首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-temperature electron paramagnetic resonance (EPR) spectrometry on granulocytes prepared from pig blood was carried out with concentrated cellular and subcellular fractions to characterize EPR signals of cytochrome b-558 (cyt b-558). A thick cell suspension (approximately 2 x 10(9) cells/ml), containing mostly neutrophils, showed typical high-spin EPR signals due to myeloperoxidase (MPO) and a low spin signal at a g value of around 3.2. A similar thick granulocyte suspension containing eosinophils showed not only these signals but also low spin heme signals at g values of 2.86, 2.13, and 1.66, which have been reported to be of cyt b-558 (Ueno et al. 1991, FEBS Lett. 281, 130-132). MPO and eosinophil peroxidase (EPO) were released from the membrane fractions with 50 mM phosphate buffer (pH 7.0) containing 1 M NaCl, and then were highly concentrated, in which no cyt b-558 was detected by absorption spectra. The signal at a g value of 2.86 was found only in the EPO fraction, suggesting that this signal is derived from a low-spin form of an EPO-complex, but neither from MPO nor cyt b-558. The O2(-)-forming NADPH oxidase associated in the membranes was solubilized with heptyl-thio-glucoside at 0 degree C and concentrated up to 45 microM cyt b-558 with no modification of the heme moiety confirmed by its O2(-)-generating activity and lack of carbon monoxide-binding capacity. Cyt b-558 showed an anisotropic signal at a g value of 3.2 +/- 0.05, which was cyanide-insensitive and reducible with reductants. The signal intensity was concentration dependent, suggesting that the g = 3.2 signal is characteristic of the low-spin heme iron in cyt b-558.  相似文献   

2.
Succinate:menaquinone-7 oxidoreductase (complex II) of the Gram-positive bacterium Bacillus subtilis consists of equimolar amounts of three polypeptides; a 65-kDa FAD-containing polypeptide, a 28-kDa iron-sulfur cluster containing polypeptide, and a 23-kDa membrane-spanning cytochrome b558 polypeptide. The enzyme complex was overproduced 2-3-fold in membranes of B. subtilis cells containing the sdhCAB operon on a low copy number plasmid and was purified in the presence of detergent. The cytochrome b558 subunit alone was similarly overexpressed in a complex II deficient mutant and partially purified. Isolated complex II catalyzed the reduction of various quinones and also quinol oxidation. Both activities were efficiently albeit not completely blocked by 2-n-heptyl-4-hydroxyquinoline N-oxide. Chemical analysis demonstrated two protoheme IX per complex II. One heme component was found to have an Em,7.4 of +65 mV and an EPR gmax signal at 3.68, to be fully reducible by succinate, and showed a symmetrical alpha-band absorption peak at 555 nm at 77 K. The other heme component was found to have an Em,7.4 of -95 mV and an EPR gmax signal at 3.42, was not reducible by succinate under steady-state conditions, and showed in the reduced state an apparent split alpha-band absorption peak with maxima at 553 and 558 nm at 77 K. Potentiometric titrations of partially purified cytochrome b558 subunit demonstrated that the isolated cytochrome b558 also contains two hemes. Some of the properties, i.e., the alpha-band light absorption peak at 77 K, the line shapes of the EPR gmax signals, and reactivity with carbon monoxide were observed to be different in B. subtilis cytochrome b558 isolated and in complex II. This suggests that the bound flavoprotein and iron-sulfur protein subunits protect or affect the heme environment in the assembled complex.  相似文献   

