首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Actin organization was observed inm-maleimidobenzoic acid N-hydroxysuccinimide ester(MBS)-treated maize embryo sacs by confocal laser scanning microscopy. The results revealed that dynamic changes of actin occur not only in the degenerating synergid, but also in the egg during fertilization. The actin filaments distribute randomly in the chalazal part of the synergid before fertilization; they later become organized into numerous aggregates in the chalazal end after pollination. The accumulation of actin at this region is intensified after the pollen tube discharges its contents. Concurrently, actin patches have also been found in the cytoplasm of the egg cell and later they accumulate in the cortical region. To compare with MBS-treated maize embryo sacs, we have performed phalloidin microinjection to label the actin cytoskeleton in living embryo sacs ofTorenia fournieri. The results have extended the previous observations on the three-dimensional organization of the actin arrays in the cells of the female germ unit and confirm the occurrence of the actin coronas in the embryo sac during fertilization. We have found that there is an actin cap occurring near the filiform apparatus after anthesis. In addition, phalloidin microinjection into the Torenia embryo sac has proved the presence of intercellular actin between the cells of the female germ unit and thus confirms the occurrence of the actin coronas in the embryo sac during fertilization. Moreover, actin dynamic changes also take place in the egg and the central cell, accomplished with the interaction between the male and female gametes. The actin filaments initially organize into a distinct actin network in the cortex of the central cell after anthesis; they become fragmented in the micropylar end of the cell after pollination. Similar to maize, actin patches have also been observed in the egg cortex after pollination. This is the first report of actin dynamics in the living embryo sac. The results suggest that the actin cytoskeleton may play an essential role in the reception of the pollen tube, migration of the male gametes, and even gametic fusion.  相似文献   

2.
Huang BQ  Fu Y  Zee SY  Hepler PK 《Protoplasma》1999,209(1-2):105-119
Actin organization was observed in m-maleimidobenzoic acid N-hydroxysuccinimide ester(MBS)-treated maize embryo sacs by confocal laser scanning microscopy. The results revealed that dynamic changes of actin occur not only in the degenerating synergid, but also in the egg during fertilization. The actin filaments distribute randomly in the chalazal part of the synergid before fertilization; they later become organized into numerous aggregates in the chalazal end after pollination. The accumulation of actin at this region is intensified after the pollen tube discharges its contents. Concurrently, actin patches have also been found in the cytoplasm of the egg cell and later they accumulate in the cortical region. To compare with MBS-treated maize embryo sacs, we have performed phalloidin microinjection to label the actin cytoskeleton in living embryo sacs of Torenia fournieri. The results have extended the previous observations on the three-dimensional organization of the actin arrays in the cells of the female germ unit and confirm the occurrence of the actin coronas in the embryo sac during fertilization. We have found that there is an actin cap occurring near the filiform apparatus after anthesis. In addition, phalloidin microinjection into the Torenia embryo sac has proved the presence of intercellular actin between the cells of the female germ unit and thus confirms the occurrence of the actin coronas in the embryo sac during fertilization. Moreover, actin dynamic changes also take place in the egg and the central cell, accomplished with the interaction between the male and female gametes. The actin filaments initially organize into a distinct actin network in the cortex of the central cell after anthesis; they become fragmented in the micropylar end of the cell after pollination. Similar to maize, actin patches have also been observed in the egg cortex after pollination. This is the first report of actin dynamics in the living embryo sac. The results suggest that the actin cytoskeleton may play an essential role in the reception of the pollen tube, migration of the male gametes, and even gametic fusion.  相似文献   

3.
Actin coronas in normal and indeterminate gametophyte1 embryo sacs of maize   总被引:2,自引:2,他引:0  
 The actin cytoskeletal organization and nuclear behavior of normal and indeterminate gametophyte1 (ig1) embryo sacs of maize were examined during fertilization. After pollination, during degeneration of one of the synergids and before arrival of the pollen tube, the cytoskeletal elements undergo dramatic changes including formation of the actin coronas at the chalazal end of the degenerating synergid and at the interface between the egg cell and central cell. The actin coronas are present only for a limited period of time and their presence is coordinated with pollen tube arrival and fusion of the gametes; they disappear before the zygote divides. This allows us to estimate the frequency of fertilized ovules along the ear. Up to 88% of the ovules on an ear contain actin coronas in the embryo sacs when observed 16–19 h after pollination, indicating the high frequency of fertilizing kernels along the ear at this stage. In the ig embryo sacs, two or more degenerated synergids containing actin coronas at their chalazal ends receive multiple pollen tubes for gametic fusion and can consequently give rise to twin or polyembryos. These findings with the monocot maize are consistent with previous reports on the dicots Plumbago and Nicotiana, suggesting that the formation of actin coronas in the embryo sac during fertilization is a universal phenomenon in angiosperms and is part of a mechanism of interaction between gametic signaling and actin cytoskeleton behavior which appears to precisely position and facilitate the access of male gametes to the egg cell and central cell for fusion. Received: 15 May 1998 / Revision accepted: 17 August 1998  相似文献   

