) is a central regulator of synaptic plasticity and learning and memory. hDAAO (human D-amino acid oxidase) indirectly reduces NMDAR activity by degrading the NMDAR co-agonist D-serine. Since NMDAR hypofunction is thought to be a foundational defect in schizophrenia, hDAAO inhibitors have potential as treatments for schizophrenia and other nervous system disorders. Here, we sought to identify novel chemicals that inhibit hDAAO activity. We used computational tools to design a focused, purchasable library of compounds. After screening this library for hDAAO inhibition, we identified the structurally novel compound, ‘compound 2’ [3-(7-hydroxy-2-oxo-4-phenyl-2H-chromen-6-yl)propanoic acid], which displayed low nM hDAAO inhibitory potency (Ki=7 nM). Although the library was expected to enrich for compounds that were competitive for both D-serine and FAD, compound 2 actually was FAD uncompetitive, much like canonical hDAAO inhibitors such as benzoic acid. Compound 2 and an analog were independently co-crystalized with hDAAO. These compounds stabilized a novel conformation of hDAAO in which the active-site lid was in an open position. These results confirm previous hypotheses regarding active-site lid flexibility of mammalian D-amino acid oxidases and could assist in the design of the next generation of hDAAO inhibitors.  相似文献   

20.
Kynurenine-3-monooxygenase (KM), the third enzyme in the kynurenine (KYN) pathway from tryptophan to quinolinic acid (QA), is a monooxygenase requiring oxygen, NADPH and FAD for the catalytic oxidation of L-kynurenine to 3-hydroxykynurenine and water. KM is innately low in the brain and similar in activity to indoleamine oxidase, the rate-limiting pathway enzyme. Accumulation in the CNS of QA, a known excitotoxin, is proposed to cause convulsions in several pathologies. Thus, we theorized that hyperbaric oxygen (HBO) induced convulsions arise from increased QA via oxygen K, effects on this pathway [Brown OR, Draczynska-Lusiak. Oxygen activation and inactivation of quinolinate-producing and iron-requiring 3-hydroxyanthranilic acid oxidase: a role in hyperbaric oxygen-induced convulsions? Redox Report 1995; 1: 383-385]. To complement prior studies on the effects of oxygen on pathway enzymes, in this paper we report the effects of oxygen on KM. Brain and liver KM enzyme are not known to be identical, and some systemically-produced KYN pathway intermediates can permeate the brain and might stimulate the brain pathway. Thus, KM from both brain and liver was assayed at various oxygen substrate concentrations to evaluate, in vitro, the potential effects of increases in oxygen, as would occur in mammals breathing therapeutic and convulsive HBO. In crude tissue extracts, KM was not activated during incubation in HBO up to 6 atm. The effects of oxygen as substrate on brain and liver KM activity was nearly identical: activity was nil at zero oxygen with an apparent oxygen Km of 20-22 microM. Maximum KM activity occurred at about 1000 microM oxygen and decreased slightly to plateau from 2000 to 8000 microM oxygen. This compares to approximately 30-40 microM oxygen typically reported for brain tissue of humans or rats breathing air, and an unknown but surely much lower value (perhaps below 1 microM) intracellularly at the site of KM. Thus HBO, as used therapeutically and at convulsive pressures, likely stimulates flux through the KM-catalyzed step of the KYN pathway in liver and in brain and could increase brain QA, by Km effects on brain KM, or via increased KM pathway intermediates produced systemically (in liver) and transported into the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号