3.
A soluble enzymically active cytochrome b.c1 complex has been purified from baker's yeast mitochondria by a procedure involving solubilization in cholate, differential fractionation with ammonium sulfate, and ultracentrifugation. The resulting particle is free of both cytochrome c oxidase and succinate dehydrogenase activities. The complex contains cytochromes b and c1 in a ratio of 2:1 and quinone and iron-sulfur protein in amounts roughly stoichiometric with cytochrome c1. EPR spectroscopy has shown the iron-sulfur protein to be present mainly as the Rieske protein. EPR spectroscopy also shows a heterogeneity in the cytochrome b population with resonances appearing at g = 3.60 (cytochrome bK) and g = 3.76 (cytochrome bT). A third EPR resonance appearing in the region associated with low spin ferric hemes (g = 3.49) is assigned to cytochrome c1. Anaerobic titration of the complex with dithionite confirmed the heterogeneity in the cytochrome b population and demonstrated that the oxidation-reduction potential of the iron-sulfur protein is approximately 30 mV more positive than cytochrome c1. An intense EPR signal assigned to the coenzyme Q free radical appeared midway in the reductive titration; this signal disappeared toward the end of the titration. A conformational change in the iron-sulfur protein attendant on reduction of a low potential species was noted.  相似文献   

4.
The spin state of the heme in superoxide (O(2)(.)(-))-producing cytochrome b(558) purified from pig neutrophils was examined by means of room-temperature magnetic circular dichroism (MCD) under physiological conditions. Cytochrome b(558) with varying amounts of low-spin and high-spin heme was prepared by either pH adjustment or heat treatment, and the O(2)(.)(-)-forming activity in a cell-free system was found to correlate with the low-spin heme content. The possibility that the O(2)(.)(-)-forming activity results from a transient high-spin ferric heme form that is induced during activation by anionic amphophils has also been investigated. EPR spectra of cytochrome b(558) activated by either arachidonic acid or myristic acid, showed that a transient high-spin ferric species accounting for approximately 50% of the heme appeared in the presence of arachidonic acid, but not in the presence of myristic acid. Hence the appearance of a transient high-spin ferric heme species on activation with an amphophil does not afford a common activation mechanism in the NADPH oxidase system. The EPR results for cytochrome b(558) activated with arachidonic acid showed that the transient high-spin ferric heme can bind cyanide. However, the high-spin ferric heme does not contribute to the O(2)(.)(-) production of cytochrome b(558) in cell-free assays in the presence of cyanide.  相似文献   

5.
Cytochrome b558, which is considered to be an essential component of the phagocytic superoxide (O2-)-generating system, was highly purified from porcine neutrophils. The isolated cytochrome was resolved into two polypeptides with molecular masses of 60-90 and 19 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. For enzymatic reduction of purified cytochrome b558, we utilized hepatic NADPH-cytochrome P450 reductase purified from rat liver microsomes. More than 80% of the cytochrome was reduced by incubation with the reductase and NADPH under the anaerobic condition, and was quickly reoxidized by the air. As indicated by measurement of oxygen consumption, the purified cytochrome catalytically reduced oxygen at a rate equal to approximately 30% of the activity of the phorbol myristate acetate-activated cells on the basis of cytochrome b558 content. Electron paramagnetic resonance study with a spin trapping agent 5, 5-dimethyl-1-pyrroline-1-oxide demonstrated that O2- is the exclusive primary product in the reduction of oxygen by the cytochrome. This gives direct evidence that cytochrome b558 functions as the terminal oxidizing enzyme in the O2- -generating system of neutrophils. This also establishes a new functional class of heme proteins that catalyzes one-electron reduction of molecular oxygen.  相似文献   

6.
A small soluble cytochrome c-554 purified from Methylosinus trichosporium OB3b has been purified and analyzed by amino acid sequencing, mass spectrometry, visible, CD and EPR spectroscopies. It is found to be a mono heme protein with a characteristic cytochrome c fold, thus fitting into the class of cytochrome c(2), which is the bacterial homologue of mitochondrial cytochrome c. The heme iron has a Histidine/Methionine axial ligation and exhibits a highly anisotropic/axial low spin (HALS) EPR signal, with a g(max) at 3.40, and ligand field parameters V/ξ = 0.99, Δ/ξ = 4.57. This gives the rhombicity V/Δ = 0.22. The structural basis for this HALS EPR signal in Histidine/Methionine ligated hemes is not resolved. The ligand field parameters observed for cytochrome c-554 fits the observed pattern for other cytochromes with similar ligation and EPR behaviour.  相似文献   

