首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of oxytocin, prostaglandin F2 alpha (PGF2 alpha), and clenbuterol on uterine contractility and tone during anestrus and diestrus, and during mobility and postfixation of the embryonic vesicle were studied in 51 pony mares. Contractility was assessed by scoring real-time ultrasound images, and tone was assessed by transrectal digital compression. Scoring was done by an operator who had no knowledge of treatment assignments. In anovulatory mares primed with progesterone for 16 d, oxytocin did not significantly alter contractility but did stimulate an increase in tone, whereas clenbuterol depressed both contractility and tone. The PGF2 alpha given on Days 12, 15, and 18 did not significantly alter uterine contractility in pregnant mares, but it increased contractility on all days in nonpregnant mares. Clenbuterol decreased both tone and contractility when given to pregnant mares on the day of embryonic-vesicle fixation, while it decreased tone but not contractility when given on Day 19. Clenbuterol treatment was associated with dislodgment of the fixed embryo in only 1 of 5 mares. However, on Day 19, clenbuterol treatment was associated with a change in shape of the conceptus when viewed in a cross section of the uterine horn. The conceptus shape became more circular rather than irregular or triangular, as indicated by a significant decrease in the variation in the distances between adjacent walls measured in 4 different directions. Results indicated that: 1) oxytocin increased uterine tone but did not alter contractility in progesterone-primed anestrous mares; 2) on Days 12, 15 and 18, PGF2 alpha increased uterine contractility in nonpregnant mares but not in pregnant mares; 3) clenbuterol decreased both tone and contractility at all reproductive states except for a lack of a decrease in contractility on Day 19 of pregnancy; and 4) reduction in uterine tone from clenbuterol treatment on Day 19 was associated with a change in the two-dimensional shape of the in situ conceptus from irregular to a more circular form.  相似文献   

2.
1. Contractility, in vitro, was examined in uterine horns of rats acclimated to 35 degrees C and controls (22 degrees C). 2. Responses to oxytocin and prostaglandin F2 alpha were measured in the four stages of the estrus cycle and on day 4 of pregnancy. 3. Responses to oxytocin of uteri from heat acclimated rats were significantly depressed in estrus, metestrus and diestrus, while responses to prostaglandin F2 alpha were decreased in estrus and metestrus. 4. Responses to oxytocin and prostaglandin were slightly but insignificantly decreased in uteri from pregnant day 4 heat-acclimated rats.  相似文献   

3.
Cardiovascular effects of prostaglandin F2 alpha were studied upon noradrenaline (NA) injection. The injection of PGF2 alpha alone to control dogs reduced systolic volume and cardiac output, increased total peripheral resistance, and elevated the arterial and venous pressures. When NA was pre-injected, the effect of PGF2 alpha on hemodynamic values was reversed.  相似文献   

4.
Pregnancies in hamsters may be terminated by 10 mug PGF2alpha administered b.i.d. on days 4, k and 6 of gestation. Small (250 mug and above) daily injections of progesterone on the same days will reverse this PG effect; in contradistinction, 10 mg of progesterone per day failed to maintain normal pregnancies in hamsters spayed on day 5. Daily administration of 3 mg of progesterone and 1 mug of estrone essentially normalized the gestation; administration of PGF2alpha at 10 mg on days 5, 6 and 7 of pregnancy in steroid-maintained rats, resulted in pregnancy termination in all animals, while 1 mg was partly effective. These data demonstrate an extra-ovarian site of action of prostaglandin F2alpha on pregnancy in hamsters.  相似文献   

5.
Induction of abortion in mid-trimester pregnancies were performed on 26 patients. The first 12 patients were treated by intra-amniotic instillation of Prostaglandin F2 alpha, with a mean dosage of 40.2 mg. and mean abortion time of 24 hours and 41 minutes (ten patients). Fourteen additional mid-trimester abortions were performed using identical protocol plus the addition of oxytocin by intravenous infusion two hours after injection of the prostaglandin. All patients aborted, with mean dosage of PGF2 alpha of 28.2 mg. and mean abortion time of 15 hours and 37 minutes.  相似文献   