4.
B. -Q. Huang  S. D. Russell 《Planta》1994,194(2):200-214
The cytoskeletal organization of the embryo sac of tobacco (Nicotiana tabacum L.) was examined at maturity and during synergid degeneration, pollen-tube delivery and gamete transfer using rapid-frozen, freeze-substituted and chemically fixed material in combination with immunofluorescence and immunogold electron microscopy. Before fertilization, the synergid is a highly polarized cell with dense longitudinally aligned arrays of microtubules adjacent to the filiform apparatus at the micropylar end of the cell associated with major organelles. The cytoskeleton of the central cell is less polarized, with dense cortical microtubules in the micropylar and chalazal regions and looser, longitudinally oriented cortical microtubules in the lateral region. In the synergid and central cell, F-actin is frequently found at the surface of the organelles and co-localizes with either single microtubules or microtubule bundles. Egg cell microtubules are frequently cortical, randomly oriented and more abundant at the chalazal end of the cell; actin filaments are associated with microtubules and the cortex of the egg cell. At 48 h after pollination and before the pollen tube arrives, the onset of degeneration is evident in one of the two synergids: the electron density of cytoplasmic organelles and the ground cytoplasm increases and the nucleus becomes distorted. Although synergids otherwise remain intact, the vacuole collapses and organelles degenerate rapidly after pollen-tube entry. Abundant electron-dense material extends from the degenerated synergid into intercellular spaces at the chalazal end of the synergid and between the synergids, egg and central cell. Rhodamine-phalloidin and anti-actin immunogold labeling reveal that electron-dense aggregates in this region contain abundant actin forming two distinct bands termed coronas. This actin is part of a mechanism in the egg apparatus which appears to precisely position and facilitate the access of male gametes to the egg and central cell for fusion.Abbreviations ES embryo sac - FA filiform apparatus - Mf microfilament - Mt microtubule - PT pollen tube - RF-FS rapid-freeze freeze-substitution - TEM transmission electron microscopy We thank Gregory W. Strout for technical assistance in the use of the RF-FS technique and Dr. Hongshi Yu for providing Fig. 1. This research was supported by U.S. Department of Agriculture grants 88-37261-3761 and 91-37304-6471. We gratefully acknowledge use of the Samuel Robert Noble Electron Microscopy Laboratory of the University of Oklahoma.  相似文献   

5.
A review on the double fertilization in angiosperm is addressed at its centennial discovery by S.G. Nawaschen. Studies in the first 50 years mainly by light microscopy had defined this process of double fertilization as a general characteristic in angiosperms. In the later 50 years research works in this field have been greatly advanced on account of the developing new techniques especially the electron-microscopy. The topics in this review include: (1) The growth of pollen tube entering the embryo sac: role of the synergid in the pollen tube receiption and signals from the degenerated synergid. (2) The arrival of male gametes to female gametes: structure and function of the male germ unit, the function of cytoskeleton in the delivery of sperm cells. (3) Gametic fusion: the structure and function of the female germ unit, gametic membrane fusion, karyogamy, DNA contents in sperm and egg nuclei, the relationship between the karyogamy and cell cycle, sperm dimorphism and preferential fertilization, and spermegg recognition. Future directions for the research of double fertilization are also recommended.  相似文献   

