首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the rat brain, the presynaptic 5-hydroxytryptamine (5-HT) autoreceptors located on 5-HT terminals correspond to the 5-HT1B subtype. The presence of a 5-HT receptor probably located on 5-HT nerve endings and modulating transmitter release in the human neocortex has been reported, but its detailed pharmacological characterization is not yet available. On the other hand, receptor binding and autoradiographic results indicate that the 5-HT1B receptor subtype is not present in the human brain. We, therefore, studied the modulation of the electrically evoked release of [3H]5-HT by various 5-HT receptor agonists and antagonists in preloaded slices of human neocortex obtained from 18 patients undergoing neurosurgery. The nonselective 5-HT1A/1B/1D receptor agonist 5-carboxamidotryptamine produced a potent inhibition (70% at 0.03 microM) of the electrically evoked release of [3H]5-HT which was blocked by 5-HT receptor antagonists with the following relative order of potency: methiothepin greater than metergoline = methysergide greater than propranolol. The selective 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin at 0.1 microM did not modify the electrically evoked release of [3H]5-HT. The 5-HT1A/1B receptor agonist RU 24969 was 10 times more potent at inhibiting [3H]5-HT overflow in the rat frontal cortex than in the human neocortex. The potent 5-HT1B receptor antagonist cyanopinodolol did not modify the 5-carboxamidotryptamine-induced inhibition of the electrically evoked release of [3H]5-HT in slices of the human neocortex, but produced by itself a small inhibition of [3H]5-HT overflow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The substantia nigra pars reticulata (SNr) forms a principal output from the basal ganglia. It also receives significant histamine (HA) input from the tuberomammillary nucleus whose functions in SNr remain poorly understood. One identified role is the regulation of serotonin (5-HT) neurotransmission via the HA-H(3) receptor. Here we have explored regulation by another HA receptor expressed in SNr, the H(2)-receptor (H(2)R), by monitoring electrically evoked 5-HT release with fast-scan cyclic voltammetry at carbon-fiber microelectrodes in SNr in rat brain slices. Selective H(2)R antagonists (inverse agonists) ranitidine and tiotidine enhanced 5-HT release while the agonist amthamine suppressed release. The 'neutral' competitive antagonist burimamide alone was without effect but prevented ranitidine actions indicating that inverse agonist effects result from constitutive H(2)R activity independent of HA tone. H(2)R control of 5-HT release was most apparent (from inverse agonist effects) at lower frequencies of depolarization (< or = 20 Hz), and prevailed in the presence of antagonists of GABA, glutamate or H(3)-HA receptors. These data reveal that H(2)Rs in SNr are constitutively active and inhibit 5-HT release through H(2)Rs on 5-HT axons. These data may have therapeutic implications for Parkinson's disease, when SNr HA levels increase, and for neuropsychiatric disorders in which 5-HT is pivotal.  相似文献   

3.
Photolabeling of the benzodiazepine receptor, which to date has been done with benzodiazepine agonists such as flunitrazepam, can also be achieved with Ro 15-4513, a partial inverse agonist of the benzodiazepine receptor. [3H]Ro 15-4513 specifically and irreversibly labeled a protein with an apparent molecular weight of 51,000 (P51) in cerebellum and at least two proteins with apparent molecular weights of 51,000 (P51) and 55,000 (P55) in hippocampus. Photolabeling was inhibited by 10 microM diazepam but not by 10 microM Ro 5-4864. The BZ1 receptor-selective ligands CL 218872 and beta-carboline-3-carboxylate ethyl ester preferentially inhibited irreversible binding of [3H]Ro 15-4513 to protein P51. Not only these biochemical results but also the distribution and density of [3H]Ro 15-4513 binding sites in rat brain sections were similar to the findings with [3H]flunitrazepam. Thus, the binding sites for agonists and inverse agonists appear to be located on the same proteins. In contrast, whereas [3H]flunitrazepam is known to label only 25% of the benzodiazepine binding sites in brain membranes, all binding sites are photolabeled by [3H]Ro 15-4513. Thus, all benzodiazepine receptor sites are associated with photolabeled proteins with apparent molecular weights of 51,000 and/or 55,000. In cerebellum, an additional protein (MW 57,000) unrelated to the benzodiazepine receptor was labeled by [3H]Ro 15-4513 but not by [3H]flunitrazepam. In brain sections, this component contributed to higher labeling by [3H]Ro 15-4513 in the granular than the molecular layer.  相似文献   

4.
The high-affinity binding of [3H]imipramine is associated with the serotonin (5-hydroxytryptamine; 5-HT) transporter in the brain and in platelets. In the rat hypothalamus it has been reported that the density of these sites is increased in the dark period of the day, and this could result in an alteration in the release of 5-HT. The electrically evoked release of [3H]5-HT was thus studied in preloaded hypothalamic slices prepared from rats kept under 12:12 h light/dark or dark/light schedules. The fractional release of [3H]5-HT evoked by electrical stimulation, but not by the 5-HT releasing agent fenfluramine, was significantly decreased during the dark period when compared with the light period. The effects of the 5-HT reuptake blocker citalopram, of the two 5-HT autoreceptor agonists 5-methoxytryptamine and RU 24969, and of the 5-HT autoreceptor antagonist methiothepin on the release of [3H]5-HT were the same in both groups of rats. In conclusion, the release of [3H]5-HT from prelabelled rat hypothalamic slices is decreased during the dark period of the day. This modification is not reflected by changes in the effects of citalopram, an inhibitor of 5-HT reuptake, to modify the overflow of [3H]5-HT. The sensitivity and efficacy of agonists of the 5-HT autoreceptor are the same during the light and dark periods of the day.  相似文献   