7.
Cytochrome b558 of the Bacillus subtilis succinate dehydrogenase complex was studied by electron-paramagnetic-resonance (EPR) spectroscopy. The cytochrome amplified in Escherichia coli membranes by expression of the cloned cytochrome gene and in the succinate dehydrogenase complex immunoprecipitated from solubilized B. subtilis membranes, respectively, is shown to be low spin with a highly anisotropic (gmax approximately equal to 3.5) EPR signal. The amino acid residues most likely forming fifth and sixth axial ligands to heme in cytochrome b558 are discussed on the basis of the EPR signal and the recently determined gene sequence (K. Magnusson, M. Philips, J.R. Guest, and L. Rutberg, J. Bacteriol. 166:1067-1071, 1986) and in comparison with other b-type cytochromes.  相似文献   

8.
Submitochondrial particles isolated from Tetrahymena pyriformis contain essentially the same redox carriers as those present in parental mitochondria: at pH 7.2 and 22 degree C there are two b-type pigments with half-reduction potentials of --0.04 and --0.17 V, a c-type cytochrome with a half reduction potential of 0.215 V, and a two-component cytochrome a2 with Em7.2 of 0.245 and 0.345 V. EPR spectra of the aerobic submitochondrial particles in the absence of substrate show the presence of low spine ferric hemes with g values at 3.4 and 3.0, a high spin ferric heme with g =6, and a g=2.0 signal characteristic of oxidized copper. In the reduced submitochondrial particles signals of various iron-sulfur centers are observed. Cytochrome c553 is lost from mitochondria during preparation of the submitochondrial particles. The partially purified cytochrome c553 is a negatively charged protein at neutral pH with an Em7.2 of 0.25 V which binds to the cytochrome c-depleted Tetrahymena mitochondria in the amount of 0.5 nmol/mg protein with KD of 0.8.10(-6) M. Reduced cytochrome c553 serves as an efficient substrate in the reaction with its own oxidase. The EPR spectrum of the partially purified cytochrome c553 shows the presence of a low spin ferric heme with the dominant resonance signal at g=3.28. A pigment with an alpha absorption maximum at 560 nm can be solubilized from the Tetrahymena cells with butanol. This pigments has a molecular weight of approx. 18 000, and Em7.2 of--0.17 V and exhibits a high spin ferric heme signal at g=6.  相似文献   

9.
We have attempted to purify the heme moiety of cytochrome b558 from human neutrophils. Cytochrome b558 was solubilized from the crude membrane fraction which was pretreated with both 1 M potassium phosphate buffer and 1% octyl glucoside at low ionic strength. The solubilization of cytochrome b558 was carried out efficiently with 1.6% octyl glucoside in the presence of 100 mM phosphate buffer. Solubilized cytochrome b558 was purified by hydroxylapatite, DEAE-Sephacel, and Mono Q fast protein liquid chromatography. The specific content of purified cytochrome b558 was 37 nmol/mg of protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of purified cytochrome b558 revealed a single band of 20,000 Da. The large subunit of cytochrome b558, which has been reported by others, could not be found in purified cytochrome b558 even with silver staining. The amino acid composition of the heme-containing moiety of cytochrome b558 was abundant in hydrophobic amino acids. The circular dichroism spectra of both oxidized and reduced b558-type cytochromes exhibited bilobed bands with wavelengths of crossover points closely corresponding to those of the maxima in the optical absorbance spectra at the Soret region. Furthermore, there were some differences in the shoulders and peak widths of CD spectra between oxidized and reduced b558-type cytochromes. These results indicate that this method provides the purification of the small subunit of human cytochrome b558 which is the heme-carrying subunit of cytochrome b558, and suggest that cytochrome b558 has heme-heme interaction and some conformational changes in the alternation of the redox state.  相似文献   