6.
Ye XL  Yeung EC  Zee SY 《Planta》2002,215(1):60-66
Fertilization in flowering plants involves the fusion of one sperm with the egg cell and a second sperm with the central cell. In the Nun orchid, Phaius tankervilliae (Aiton) Bl., the pollen tube deposits two sperms in the "cytoplasmic mass" of the degenerating synergid. Initially both sperms stay close together. Soon afterwards, the two sperms undergo migration. The leading sperm migrates towards the central cell, while the other sperm moves laterally towards the egg cell. The degenerated synergid cytoplasmic content fills in the available space between the central cell and the egg cell, forming the actin coronas. Due to the high actin content, the bright fluorescence initially prevents the visualization of cellular details. With the subsequent reduction in fluorescence, actin staining reveals that the two sperms are pear-shaped with pointed tails. As the sperms approach their respective target cells, cellular extensions form near the point of sperm entry in both the egg cell and the central cell. These structures appear to aid in the cell fusion process. The morphological and structural features observed provide evidence that the process of double fertilization requires the active participation of not only the two sperms but also the egg cell and the central cell.  相似文献   

7.
Ovules of Nicotiana tabacum L. were cryofixed with a propane-jet freezer and freeze-substituted in acetone to examine technique-dependent changes in pre- and post-fertilization embryo sacs using rapidly frozen material. Freezing quality was acceptable in 10% of the embryo sacs in the partially dissected ovules, with ice-crystal damage frequently evident in vacuoles and nuclei. One of the two synergids begins to degenerate before pollen-tube arrival in cryofixed material, with breakdown of the plasma membrane and large chalazal vacuole delayed until the penetration of the pollen tube. Early synergid degeneration involved characteristic increases in cytoplasmic electron density and the generation of cytoplasmic bodies to the intercellular space through “pinching-off”. Upon pollen-tube arrival, the male gametes are released through a terminal aperture into the degenerate synergid. Sperm cells undergo morphological alteration before gametic fusion: their mitochondrial electron density increases, the endoplasmic reticulum dilates, cytoplasm becomes finely vacuolated and the surrounding pollen plasma membrane is lost, causing the sperm cells and vegetative nucleus to dissociate. Discharge of the pollen tube results in the formation of numerous enucleated cytoplasmic bodies which are either stripped or shed from sperm cells and pollen-tube cytoplasm. Two so-called X-bodies are found in the degenerate synergid after pollen-tube penetration: the presumed vegetative nucleus occurs at the chalazal end and the presumed synergid nucleus near the micropylar end.  相似文献   

8.
The megagametophyte of Epidendrum scutella, an orchid, was examined with the electron microscope after the entrance and discharge of the pollen tube. The pollen tube enters the embryo sac by growing through the filiform apparatus of a synergid and discharges through a terminal pore into the degenerating cytoplasm of the synergid. The synergid nucleus appears pushed to one side by the discharge of the pollen tube. What is believed to be the remains of the vegetative nucleus has been found in the degenerate synergid, but no trace of the sperm cytoplasm has been seen. The zygote is approximately the same size as the egg. The ribosomes become grouped into polysomes. Both the egg and the zygote apparently completely lack dictyosomes. The polar nuclei partially fuse before fertilization, but fusion of the sperm nucleus with the polar nuclei does not occur and no endosperm is produced. Polysome formation occurs in the central cell and large amounts of tubular, smooth ER are seen. The antipodals remain following fertilization, undergoing ultrastructural changes similar to the central cell.  相似文献   

9.
Serially sectioned embryo sacs of Nicotiana tabacum were examined during fertilization events using transmission electron microscopy. After pollen tube discharge, the outer membrane of the sperm pair is removed, the two sperm cells are deposited in the degenerate synergid and the sperm cells migrate to the chalazal edge of the synergid where gametic fusion occurs. During fertilization, the male cytoplasm, including heritable organelles, is transmitted into the female reproductive cells as shown by: (1) the cytoplasmic confluence of one sperm and the central cell during cellular fusion, (2) the occurrence of sperm mitochondria (distinguished by ultrastructural differences) in the zygote cytoplasm and adjacent to the sperm nucleus, (3) the presence of darkly stained aggregates which are found exclusively in mature sperm cells within the cytoplasm of both female cells soon after cell fusion, and (4) the absence of any large enucleated cytoplasmic bodies containing recognizable organelles outside the zygote or endosperm cells. The infrequent occurrence of plastids in the sperm and the transmission of sperm cytoplasm into the egg during double fertilization provide the cytological basis for occasional biparental plastid inheritance as reported previously in tobacco. Although sperm mitochondria are transmitted into the egg/zygote, their inheritance has not been detected genetically. In one abnormal embryo sac, a pair of sperm cells was released into the cytoplasm of the presumptive zygote. Although pollen tube discharge usually removes the inner pollen-tube plasma membrane containing the two sperm cells, this did not occur in this case. When sperm cells are deposited in a degenerating synergid or outside of a cell, this outer membrane is removed, as it apparently is for fertilization.  相似文献   

