首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cyclic ADP-ribose (cADPR) metabolism in mammals is catalyzed by NAD glycohydrolases (NADases) that, besides forming ADP-ribose, form and hydrolyze the N1-glycosidic linkage of cADPR. Thus far, no cADPR phosphohydrolase was known. We tested rat ADP-ribose/CDP-alcohol pyrophosphatase (ADPRibase-Mn) and found that cADPR is an ADPRibase-Mn ligand and substrate. ADPRibase-Mn activity on cADPR was 65-fold less efficient than on ADP-ribose, the best substrate. This is similar to the ADP-ribose/cADPR formation ratio by NADases. The product of cADPR phosphohydrolysis by ADPRibase-Mn was N1-(5-phosphoribosyl)-AMP, suggesting a novel route for cADPR turnover.  相似文献   

2.
3.
A microcolorimetric assay of inorganic pyrophosphatase   总被引:2,自引:0,他引:2  
A procedure is described for the assay of inorganic pyrophosphatase in tissues by a microcolorimetric procedure, taking advantage of the marked color intensification of phosphomolybdate by malachite green. Conditions are described for optimum enzyme activity, color stability, and sensitivity. With 1-cm cuvettes the AM660 is 100,000, allowing accurate measurement of Pi in the 1-nmol range. Reaction is conducted at 25 degrees C for 10 min in 0.5 ml of a 50 mM histidine buffer, pH 7.2, containing 0.2 mM inorganic pyrophosphate and 4 mM Mg2+, terminated by addition of 0.05 ml 2.4 M HClO4, cooled in ice, and 0.45 ml of color reagent is added. After standing 10 min at 0 degrees C, the contents are transferred to 1-cm cuvettes and the absorbance is read at 660 nm. Blanks are low, nonenzymatic hydrolysis of PPi is negligible, and color is stable without addition of detergents. The high sensitivity makes this procedure well-adapted to measurement of optimal activities in crude tissue preparations.  相似文献   

4.
A fluorometric assay for angiotensin-converting enzyme activity   总被引:1,自引:0,他引:1  
A simple and sensitive assay for angiotensin-converting enzyme (ACE; EC 3.4.15.1) activity has been developed which employs fluorescently labeled tripeptides. ACE hydrolyzes dansylphenylalanyl-arginyl-tryptophan or dansyl-phenylalanyl-arginyl-phenylalanine, liberating dansyl-phenylalanine and a dipeptide. Dansyl-phenylalanine partitions quantitatively into chloroform, whereas the substrates are virtually insoluble in chloroform. This allows rapid measurement of ACE activity with high signal-to-noise ratios even when microliter aliquots of human serum are assayed. Inhibition studies of the dansyl-tripeptide cleaving activity of human serum and rat lung, the identity of the products of enzyme action, and the regional distribution of enzyme activity among rat tissues demonstrate that only ACE cleaves these substrates under the conditions employed here. This assay may be useful for the clinical measurement of human serum ACE activity and for research investigations of ACE from a variety of tissues.  相似文献   

5.
Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases that catalyze the deacetylation of proteins such as histones and p53. A sensitive and convenient fluorometric assay for evaluating the SIRT1 enzymatic activity was developed here. Specifically, the remaining NAD+ after the deacetylation was determined by converting NAD+ to a highly fluorescent cyclized α-adduct compound. By this assay, we found that nicotinamide, Cu2+, and Zn2+ antagonize the activity of SIRT1. Resveratrol stimulates the enzymatic activity specifically with 7-amino-4-methylcoumarin (AMC)-labeled acetylated peptide. Epigallocatechin galate (EGCG) inhibits SIRT1 activity with both AMC-labeled and unlabeled peptide. However, a combination of vitamin C with EGCG can reverse the inhibition of EGCG with the unlabeled peptide or stimulate the deacetylation of AMC-labeled peptide by SIRT1. The assay does not require any isotopic material and thus is biologically safe. It can be adapted to a 96-well microplate for high-throughput screening. Notably, the acetylated peptides with or without fluorescent labels may be used in the assay, which facilitates the substrate specificity study of SIRT1 activators or inhibitors in vitro.  相似文献   

6.
Mobilization of Ca+2 from intracellular stores is a signalling mechanism that is of fundamental importance to many cellular processes. It is mediated by two major mechanisms, the inositol 1,4,5-trisphosphate pathway and the Ca+2-induced Ca+2 release process. A naturally occurring metabolite of NAD+ called cyclic ADP-ribose has been discovered recently and shown to be as effective as inositol 1,4,5-trisphosphate in mobilizing Ca+2 stores in sea urchin eggs, a marine invertebrate cell, as well as several mammalian cells. This article reviews the accumulating evidence that indicates cyclic ADP-ribose may function as a physiological regulator of the Ca+2-induced Ca+2 release process and the current knowledge about its receptor as well as the enzymes involved in its metabolism.  相似文献   