6.
Bovine luteal cells from Days 4, 8, 14 and 18 of the estrous cycle were incubated for 2 h (1 x 10(5) cells/ml) in serum-free media with one or a combination of treatments [control (no hormone), prostaglandin F2 alpha (PGF), oxytocin (OT), estradiol-17 beta (E) or luteinizing hormone (LH)]. Luteal cell conditioned media were then assayed by RIA for progesterone (P), PGF, and OT. Basal secretion of PGF on Days 4, 8, 14 and 18 was 173.8 +/- 66.2, 111.1 +/- 37.8, 57.7 +/- 15.4 and 124.3 +/- 29.9 pg/ml, respectively. Basal release of OT and P was greater on Day 4 (P less than 0.01) than on Day 8, 14 and 18 (OT: 17.5 +/- 2.6 versus 5.6 +/- 0.7, 6.0 +/- 1.4 and 3.1 +/- 0.4 pg/ml; P: 138.9 +/- 19.5 versus 23.2 +/- 7.5, 35.4 +/- 6.5 and 43.6 +/- 8.1 ng/ml, respectively). Oxytocin increased (P less than 0.01) PGF release by luteal cells compared with control cultures irrespective of day of estrous cycle. Estradiol-17 beta stimulated (P less than 0.05) PGF secretion on Days 8, 14 and 18, and LH increased (P less than 0.01) PGF production only on Day 14. Prostaglandin F2 alpha, E and LH had no effect on OT release by luteal cells from any day. Luteinizing hormone alone or in combination with PGF, OT or E increased (P less than 0.01) P secretion by cells from Days 8, 14 and 18. However on Day 8, a combination of PGF + OT and PGF + E decreased (P less than 0.05) LH-stimulated P secretion. These data demonstrate that OT stimulates PGF secretion by bovine luteal cells in vitro. In addition, LH and E also stimulate PGF release but effects may vary with stage of estrous cycle.  相似文献   

7.
Gall MA  Day BN 《Theriogenology》1987,27(3):493-505
Pregnant sows and gilts were administered either 0, 2.5, 5, 10 or 20 mg prostaglandin F(2)alpha (PGF(2)alpha) intramuscularly on Day 112 or 113 of gestation at 0800 h in an effort to induce parturition. The average interval from PGF(2)alpha injection to farrowing was 55.1 +/- 5.7, 29.4 +/- 3.1, 32.1 +/- 4.6, 27.8 +/- 1.8 and 26.9 +/- 1.1 h for 0, 2.5, 5, 10 and 20 mg, respectively. All PGF(2)alpha treatments increased (P < 0.01) over controls the number of sows farrowing 23 to 33 h after injection. The average gestation length was significantly shorter in treated gilts; however, no detrimental effect on pig performance or pig survivability was observed. A second trial evaluated the effect of a 10-mg dose of PGF(2)alpha on the induction of parturition in sows in order to obtain a majority of sows farrowing within normal working hours (0700 to 1700 h). The interval from injection to farrowing was decreased (P < 0.05) by PGF(2)alpha treatment (66.2 +/- 5.3 vs 28.1 +/- 2.2 h). Fifty-seven percent (P < 0.05) of PGF(2)alpha-treated sows farrowed between 0700 and 1700 h as compared to 13.6% for control sows. A third trial was conducted to examine a sequential treatment of PGF(2)alpha and oxytocin to control the time of parturition more precisely. Sows receiving only 10 mg of PGF(2)alpha farrowed on an average 31.1 +/- 1.4 h after injection. The injection of 40 IU oxytocin 24 to 28 h after PGF(2)alpha decreased (P < 0.05) the interval from PGF(2)alpha to farrowing (28.1 +/- 0.9 h). The addition of oxytocin increased (P < 0.05) the number of sows farrowing within 3 h of injection (33 vs 86% for PGF(2)alpha and PGF(2)alpha + oxytocin treatments, respectively). A fourth trial was designed to determine if the addition of exogenous estradiol benzoate (EB) to a sequential treatment of PGF(2)alpha and oxytocin would improve the predictability and synchronization of the induced parturition. Sows were assigned to receive either saline, 10 mg PGF(2)alpha + 40 IU oxytocin or 10 mg PGF(2)alpha + 5 mg EB + 40 IU oxytocin. The addition of EB reduced (P < 0.01) the variance in the interval from oxytocin to farrowing and added precision to the predicted time of induced parturition.  相似文献   