10.
We describe some previously uncharacterised stages of fertilization in Arabidopsis thaliana and provide for the first time a precise time course of the fertilization process. We hand-pollinated wild type pistils with wild type pollen (Columbia ecotype), fixed them at various times after pollination, and analysed 600 embryo sacs using Confocal Laser Scanning Microscopy. Degeneration of one of the synergid cells starts at 5 Hours After Pollination (HAP). Polarity of the egg changes rapidly after this synergid degeneration. Karyogamy is then detected by the presence of two nucleoli of different diameters in both the egg and central cell nuclei, 7-8 HAP. Within the next hour, first nuclear division takes place in the fertilized central cell and two nucleoli can then be seen transiently in each nucleus produced. In a second set of experiments, we hand-pollinated wild type pistils with pollen from a transgenic promLAT52::EGFP line that expresses EGFP in its pollen vegetative cell. Release of the pollen tube contents into the synergid cell could be detected in living material. We show that the timing of synergid degeneration and pollen tube release correlate well, suggesting that either the synergid cell degenerates at the time of pollen tube discharge or very shortly before it. These observations and protocols constitute an important basis for the further phenotypic analysis of mutants affected in fertilization.  相似文献   

11.
莴苣助细胞发育过程中钙的分布研究   总被引:1,自引:0,他引:1  
用焦锑酸盐沉淀法对莴苣助细胞中的钙分布进行了观察。结果表明,开花前3天刚形成的助细胞中的钙颗粒很少:开花前2天助细胞壁中的钙颗粒增加;开花前1天助细胞珠孔端细胞壁加厚,其中积累了许多钙颗粒:开花当天助细胞珠孔端的丝状器中聚集了大量的钙颗粒。授粉后1h时两个助细胞的结构和钙分布发生差异,一个呈退化状,其中的钙颗粒明显增多,另一宿存助细胞中的钙分布与授粉前相似。去雄不授粉1天后两个助细胞均保持完好,且两助细胞中的钙分布没有明显差异,表明由花粉管引起一个助细胞中钙含量增加进而导致了助细胞退化。退化助细胞在卵细胞与中央细胞之间形成一薄层。助细胞退化后不同部位的钙颗粒呈现出与受精作用密切有关的变化:授粉后1h时,钙主要聚集在近合点端部位;授粉后2.5h卵细胞即将受精,这时许多细小的钙颗粒主要聚集在卵细胞与中央细胞之间的薄层中;授粉后4h精、卵细胞已融合,这时退化助细胞合点端的钙颗粒明显减少,而在其珠孔端又聚集了较多的钙。上述助细胞中的钙含量变化与吸引花粉管进入胚囊和促使精卵细胞融合密切有关。  相似文献   

12.
In over 80 % of the angiosperms, the female gametophyte is comprised of seven cells, two of which are the synergid cells. These cells are considered pivotal in assuring successful fertilization. The synergid cells direct pollen tube growth toward the female gametophyte, and facilitate the entrance of the tube into the embryo sac. Once the pollen tube enters the synergid cell, its growth is arrested, the tip of the tube breaks, and two sperm cells are released. This sequence of events is also synergid dependent. In addition, separation of the cells of the male germ unit, orientation of the two sperm cells in the degenerating synergid, and fusion of the egg and central cell with sperm cells may also be related to synergid cells. Synergid structure has been widely studied, but development and function of these cells during angiosperm fertilization remains elusive. Recent molecular approaches have provided an enhanced understanding of the role of synergid cells in fertilization. The present review summarizes the results of current studies regarding the role of synergids in angiosperm reproductive function.  相似文献   