7.
Based on the iso-peptidase activity of human plasma FXIII, a novel fluorometric assay that determines FXIII concentrations in human plasma below 0.05 IU/ml is introduced. We considered a peptide sequence derived from alpha(2)-antiplasmin (n =12) to yield high sensitivity. Peptide Abz-NE(Cad-Dnp)EQVSPLTLLK exhibits a K(m) value of 19.8+/-2.8 microM and is used in a concentration of 50 microM. The assay design is suitable for measurements in cuvettes (1 ml volume) as well as for the microtiter plate (MTP) format (0.2 ml volume). It provides linear dose-response curves over a wide range of FXIII concentrations (0.05-8.8 IU/ml). The assay was validated with respect to precision, detection and quantitation limits, accuracy/specificity, linearity, and range. A comparison of the fluorometric assay with the photometric assay for FXIII determinations in plasma pools as well as single donor plasma revealed suitability of the fluorometric assay for FXIII determination in plasma of healthy individuals. FXIII concentrations in plasma samples of patients with severe FXIII deficiency are discussed in the context of FXIII antigen levels. These assays correlate well in the critical range below 0.1 IU/ml, whereas the photometric assay may overestimate residual FXIII activity in severe FXIII-deficient patients.  相似文献   

8.
The TON_0002 gene, which is in close proximity to the DNA polymerase locus in Thermococcus onnurineus NA1, has been shown to encode an inorganic pyrophosphatase. Its genomic position and function suggest a role for pyrophosphate hydrolysis during DNA polymerization. This is the first report of an inorganic pyrophosphatase belonging to the haloacid dehalogenase superfamily, in which unique residues in motif I and II have been replaced with Trp and Gly, respectively. The optimum pyrophosphatase activity of the recombinant enzyme occurred at pH 6, and it displayed an absolute dependence on divalent metal ions, among which Ni2+ was the most efficient. The site-specific mutation of the Gly residue in motif II to Ala or Ser residue exhibited only a slight change in the enzymatic activity and the K m value.  相似文献   

9.
Here we describe an efficient dot-blot assay for high-throughput screening of two enzymes, heparan sulfate N-deacetylase/N-sulfotransferase (NDST-1) and high-endothelial cell GlcNAc-6-sulfotransferase (HEC-GlcNAc-6-ST). The assay proceeds by transfer of 35S-labeled sulfate from [35S]-3(')-phosphoadenosine-5(')-phosphosulfate (PAPS) to the free amino groups of de-N-sulfated heparin (NDST-1), or the 6-hydroxyl groups of N-acetylglucosamine residues linked to a polyacrylamide scaffold (HEC-GlcNAc-6-ST). The 35S-labeled products are then captured on an appropriate membrane, taking advantage of their polymeric architecture. In one step, 35S-labeled by-products are then eluted from the membrane, leaving spatially separated 35S-labeled product "dots" for subsequent quantification. This assay allows for direct product detection on the membrane, obviating excessive washing and elution steps endemic to other assays. The assay was validated by measuring K(M) values for PAPS and K(I) values for PAP, the product of sulfuryl transfer. The assay method should be useful for inhibitor screens for both enzymes. In addition, the general assay architecture should be readily applicable to high-throughput screens of other carbohydrate sulfotransferases.  相似文献   

10.
The effect of Mg2+ ions on inducing pyrophosphatase activity of germinating cotton (Gossypium hirsutum L.) seeds was investigated. The presence of Mg2+ ions in the germination medium markedly shortened time for the attainment of the pyrophosphatase maximum activity (T max). In the absence of Mg2+ ions in the nutrient medium, T max comprised 6.0–6.5 days, whereas in the presence of 3–5 mM Mg2+, T max was decreased to 3–4 days. An increase in the concentration of Mg2+ ions in the medium up to 5 mM resulted in an increase in pyrophosphatase activity. The effect of Mg2+ ions on the activity of a purified pyrophosphatase preparation isolated from three-day-old cotton seedlings was investigated. Mg2+ ions did not affect the rate of attainment of a maximum pyrophosphatase activity, but decreased the value of the Michaelis-Menten constant.  相似文献   

11.
A fluorescence-based assay for the transglycosylation activity of endo-beta-N-acetylglucosaminidases (ENGases) was developed. The assay was based on the findings that a coupled chitinase can specifically capture and hydrolyze the fluorogenic intermediate that is formed by the ENGase-catalyzed transglycosylation to release a fluorophore, but does not hydrolyze the donor asparagine-linked N-glycan and the acceptor 4-methylumbelliferyl N-acetylglucosaminide. The assay method was verified by detecting the transglycosylation activities of the known ENGases. Its application for assessing the effects of organic solvents on transglycosylation activity was demonstrated. The novel coupled assay provides a highly sensitive, easy, and quantitative method for screening endo-beta-N-acetylglucosaminidases with transglycosylation activities useful for glycoconjugate synthesis.  相似文献   