8.
Two studies were performed to determine effects of prostaglandin F2alpha (PGF2alpha) on continued development of pre-compacted (in vitro-produced) and compacted (in vivo-derived) bovine embryos. In Experiment 1, pre-compacted embryos were placed in KSOM media supplemented with polyvinyl alcohol (0.3%) and assigned to the following treatments: (1) control; (2) PGF-1 (1 ng/mL PGF2alpha); (3) PGF-10 (10 ng/mL PGF2alpha); (4) PGF-100 (l00 ng/mL PGF2alpha); or (5) PGE-5 (5 ng/mL PGE2). Following 4 days of incubation in assigned treatments, continued development of pre-compacted embryos to blastocysts was reduced by addition of PGF2alpha in culture medium (P = 0.002). Development did not differ between control and PGE2 treatments (P > 0.10). In Experiment 2, compacted morula' s were placed in KSOM-PVA supplemented media and assigned to one of four treatments: (1) control; (2) PGF-0.1 (0.1 ng/mL PGF2alpha); (3) PGF-1 (1 ng/mL PGF2alpha); and (4) PGF-10 (10 ng/mL PGF2alpha). After 24h in culture, embryos were washed and placed in KSOM-BSA (0.5%) without PGF2alpha for an additional 48 h until assessment for development. Continued development of compacted morula to blastocyst was not affected by addition of PGF2alpha to the culture medium (P > 0.10). However, hatching rates of embryos cultured with PGF2alpha were lower (P = 0.05). In conclusion, it is suggested that PGF2alpha has a direct negative effect on continued embryonic development of pre-compacted and compacted bovine embryos.  相似文献   

9.
The present study has been performed to investigate how PGs would participate the hatching process. Effects of indomethacin, an antagonist to PGs biosynthesis, on the hatching of mouse blastocysts were examined in vitro. Furthermore, it was studied that prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha) or 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) were added to the culture media with indomethacin. The hatching was inhibited by indomethacin yet the inhibition was reversible. In the groups with indomethacin and PGE2, no improvement was seen in the inhibition of hatching and the inhibition was irreversible. In the groups with indomethacin and PGF2 alpha, inhibition of hatching was improved in comparison with the group with indomethacin. In the groups with indomethacin and 6-keto-PGF1 alpha, no improvement was seen. The above results indicated that PGF2 alpha possibly had an accelerating effect on hatching and a high concentration of PGE2 would exert cytotoxic effect on blastocysts.  相似文献   

10.
The cardiovascular effects of prostaglandin (PG)I2 and PGF2 alpha were compared in the unanesthetized American bullfrog (Rana catesbeiana). Control mean arterial pressure (MAP) and heart rate (HR) were 25.7 +/- 1.1 mm Hg and 35.1 +/- 1.1 beats/min, respectively. Intravenous injections of PGI2 decreased MAP and increased HR in a dose-dependent fashion over the range of concentrations tested (0.03, 0.3, 3, and 10 micrograms/kg-body weight [bw]. Neither atropine (1 mg/kg-bw) nor verapamil (1 mg/kg-bw) treatment altered the MAP or HR responses to PGI2 (3 micrograms/kg-bw). However, propranolol (5 mg/kg-bw) significantly blunted the hypotensive effects without affecting the increase in HR. Prostaglandin F2 alpha (tested at 0.3, 3, 30, and 100 micrograms/kg-bw) increased both MAP and HR. Mean arterial pressure increased with concentrations greater than 0.3 microgram/kg-bw and reached peak effects at 30 micrograms/kg-bw. Prostaglandin F2 alpha increased HR at doses greater than 0.3 microgram/kg-bw. Neither the pressor nor positive chronotropic effects of PGF2 alpha (30 micrograms/kg-bw) were affected by atropine or propranolol. However, verapamil significantly attenuated the pressor effects without affecting the increase in HR. These results demonstrate that both prostaglandins have qualitatively similar effects on HR, but opposite effects on MAP. Prostaglandin I2 is a hypotensive prostaglandin, while PGF2 alpha is hypertensive. The pressor effects of PGF2 alpha are partially dependent on calcium influx. The positive chronotropic effects of both prostaglandins are independent of the autonomic nervous system, suggesting a different mechanism of action.  相似文献   