13.
The ultrastructure of the synergids of Proboscidea louisianica was investigated from just before fertilization until 48 hr after pollination. It was found that the cytoplasm of one synergid consistently begins to degenerate before arrival of the pollen tube at the embryo sac, and that it is always this synergid which receives the pollen tube tip and its discharge. The other synergid (persistent synergid) remained unchanged throughout the study period. Polysaccharide vesicles of pollen tube origin were observed fusing with the pollen tube wall as well as contributing to cell wall formation of the degenerate synergid. In one ovule (48 hr after pollination) two pollen tubes had entered and grown the length of the micropyle, but only the first tube penetrated the degenerate synergid and discharged normally. The second pollen tube was abutting against the persistent synergid, but had not entered or discharged. In another exceptional case (18 hr after pollination), a pollen tube had grown the length of the micropyle, but did not discharge, or enter either synergid. Both synergids of this ovule were observed to be completely intact. It is concluded that synergid and pollen tube cytoplasmic degeneration is the result of a very specific interaction between these two cells and that this degeneration is probably a prerequisite for normal pollen tube entrance and discharge into the embryo sac, and for male gamete transfer to the egg and central cell.  相似文献   

14.
During angiosperm reproduction, one of the two synergid cells within the female gametophyte undergoes cell death prior to fertilization. The pollen tube enters the female gametophyte by growing into the synergid cell that undergoes cell death and releases its two sperm cells within the degenerating synergid cytoplasm to effect double fertilization. In Arabidopsis (Arabidopsis thaliana) and many other species, synergid cell death is dependent upon pollination. However, the mechanism by which the pollen tube causes synergid cell death is not understood. As a first step toward understanding this mechanism, we defined the temporal relationship between pollen tube arrival at the female gametophyte and synergid cell death in Arabidopsis. Using confocal laser scanning microscopy, light microscopy, transmission electron microscopy, and real-time observation of these two events in vitro, we demonstrate that synergid cell death initiates after the pollen tube arrives at the female gametophyte but before pollen tube discharge. Our results support a model in which a signaling cascade triggered by pollen tube-synergid cell contact induces synergid cell death in Arabidopsis.  相似文献   

15.
Z. Kristóf  O. Tímár  K. Imre 《Protoplasma》1999,208(1-4):149-155
Summary Calcium distribution in ovules ofTorenia fournieri was studied by electron energy loss spectroscopy and transmission electron microscopic visualization of calcium antimonate precipitates. High calcium levels were found in the ovules ofT. fournieri. Calcium is situated mainly in extracellular regions before fertilization, including the surface of embryo sac, in the mucilage, and among the cells of the egg apparatus. Intracellular calcium was found only in the nucellar cells around the embryo sac and in the epidermis of the central axis and funiculus. After pollination, a labyrinthine structure (coralloid-like cell wall formation) develops on the micropylar surfaces of the egg apparatus that contain high levels of calcium. Calcium levels increase in the degenerating synergid after the penetration of the pollen tube. Calcium-antimonate precipitates are abundant in vacuoles of the disrupted synergid and pollen tube cytoplasm.Abbreviations EELS electron energy loss spectroscopy - EDX energy-dispersive X-ray microanalysis - LS labyrinthine structure  相似文献   

16.
水稻双受精过程的细胞形态学及时间进程的观察   总被引:1,自引:0,他引:1  
丁建庭  申家恒  李伟  杨虹 《植物学报》2009,44(4):473-483
应用常规石蜡切片和荧光显微镜观察水稻(Oryz a sativa)受精过程中雌雄性细胞融合时的形态特征及时间进程, 确定合子期, 为花粉管通道转基因技术的实施提供理论依据。结果表明: 授粉后, 花粉随即萌发, 花粉管进入羽毛状柱头分支结构的细胞间隙, 继续生长于花柱至子房顶部的引导组织的细胞间隙中, 而后进入子房, 在子房壁与外珠被之间的缝隙中向珠孔方向生长, 花粉与花粉管均具有明显的绿色荧光。花粉管经珠孔及珠心表皮细胞间隙进入一个助细胞, 释放精子。精子释放前, 两极核移向卵细胞的合点端; 两精子释放于卵细胞与中央细胞的间隙后, 先后脱去细胞质, 然后分别移向卵核和极核, 移向卵核的精核快于移向极核的精核; 精核与两极核在向反足细胞团方向移动的过程中完成雌雄核融合。大量图片显示了雌雄性核融合的详细过程以及多精受精现象。水稻受精过程经历的时间表如下: 授粉后, 花粉在柱头萌发; 花粉萌发至花粉管进入珠孔大约需要0.5小时; 授粉后0.5小时左右, 花粉管进入一个助细胞, 释放精子; 授粉后0.5-2.5小时, 精卵融合形成合子; 授粉后约10.0小时, 合子第1次分裂, 合子期为授粉后2.5-10.0小时; 授粉后1.0-3.0小时, 精核与两极核融合; 授粉后约5.0小时, 初生胚乳核分裂。  相似文献   