10.
EPR studies of the cytochrome-d complex of Escherichia coli   总被引:2,自引:0,他引:2  
We have examined the thermodynamic and EPR properties of one of the ubiquinol oxidase systems (the cytochrome d complex) of Escherichia coli, and have assigned the EPR-detectable signals to the optically identified cytochromes. The axial high spin g = 6.0 signal has been assigned to cytochrome d based on the physicochemical properties of this signal and those of the optically defined cytochrome d. A rhombic low spin species at gx,y,z = 1.85, 2.3, 2.5 exhibited similar properties but was present at only one-fifth the concentration of the axial high spin species. Both species have an Em7 of 260 mV and follow a -60 mV/pH unit dependence from pH 6 to 10. The rhombic high spin signal with gy,z = 5.5 and 6.3 has been assigned to cytochrome b-595. This component has an Em7 of 136 mV and follows a -30 mV/pH unit dependence from pH 6 to 10. Lastly, the low spin gz = 3.3 signal which titrates with an Em7 of 195 mV and follows a -40 mV/pH unit dependence from pH 6 to 10 has been assigned to cytochrome b-558. Spin quantitation of the high-spin signals indicates that cytochrome d and b-595 are present in approximately equal amounts. These observations are discussed in terms of the stoichiometry of the prosthetic groups and its implications on the mechanism of electron transport.  相似文献   

11.
Assignment of ESR signals of Escherichia coli terminal oxidase complexes   总被引:1,自引:0,他引:1  
The ESR signals of all the major components of the aerobic respiratory chain of Escherichia coli were measured and assigned at liquid helium temperature. Cytochrome b-556 gives a weak high-spin signal at g = 6.0. The terminal oxidase cytochrome b-562 . o complex gives signals at g = 6.0, 3.0 and 2.26, and the terminal oxidase cytochrome b-558 . d complex gives signals at g = 6.0, 2.5 and 2.3. A signal derived from cupric ions in the purified cytochrome b-562 . o complex was observed near g = 2.0. It was shown by the effects of KCN or NaN3 on cytochromes under the air-oxidized conditions that cytochrome o has a high-spin heme and cytochrome d has a low-spin heme. The E'm values for cytochromes b-558 and d, respectively, determined by potentiometric titration of the ESR signals were 140 and 240 mV in the membrane preparation, and 30 and 240 mV in the purified preparation. The oxidized cytochrome d gave intense low-spin signals at g = 2.5 and 2.3, while cytochrome d under the air-oxidized conditions gave corresponding signals of only very low intensity. These results suggested that most of the cytochrome d under the air-oxidized conditions contains a diamagnetic iron atom with a bound dioxygen.  相似文献   

12.
The electron paramagnetic resonance (EPR) spectra of rat adrenal zona fasciculate mitochondria showed peaks corresponding to low spin ferric cytochrome P-450 with apparent g values of 2.424, 2.248 and 1.917, and weak signals due to high spin ferric cytochrome P-450 with gx values of 8.08 and 7.80. The former is attributed to cholesterol side chain cleavage cytochrome P-450, the latter to 11beta-hydroxylase cytochrome P-450. On addition of deoxycorticosterone the g = 7.80 signal was elevated and there was an associated drop in the low spinal signal. As the pH was reduced from 7.4 to 6.1, the g = 8.08 signal increased with again a drop in intensity of the low spin signal. Mitochondria from the zona glomerulosa showed similar spectral properties to those described above. Addition of succinate, isocitrate or pregnenolone caused a loss of the g = 8.08 signal. Addition of calcium increased the magnitude of the g = 8.08 signal, and caused a slight reduction in the magnitude of the low spin signal. Also, addition of deoxycorticosterone, pregnenolone, succinate or isocitrate caused slight shifts of the outer lines of the low spin spectrum. Interaction of mitochondrial cytochrome P-450 with metyrapone and aminoglutethimide modified the low spinal parameters. Adrenal microsomal cytochrome P-450 had low spin ferric g values of 2.417, 2.244 and 1.919 and a high spin ferric gxy values of 7.90 and 3.85, distinct from the values obtained with mitochondria.  相似文献   