11.
Prostaglandin (PG) F2alpha that is released from the uterus is essential for spontaneous luteolysis in cattle. Although PGF2alpha and its analogues are extensively used to synchronize the estrous cycle by inducing luteolysis, corpora lutea (CL) at the early stage of the estrous cycle are resistant to the luteolytic effect of PGF2alpha. We examined the sensitivity of bovine CL to PGF2alpha treatment in vitro and determined whether the changes in the response of CL to PGF2alpha are dependent on progesterone (P4), oxytocin (OT), and PGs produced locally. Bovine luteal cells from early (Days 4-5 of the estrous cycle) and mid-cycle CL (Days 8-12 of the estrous cycle) were preexposed for 12 h to a P4 antagonist (onapristone: OP; 10(-4) M), an OT antagonist (atosiban: AT; 10(-6) M), or indomethacin (INDO; 10(-4) M) before stimulation with PGF2alpha. Although OP reduced P4 secretion (p < 0.001) only in early CL, it reduced OT secretion in the cells of both phases examined (p < 0.001). OP also reduced PGF2alpha and PGE2 secretion (p < 0.01) from early CL. However, it stimulated PGF2alpha secretion in mid-cycle luteal cells (p < 0.001). AT reduced P4 secretion in early and mid-cycle CL (p < 0.05). Moreover, PGF2alpha secretion was inhibited (p < 0.05) by AT in early CL. The OT secretion and the intracellular level of free Ca2+ ([Ca2+]i) were measured as indicators of CL sensitivity to PGF2alpha. PGF2alpha had no influence on OT secretion, although [Ca2+]i increased (p < 0.05) in the early CL. However, the effect of PGF2alpha was augmented (p < 0.01) in cells after pretreatment with OP, AT, and INDO in comparison with the controls. In mid-cycle luteal cells, PGF2alpha induced 2-fold increases in OT secretion and [Ca2+]i. However, in contrast to results in early CL, these increases were magnified only by preexposure of the cells to AT (p < 0.05). These results indicate that luteal P4, OT, and PGs are components of an autocrine/paracrine positive feedback cascade in bovine early to mid-cycle CL and may be responsible for the resistance of the early bovine CL to the exogenous PGF2alpha action.  相似文献   