12.
Spermidine/spermine N1-acetyltransferase 1 (SSAT1) is a key enzyme that catalyzes the catabolism of polyamines. SSAT1 is a very important enzyme because it not only maintains the homeostasis of polyamines but also is involved in many physiological and pathological events. As such, a rapid assay of SSAT1 activity is valuable in drug screening and clinical diagnostics. Here, we report a novel colorimetric assay for monitoring SSAT1 activity in zebrafish (zSSAT1). In comparison with the available SSAT1 assays, this new method is cost-effective and simple. The optimal zSSAT1 activity was obtained below 55 °C in a mild alkaline environment. The Km values of zSSAT1 for spermidine and spermine are 55 and 182 μM, respectively, whereas putrescine is not a good substrate for zSSAT1. In addition to enzyme kinetic studies, the colorimetric assay was also used to detect the cellular activity of SSAT1. Thus, the current method is a reliable assay for determining SSAT1 activity with many potential applications in medical biology.  相似文献   

13.
Poly(ADP-ribosyl)ation, which is mainly regulated by poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG), is a unique protein modification involved in cellular responses such as DNA repair and replication. PARG hydrolyzes glycosidic linkages of poly(ADP-ribose) synthesized by PARP and liberates ADP-ribose residues. Recent studies have suggested that inhibitors of PARG are able to be potent anti-cancer drug. In order to discover the potent and specific Inhibitors of PARG, a quantitative and high-throughput screening assay system is required. However, previous PARG assay systems are not appropriate for high-throughput screening because PARG activity is measured by radioactivities of ADP-ribose residues released from radioisotope (RI)-labeled poly(ADP-ribose). In this study, we developed a non-RI and quantitative assay system for PARG activity based on dot-blot assay using anti-poly(ADP-ribose) and nitrocellulose membrane. By our method, the maximum velocity (Vmax) and the michaelis constant (km) of PARG reaction were 4.46 μM and 128.33 μmol/min/mg, respectively. Furthermore, the IC50 of adenosine diphosphate (hydroxymethyl) pyrrolidinediol (ADP-HPD), known as a non-competitive PARG inhibitor, was 0.66 μM. These kinetics values were similar to those obtained by traditional PARG assays. By using our assay system, we discovered two novel PARG inhibitors that have xanthene scaffold. Thus, our quantitative and convenient method is useful for a high-throughput screening of PARG specific inhibitors.  相似文献   

14.
The Ca(2+) mobilizing metabolite cyclic ADP-ribose has been shown to release Ca(2+) from intracellular ryanodine sensitive stores in many cells. However, the activation of the ryanodine receptor of skeletal muscle by cADP-ribose (cADPr) and its precursor and metabolite (beta-NAD(+) and ADPr) remains to be discussed. We studied the effect of ADPr on the Ca(2+) release channel of skeletal muscle RyR1 after incorporation of microsomes isolated from fast muscles of rat in planar lipid bilayers. We observed an increase in the electrophysiological activity of the channel after addition of ADPr (10 microM) at micromolar Ca(2+) concentrations, characterized by a time-lag. The increase in P(o) is mainly due to an increase in the open frequency. The long time course observed for the development of the ADPr effect may indicate that this activation induces a change in the conformation of the RyR1 channel, which increases its sensitivity to calcium.  相似文献   

15.
Myristoyl-coenzyme A (CoA):protein N-myristoyltransferase (NMT) catalyzes the covalent attachment of myristate to the N-terminal glycine residue of various proteins. To develop a high-throughput assay for NMT, the principle of enzyme-linked immunosorbent assay (ELISA) is used, in which anti-N-myristoylglycine (anti-N-Myr-Gly) monoclonal antibody is utilized for the detection of the N-myristoylglycine moiety of the product of NMT catalysis. Enzyme-catalyzed reaction was performed using recombinant NMT expressed in Escherichia coli, myristoyl-CoA, and an octapeptide substrate that is biotinylated at its C terminus. The mixture of the products of the reaction was added to immunoplate wells precoated with anti-N-Myr-Gly monoclonal antibody. Then, the N-myristoyl-biotinylated octapeptide product was specifically captured by the antibody and stained with streptavidin-biotinylated peroxidase and tetramethylbenzidine substrate. This was followed by absorbance measurement (lambda(450)-lambda(630)). In this ELISA, the calibration curve showed a strong correlation between the concentration of the synthetic N-myristoyl-biotinylated octapeptide and the absorbance, indicating that this system may be useful for enzyme kinetics studies. Using this ELISA system, we assayed for serinal derivatives to determine their NMT inhibitory activity and found that serinal bisulfite inhibits yeast NMT activity. This is the first report of the measurement of NMT activity by the ELISA system.  相似文献   