13.
The resonance Raman spectra of neutrophil cytochrome b558 obtained upon Soret excitation indicate that the heme is low spin six-coordinate in both ferric and ferrous oxidation states; comparison with the spectra of bis-imidazole hemin suggests imidazole or imidazolate axial ligation. Minor bands attributable to vibrational motions of ring-conjugated vinyl substituents were also observed, consistent with a heme assignment of protoporphyrin IX. The spectra of deoxycholate-solubilized cytochrome b558 were indistinguishable from neutrophil plasma membranes or specific granules, as were spectra from unstimulated and phorbol myristate acetate-stimulated cells, indicating that the hemes are structurally identical in various subcellular environments and cellular physiological states. However, structural complexity was suggested by biphasic ferric-ferrous photoreduction under 413-nm illumination and the absence of an EPR spectrum for the ferric heme under conditions where simple bis-imidazole heme-containing cytochromes are expected to give detectable signals. Midpoint reduction potentials and resonance Raman spectra of the soluble cytochrome b558 from an individual with cytochrome b558 positive (type IA.2) chronic granulomatous disease were nearly identical to normal oxidase, with the exception that the deficient oxidase did not undergo heme photoreduction. Possible structural models are discussed in relation to other physical properties (ligand binding, thermodynamic potentials) exhibited by the cytochrome.  相似文献   

14.
The EPR spectra of cytochrome b-562 isolated from the cytochrome b-c1 complex of Rhodopseudomonas sphaeroides were measured at liquid helium temperature. The purified cytochrome b-562 gives a high spin signal at g = 6.0. Anaerobic titration of this signal confirmed the presence of two redox components with Em = 40 and -110 mV at pH 7.5. These values are consistent with the published ones, Em = 55 and -100 mV at pH 7.0, that were optically estimated for the same type of preparation (Iba et al. (1985) FEBS Lett. 183, 151-154). The power saturation behavior of the g = 6.0 signal at different redox potentials indicated a direct spin-spin interaction between these two redox centers.  相似文献   

15.
An electron paramagnetic resonance (EPR) signal near g=6 in Photosystem II (PSII) membranes has been assigned to a high spin form of cytochrome (Cyt) b(559) (R. Fiege, U. Schreiber, G. Renger, W. Lubitz, V.A. Shuvalov, FEBS Lett. 377 (1995) 325-329). Here we have further investigated the origin of this signal. A slow formation of the signal during storage in the dark is observed in oxygen-evolving PSII membranes, which correlate with the oxidation of Fe(2+) by plastosemiquinone or oxygen. Removal of oxygen inhibits formation of the high spin iron signal. The g=6 EPR signal is photoreduced at cryogenic temperatures and is restored slowly by subsequent dark storage at 77 K. The amplitude of the photoreduced signal increases as the pH is lowered, which shows that the origin is not the hydroxyl ligated Cyt b(559) species proposed previously. Different cryoprotectants also influence the amplitude and lineshape of the high spin iron signal in a manner suggesting that smaller cryoprotectants can penetrate the iron environment. A correlation between the high spin iron and g=1.6 EPR signal assigned to an interaction involving the semiquinones of Qa and Qb is shown. It is concluded that the appearance of the high spin iron signal in oxygen-evolving PSII membranes involves reduced PSII electron acceptors and oxygen and suggests that the signal is from the non-haem iron of PSII.  相似文献   

16.
The EPR spectra of NH(2)-terminal-truncated P450 cytochrome 2B4 and of several active site mutants that were previously shown to be profoundly altered in catalytic properties were determined. From these spectra it was seen that the truncated P450 2B4, like the full length cytochrome, exists as the low spin ferric form, but upon mutation of threonine 302 to alanine approximately 40% of the cytochrome is present as the high spin ferric form (g approximately 8, 4, 2). A similar situation was observed in the double mutant E310L T302A, but not in the single mutant E301L. A rhombic high spin signal (g approximately 8, 4, 2) was observed when a substrate such as styrene, benzphetamine, or cyclohexane was added to the truncated cytochrome. Accompanying this change was the appearance of a signal at g = 1.98. Conversely, an axial high spin signal was observed (g approximately 6, 6, 2) when cyclohexanecarboxaldehyde or 3-phenylpropionaldehyde was added to the truncated P450 2B4.  相似文献   