12.
Tritiated prostaglandin F2 alpha ([3H]PGF2 alpha) binding to bovine corpora luteal membranes has been reexamined from the viewpoint of eventual PGF2 alpha receptor purification. Several modifications of the literature on PGF2 alpha binding allow for a more stabilized [3H]PGF2 alpha PGF2 alpha receptor complex which should then facilitate the PGF2 alpha receptor purification. Of particular importance were: identification of protease inhibitors which protect [3H]PGF2 alpha binding and protease inhibitors which are detrimental to subsequent [3H]PGF2 alpha binding; the finding that EGTA treatment of tissue homogenates greatly protects subsequent [3H]PGF2 alpha binding; the observation that Mn(+)+ substitutes for Ca(+)+ and, in fact, among the divalent cations Mn(+)+ greater than Mg(+)+ greater than Ca(+)+ in facilitating [3H]PGF2 alpha binding where as Cd(+)+, Cu(+)+ and Zn(+)+ either have no effect or are detrimental to this binding; the lack of effect of ATP, GTP, GDP and cAMP or of kinase and phosphatase inhibitors and activators to alter binding of [3H]PGF2 alpha to isolated membranes; and the ease with which the [3H]PGF2 alpha-PGF2 alpha receptor complex can be removed from the membrane in spite of the receptor being an integral membrane protein. A new simple technique for separating protein bound [3H]PGF2 alpha (PGF2 alpha receptor-[3H]PGF2 alpha complexes) from free [3H]PGF2 alpha by use of hydroxyapatite (HAP) is introduced. This HAP method is of particular use in solubilized membrane preparations (but can also be used during PG radioimmunoassays to separate free PG from antibody bound PG). These changes were required to facilitate subsequent chromatographic steps leading to identification and purification of the PGF2 alpha receptor. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Prostaglandin F2alpha determines a high proportion of abortions in the mouse when administered before implantation at a dose level of 2 mg/kg. After implantation between days 6-8 or 7-9, doses 20 times higher are necessary to produce the effect. Daily progesterone administration, 5 mg per animal, from day 1 to day 17 allow the evolution of pregnancy in 60% of the mice even when 120 mg/kg prostaglandin is given. This dose determines usually 100% abortions. No teratogenic effect has been observed.  相似文献   

14.
15.
To elucidate the role of endogenous prostaglandin F2 alpha in spontaneous and induced labor, plasma concentrations of 13, 14-dihydro-15-keto-prostaglandin F2 alpha (PGFM) were determined before the onset of labor, at onset of labor, during active labor, at the crowning of the fetal head, and 1 and 2 hours after delivery. Patients in spontaneous labor and labor induced by amniotomy, oxytocin, and prostaglandin E2 were studied. The levels of plasma PGFM in patients who entered spontaneous labor fell 2 to 3 weeks before delivery, whereas those in the induced labor group did not change until the time of induction. Although the levels of PGFM rose gradually with the progress of labor in all cases, the levels in the spontaneous labor were significantly lower in each stage than in the corresponding stage of induced labor. These results suggest that endogenous prostaglandin F2 alpha (PGF2 alpha) production decreases 2-3 weeks prior to the spontaneous onset of labor and is increased again as labor progresses, that the patterns of PGF2 alpha production are similar to each other during spontaneous labor and labor induced by various methods. Therefore, it is felt that endogenous PGF2 alpha may participate in the progress of all kinds of labor.  相似文献   

16.
Yang PC  Fang WD  Huang SY  Chung WB  Hsu WH 《Theriogenology》1996,46(7):1289-1293
We studied the effect of prostaglandin (PG) F(2alpha)-AGN 190851 on farrowing induction and compared it with that of PGF(2alpha)-oxytocin. Eighty crossbred, multiparous sows were randomly assigned to the following 4 treatment groups of 20 sows each: 1) control, saline-saline; 2) PGF(2alpha) (10 mg/sow)-oxytocin (30 IU/sow); 3) PGF(2alpha) (10 mg/sow)-AGN 190851 (0.06 mg/kg); and 4) PGF(2alpha) (10 mg/sow)-AGN 190851 (0.1 mg/kg). Either PGF(2alpha) or saline was administered intramuscularly on Day 111 of gestation at 11:30 h; AGN 190851, oxytocin or saline was administered intramuscularly 20 h after the first injection. The PGF(2alpha)-AGN 190851 (0.1 mg/kg) treated sows had the shortest mean farrowing interval (2.1 +/- 1.6 h, mean +/- SD) compared with the remaining treatment groups (control: 67.1 +/- 26.2 h; PGF(2alpha)-oxytocin: 5.6 +/- 6.7 h; PGF(2alpha)-AGN 190851 [0.06 mg/kg]: 3.0 +/- 2.8 h). Duration of farrowing, litter size, litter weight and interval from weaning to first estrus in sows were not significantly changed by these treatments. The PGF(2alpha)-oxytocin group had a significantly higher stillbirth rate than the control group, whereas the PGF(2alpha)-AGN 190851 (0.1 mg/kg) group had the lowest number of pigs born dead and stillbirth rate among the 4 treatment groups. These results suggested that the PGF(2alpha)-AGN 190851 combination can be used as an alternative method to PGF(2alpha)-oxytocin for synchronizing farrowing.  相似文献   