16.
Betaine-homocysteine methyltransferase (BHMT) activity can be measured directly and kinetically by (1)H-nuclear magnetic resonance spectroscopy. The disappearance of substrates and the formation of products are monitored simultaneously. Alternative substrates, separately and when mixed with glycine betaine, can also be monitored. Each assay can be completed in 1h. Using 2mM glycine betaine and homocysteine as substrates in 20 mM phosphate buffer (pH 7.5) and measuring the production of N,N-dimethylglycine, the CV is 6.3% (n=6) and the detection limit is 6 nkatal. An endpoint assay for BHMT activity was also developed, by measuring the N,N-dimethylglycine produced after incubation with 2 mM glycine betaine and homocysteine (CV=5.3%, n = 6) with a detection limit of 2 nkatal. These assays were used to show that the natural betaines trigonelline, proline betaine, arsenobetaine, and l-carnitine are neither substrates nor significant inhibitors of rat liver BHMT, that the thetins dimethylthetin and dimethylsulfoniopropionate are substrates and inhibit methyl transfer from glycine betaine, and that the K(m) for glycine betaine is 0.19+/-0.03 mM with a V(max) of 17+/-0.7 nMol min(-1) mg(-1).  相似文献   

17.
Herein we report the design of a direct and continuous fluorometric assay for determining tissue transglutaminase (TGase) activity. The progress of the TGase-catalyzed reaction of 4-(N-carbobenzoxy-l-phenylalanylamino)-butyric acid coumarin-7-yl ester was monitored as an increase of fluorescence (lambda(exc) 330 nm, lambda(em) 460 nm) due to the release of 7-hydroxycoumarin. Using this assay, we determined the K(m) of two acceptor substrates, N-acetyl-L-lysine methyl ester and aminoacetonitrile. We also determined the K(m) of 4-(N-carbobenzoxy-L-phenylalanylamino)-butyric acid coumarin-7-yl ester for its TGase-mediated hydrolysis and for its enzymatic reaction with the acyl acceptor substrates N-acetyl-L-lysine methyl ester and aminoacetonitrile. We ascertained that the fluorescent substrate was selective toward tissue TGase by testing it with different enzymes, namely microbial transglutaminase (mTGase), Factor XIIIa, papain, and gamma-glutamyl transpeptidase. 4-(N-carbobenzoxyglycinylamino)-butyric acid coumarin-7-yl ester, lacking the benzyl side chain, was also found to be an efficient fluorogenic substrate of tissue TGase. Finally, we have shown that this method is applicable to 96-well microtiter plate format.  相似文献   

18.
Vacuolar-type H+-translocating pyrophosphatases (V-PPases) have been considered to be restricted to plants, a few species of phototrophic proteobacteria and protists. Here, we describe PVP, a thermostable, sequence-divergent V-PPase from the facultatively aerobic hyperthermophilic archaeon Pyrobaculum aerophilum. PVP shares only 38% sequence identity with both the prototypical V-PPase from Arabidopsis thaliana and the H+-PPi synthase from Rhodospirillum rubrum, yet possesses most of the structural features characteristic of V-PPases. Heterologous expression of PVP in Saccharomyces cerevisiae yields a Mr 64 000 membrane polypeptide that specifically catalyzes Mg2+-dependent PPi hydrolysis. The existence of PVP implies that PPi-energized H+-translocation is phylogenetically more deeply rooted than previously thought.  相似文献   

19.
Inorganic pyrophosphatase from Mycobacterium tuberculosis (Mt-PPase) is one of the possible targets for the rational design of anti-tuberculosis agents. In this paper, functional properties of this enzyme are characterized in the presence of the most effective activators--Mg2+ and Mn2+. Dissociation constants of Mt-PPase complexed with Mg2+ or Mn2+ are essentially similar to those of Escherichia coli PPase. Stability of a hexameric form of Mt-PPase has been characterized as a function of pH both for the metal-free enzyme and for Mg2+- or Mn2+-enzyme. Hexameric metal-free Mt-PPase has been shown to dissociate, forming monomers at pH below 4 or trimers at pH from 8 to 10. Mg2+ or Mn2+ shift the hexamer-trimer equilibrium found for the apo-Mt-PPase at pH 8-10 toward the hexameric form by stabilizing intertrimeric contacts. The pK(a) values have been determined for groups that control the observed hexamer-monomer (pK(a) 5.4), hexamer-trimer (pK(a) 7.5), and trimer-monomer (pK(a) 9.8) transitions. Our results demonstrate that due to the non-conservative amino acid residues His21 and His86 in the active site of Mt-PPase, substrate specificity of this enzyme, in contrast to other typical PPases, does not depend on the nature of the metal cofactor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号