17.
Cytochrome b558 of pig blood neutrophils was purified from the membranes of resting cells to examine its ability to reconstitute superoxide (O2-)-forming NADPH oxidase activity in a cell-free assay system containing cytosol and fatty acid. The membrane-associated cytochrome b558 was solubilized with a detergent, n-heptyl beta-thioglucoside, and purified by DEAE-Sepharose, heparin-Sepharose, and Mono Q column chromatography. The final preparation of cytochrome containing 11.5 nmol of protoheme/mg of protein gave bands of the large and small subunits on immunoblotted gel. The cell-free system with the purified cytochrome alone as a membrane component showed little O2(-)-generating activity in the absence of exogenous FAD. However, the system showed high O2(-)-generating activity of 31.8 mol/s/mol of cytochrome b558 (52.5% of the original O2(-)-generating activity of the solubilized membranes) in the presence of a nitro blue tetrazolium (NBT) reductase fraction that was separated from the cytochrome b fraction by heparin-Sepharose chromatography. Heat treatment of the NBT reductase fraction resulted in loss of the O2(-)-generating activity in the reconstituted system. The O2(-)-forming activity of the reconstituted system was markedly decreased by removal of FAD from the NBT reductase fraction and was restored by readdition of FAD to the FAD-depleted reductase. The reconstituted system containing purified cytochrome b558 plus the NBT reductase showed approximately 100 times higher O2(-)-generating activity than a system containing rabbit liver NADPH-cytochrome P-450 reductase instead. These results suggest that both the FAD-dependent NBT reductase and cytochrome b558 are required as membrane redox components for O2(-)-forming NADPH oxidase activity. The present data are discussed in comparison with previously reported results on reconstituted systems containing added free FAD.  相似文献   

18.
The binding of cholest-5-ene-3beta,20alpha-diol (20alpha-hydroxycholesterol), 11-deoxycorticosterone, and aminoglutethimide to cytochrome P-450 in bovine adrenal mitochondria was measured by changes in optical spectra at room temperature and by EPR spectra at 14 K. The two methods provided nearly identical quantitation of these interactions with cytochrome P-450. Two distinct high spin forms of cytochrome P-450 were revealed by EPR spectra. The predominant high spin species (g = 8.2) was decreased by addition of 20alpha-hydroxycholesterol and elevated pH but was increased by addition of cholesterol. The minor high spin species (g = 8.1) was incrreased by addition of deoxycorticosterone but decreased by low concentrations of metyrapone. The two forms were evidently not in equilibrium and have been assigned to distinct forms of cytochrome P-450 involved in, respectively, cholesterol side chain cleavage (P-450scc) and steroid 11beta hydroxylation (P-450(11)beta). The high spin states are derived from complexes of these P-450 cytochromes with endogenous substrates, which are, respectively, cholesterol and deoxycorticoids. A high to low spin transition was observed when these complexes were turned over by initiating hydroxylation with malate. The contributions of cytochromes P-450(11)beta and P-450scc to the low spin spectrum were also resolved by similar means. At least 20% of P-450scc is in the low spin state while about 90% of P-450(11)beta is low spin in isolated beef adrenal mitochondria. Low spin complexes of cytochrome P-450scc with 20alpha-hydroxycholesterol and 3beta-hydroxypregn-5-ene-20-one (pregnenolone) gave distinct EPR spectra. Aminoglutethimide interacted with the total cytochrome P-450 content of the bovine adrenal mitochondria forming low spin complexes. Both optical and EPR data indicated binding to two forms of cytochrome P-450. These results suggest a detailed correlation between the spin state and absorbance changes seen at room temperature, illustrate that EPR allows the distinction of two principal forms of P-450, and suggest that there is no appreciable change in the spin state of either cytochrome between 14 K and 300 K.  相似文献   