17.
18.
The acute effects of prostaglandin F(2alpha) (PGF) on circulating oxytocin and progesterone concentrations were characterized in mares during the mid- or late-luteal phase. Pony mares were randomly assigned to the following experimental groups based on treatment with PGF (2.5mg) or saline on Day 8 or Day 13 (Day 0=ovulation): PGF-8, PGF-13, saline-8, or saline-13 (n=7/group). Mares were fitted with indwelling, jugular vein catheters and two blood samples (-5 and 0 min) were collected prior to treatment. Treatments were administered into the jugular vein (0 min) and blood collection continued thereafter at 1 min intervals until 5 min and then at 5 min intervals until 60 min. Based on the combined data of -5 and 0 min samples, mares on Day 8 had greater (P<0.05) oxytocin concentrations than mares on Day 13. On Day 8, PGF treatment resulted in a biphasic pattern of oxytocin release. Oxytocin concentrations increased (P<0.05) 1 min after PGF treatment, decreased (P<0.05) from 1 to 10 min, and increased (P<0.05) from 10 to 30 min. Oxytocin concentrations were greater (P<0.05) from 1 to 3 min in PGF-treated than saline-treated mares and at most sample times from 15 to 60 min. On Day 13, oxytocin concentrations were greater (P<0.05) in PGF-treated than in saline-treated mares for most sample times. Mares treated with PGF on Day 8 had greater (P<0.05) oxytocin concentrations at 25, 30, and 40 min than mares on Day 13. Progesterone concentrations on Day 8 also increased by 1 min after PGF, decreased toward basal concentrations by 2-3 min, and then increased to a maximum 10 min after treatment. Subsequently, circulating progesterone decreased (P<0.05) below pretreatment concentrations by 40-50 min after PGF. In conclusion, treatment with PGF resulted in an immediate and biphasic increase in progesterone concentrations prior to the expected decrease. Treatment of mares with PGF on Day 8 resulted in an overall greater increase in systemic oxytocin concentrations compared to treatment on Day 13, and the increase on Day 8 was biphasic.  相似文献   

19.
20.
American bullfrogs, Rana catesbeiana respond to prostaglandins with changes in heart rate and blood pressure. These studies compare responses of warm (22 degrees C) and cold acclimated (5 degrees C) bullfrogs to prostaglandins. Gas chromatographic analysis determined equivalent fatty acid profiles in total lipids of heart and artery tissue from warm and cold acclimated animals. Arachidonic acid was the fatty acid precursor found in greatest abundance in both groups. For cardiovascular experiments, bullfrogs were cannulated by using a T-cannula implanted in the right sciatic artery. In warm acclimated bullfrogs, preinfusion systemic arterial pressure (SAP) was 14.7 +/- 0.5 mm Hg, and heart rate was 33.0 +/- 1.7 beats/min. Cold acclimated bullfrogs had SAP values of 8.0 +/- 0.8 mm Hg, and heart rate was 6.9 +/- 0.3 beats/min. Arachidonic and eicosapentaenoic acid infusions (2,000 micrograms/kg body weight [bw]) were hypertensive in cold acclimated and hypotensive in warm acclimated animals. These effects were blocked by indomethacin (4 mg/kg bw). In both warm and cold acclimated bullfrogs, prostaglandin F2 alpha (3-100 micrograms/kg bw) was hypertensive, while prostaglandin I2 (0.03-3 micrograms/kg bw) was hypotensive, with both prostaglandins stimulating a greater absolute response in warm acclimated animals. In addition, both prostaglandins increased heart rate in warm but not in cold acclimated bullfrogs. The results suggest diminished cardiovascular sensitivity to prostaglandins at low environmental temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号