17.
应用常规石蜡切片和荧光显微镜观察水稻(Oryza sativa)受精过程中雌雄性细胞融合时的形态特征及时间进程,确定合子期,为花粉管通道转基因技术的实施提供理论依据。结果表明:授粉后,花粉随即萌发,花粉管进入羽毛状柱头分支结构的细胞间隙,继续生长于花柱至子房顶部的引导组织的细胞间隙中,而后进入子房,在子房壁与外珠被之间的缝隙中向珠孔方向生长,花粉与花粉管均具有明显的绿色荧光。花粉管经珠孔及珠心表皮细胞间隙进入一个助细胞,释放精子。精子释放前,两极核移向卵细胞的合点端:两精子释放于卵细胞与中央细胞的间隙后,先后脱去细胞质,然后分别移向卵核和极核,移向卵核的精核快于移向极核的精核:精核与两极核在向反足细胞团方向移动的过程中完成雌雄核融合。大量图片显示了雌雄性核融合的详细过程以及多精受精现象。水稻受精过程经历的时间表如下:授粉后,花粉在柱头萌发:花粉萌发至花粉管进入珠孔大约需要0.5小时:授粉后0.54,时左右,花粉管进入一个助细胞,释放精子:授粉后0.5—2.5小时,精卵融合形成合子:授粉后约10.0小时,合子第1次分裂,合子期为授粉后2.5-10.04,时:授粉后1.0-3.04,时,精核与两极核融合:授粉后约5.0小时,初生胚乳核分裂。’  相似文献   

18.
The mature embryo sac of barley consists of an egg, two synergids, a central cell, and up to 100 antipodal cells. At shedding the male gametophyte is 3-celled, consisting of a vegetative cell with a large amount of starch and two sperms having PAS+ boundaries. Before pollination the nucleus and cytoplasm of each synergid appear normal. After pollination the nucleus and cytoplasm of one synergid undergo degeneration. The pollen tube grows along the surface of the integument of the ovule, passes through the micropyle, and enters the degenerate synergid through the filiform apparatus. The pollen tube discharges the vegetative nucleus, two cellular sperms, and a variable amount of starch into the degenerate synergid. Soon after deposition the sperms migrate by an unknown mechanism to the chalazal end of the degenerate synergid. Sperm nuclei then enter the cytoplasm of the egg and central cell, ultimately resulting in the formation of the zygote and primary endosperm nucleus, respectively. Sperm boundaries do not enter egg or central cell, but it was not possible to determine the fate of other sperm components. Degenerate vegetative and synergid nuclei remain in the synergid after fertilization, constituting what are considered to be X-bodies in barley. The second synergid degenerates during early embryogeny.  相似文献   

19.
The ultrastructure and composition of the synergids of Capsella bursa-pastoris were studied before and after fertilization. The synergids in the mature embryo sac contain numerous plastids, mitochondria, dictyosomes and masses of ER and associated ribosomes. Each synergid contains a large chalazal vacuole, a nucleus with a single nucleolus and is surrounded by a wall. This wall is thickest at the micropyle end of the cell where it proliferates into the filiform apparatus. At the chalazal end of the cell the wall thins and may be absent for small distances. The pollen tube grows into one of the two synergids through the filiform apparatus and extends one-third the length of the cell before it discharges. Following discharge of the pollen tube, mitochondria and plastids of the tube can be identified in the synergid as can hundreds of 0.5 μ polysaccharide spheres liberated by the tube. The method by which the sperm or sperm nuclei enter the egg or central cell is not known although an apparent rupture was found in the wall of the egg near the tip of the pollen tube. The second synergid changes at the time the pollen tube enters the first synergid. These changes result in the disorganization of the nucleus and loss of the chalazal wall and plasma membrane. Eventually this synergid loses its identity as its cytoplasm merges with that of the central cell.  相似文献   

20.
向日葵胚囊的超微结构和雌性生殖单位问题   总被引:6,自引:0,他引:6  
本文对向日葵胚囊中卵细胞、助细胞与中央细胞开花前和传粉后的超微结构变化进行了研究。着重报道了不同发育时期这三种细胞之间特定区域的界壁的消长动态。在此基础上结合现有文献资料探讨了由三者共同组成“雌性生殖单位”以适应受精作用的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号