19.
Carbon monoxide (CO) dehydrogenase was purified, both aerobically and anaerobically, to apparent homogeneity from Methanothrix soehngenii. The enzyme contained 18 +/- 2 (n = 6) mol Fe/mol and 2.0 +/- 0.1 (n = 6) mol Ni/mol. Electron paramagnetic resonance (EPR) spectra of the aerobically purified CO dehydrogenase showed one sharp EPR signal at g = 2.014 with several characteristics of a [3Fe-4S]1+ cluster. The integrated intensity of this signal was low, 0.03 S = 1/2 spin/alpha beta dimer. The 3Fe spectrum was not affected by incubation with CO or acetyl-coenzyme A, but could be reduced by dithionite. The spectrum of the reduced, aerobically purified enzyme showed complex EPR spectra, which had several properties typical of two [4Fe-4S]1+ clusters, whose S = 1/2 spins weakly interacted by dipolar coupling. The integrated intensity was 0.1-0.2 spin/alpha beta dimer. The anaerobically isolated enzyme showed EPR spectra different from the reduced aerobically purified enzyme. Two major signals were apparent. One with g values of 2.05, 1.93 and 1.865, and an Em7.5 of -410 mV, which quantified to 0.9 S = 1/2 spin/alpha beta dimer. The other signal with g values of 1.997, 1.886 and 1.725, and an Em7.5 of -230 mV gave 0.1 spin/alpha beta dimer. When the enzyme was incubated with its physiological substrate acetyl-coenzyme A, these two major signals disappeared. Incubation of the enzyme under CO atmosphere resulted in a partial disappearance of the spectral component with g = 1.997, 1.886, 1.725. Acetyl-coenzyme A/CO exchange activity, 35 nmol.min-1.mg-1 protein, which corresponded to 7 mol CO exchanged min-1 mol-1 enzyme, could be detected in anaerobic enzyme preparations, but was absent in aerobic preparations. Carbon dioxide also exchanged with C-1 of acetyl-coenzyme A, but at a much lower rate than CO and to a much lower extent.  相似文献   

20.
Paclet MH  Coleman AW  Vergnaud S  Morel F 《Biochemistry》2000,39(31):9302-9310
NADPH oxidase activity depends on the assembly of the cytosolic activating factors, p67-phox, p47-phox, p40-phox, and Rac with cytochrome b(558). The transition from an inactive to an active oxidase complex induces the transfer of electrons from NADPH to oxygen through cytochrome b(558). The assembly of oxidase complex was studied in vitro after reconstitution in a heterologous cell-free assay by using true noncontact mode atomic force microscopy. Cytochrome b(558) was purified from neutrophils and Epstein-Barr virus-immortalized B lymphocytes and incorporated into liposomes. The effect of protein glycosylation on liposome size and oxidase activity was investigated. The liposomes containing the native hemoprotein purified from neutrophils had a diameter of 146 nm, whereas after deglycosylation, the diameter was reduced to 68 nm, although oxidase activity was similar in both cases. Native cytochrome b(558) was used after purification in reconstitution experiments to investigate the topography of NADPH oxidase once it was assembled. For the first time, atomic force microscopy illustrated conformational changes of cytochrome b(558) during the transition from the inactive to the active state of oxidase; height measurements allow the determination of a size of 4 nm for the assembled complex. In the processes that were studied, p67-phox displayed a critical function; it was shown to be involved in both assembly and activation of oxidase complex while p47-phox proceeded as a positive effector and increased the affinity of p67-phox with cytochrome b(558), and p40-phox stabilizes the resting state. The results suggest that although an oligomeric structure of oxidase machinery has not been demonstrated, allosteric regulation mechanisms may be proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号