5.
Abstract: The ability of adenosine agonists to modulate K+-evoked 4D†-[3H]aminobutyric acid ([3H]GABA) and acetylcholine (ACh) release from rat striatal synaptosomes was investigated. The A2a receptor-selective agonist CGS 21680 inhibited Ca2+-dependent [3H]GABA release evoked by 15 m M KCI with a maximal inhibition of 29 ± 4% (IC50 of ∼4 ± 10 −12 M ). The relative order of potency of three agonists was CGS 21680 ± 5'- N -ethylcarboxamidoadenosine > R-phenylisopropyladenosine (R-PIA), with the inhibition being blocked by A2a receptor-selective antagonists (CP 66,713 and CGS 15943A) but not by the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). When release of [3H]GABA was evoked by 30 mM KCI, no significant inhibition was observed. In contrast, CGS 21680 stimulated the release of [3H]ACh evoked by 30 m M KCI, with a maximal stimulation of 26 ± 5% (IC50 of ∼10−11 M ). This effect was blocked by CP 66,713 but not by DPCPX. The A1 agonist R -PIA inhibited [3H]ACh release, an effect blocked by DPCPX. It is concluded that adenosine A2a receptors are present on both GABAergic and cholinergic striatal nerve terminals where they inhibit and stimulate transmitter release, respectively. Key Words : GABA—Acetylcholine—Adenosine receptors—Striatum.  相似文献   

6.
The effect of the serotonergic receptor agonist 1-(m-trifluoromethylphenyl)piperazine (TFMPP) was studied on the K(+)-evoked [3H]acetylcholine [( 3H]ACh) release from guinea pig hippocampal synaptosomes loaded with [3H]choline. TFMPP (5-1,000 microM) inhibited the evoked ACh release in a dose-dependent manner (IC50 = 81.8 microM). The inhibitory effect of TFMPP was mimicked by CGS-12066B (10, 30, and 100 microM), a 5-hydroxytryptamine1B (5-HT1B)/5-HT1D receptor agonist; 1-(m-chlorophenyl)piperazine (100 microM), a 5-HT1C/5-HT1B receptor agonist; and 5-carboxamidotryptamine (10 microM), a nonselective 5-HT1 receptor agonist. 8-Hydroxy-2-(di-n-propylamino)tetralin (10 and 100 microM), a 5-HT1A receptor agonist, and quipazine (10 and 100 microM), a 5-HT2 receptor agonist, did not have any significant effect. Serotonergic antagonists, such as dihydroergotamine (0.1 and 1 microM), metergoline (0.1 microM), methysergide (0.5 and 1 microM), or yohimbine (1 and 10 microM), blocked the TFMPP effect dose-dependently. In contrast, methiotepine (0.3 and 1 microM), propranolol (1 microM), ketanserin (0.1 microM), mesulergine (0.1 microM), ICS 205930 (0.1 and 1 microM), and spiroperidol (1 and 7 microM) did not affect the TFMPP-induced inhibition of the evoked ACh release. These data suggest that, in guinea pig hippocampus, the K(+)-evoked ACh release is modulated by a 5-HT1 receptor distinct from the 5-HT1A, 5-HT1B, and 5-HT1C subtypes.  相似文献   

7.
Electrically evoked release of serotonin (5-HT) and its modulation via 5-HT autoreceptors and alpha(2)-heteroreceptors was studied in primary cell cultures prepared from the embryonic (ED 15) rat mesencephalic brain region comprising the raphe nuclei. Cultures were grown for up to 3 weeks on circular glass coverslips. They developed a dense network of non-neuronal and neuronal cells, some of which were positive for tryptophan hydroxylase. To measure 5-HT release, the cultures were pre-incubated with [(3)H]5-HT (in the presence of the selective noradrenaline reuptake inhibitor oxaprotiline [1 micromol/L]), superfused with modified Krebs-Henseleit medium containing 6-nitroqipazine [1 micromol/L] and electrically stimulated using two conditions. Condition A: 360 pulses, 3 Hz, 0.5 ms, 90 mA, or condition B: 4 pulses 100 Hz, 0.5 ms, 90 mA (a condition which diminishes interactions with endogenously released transmitters during ongoing stimulation). After only 1 week in culture, the electrically evoked overflow of [(3)H] was Ca(2+) dependent and tetrodotoxin sensitive, suggesting an action-potential-induced exocytotic release of 5-HT. Using stimulation condition A in cultures grown for 2 weeks, both basal and evoked 5-HT release were strongly enhanced by methiotepine (1 micromol/L) but unaffected by the 5-HT(1B) autoreceptor agonist CP-93, 129 (1 micromol/L) and the alpha(2)-adrenoceptor agonist UK-14, 304 (1 micromol/L). Conversely, using stimulation condition B, not only CP-93, 129 (IC(50) 8.1 +/- 1.4 nmol/L) and UK-14, 304 (IC(50) 14.9 +/- 1.6 nmol/L) had inhibitory effects on cells grown for 2 weeks, but also the 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino)tetralin. In conclusion, we describe for the first time electrically evoked release of 5-HT from primary cultures of fetal raphe cells and its modulation via 5-HT(1B) and 5-HT(1A) auto- and alpha(2)-heteroreceptors. Such cultured raphe cells may represent a suitable model to study expression and development of presynaptic receptors on serotonergic neurons in-vitro.  相似文献   

8.
The effect of acute and chronic lithium treatments on 5-hydroxytryptamine (5-HT, serotonin) release and on its regulation by presynaptic 5-HT autoreceptors was studied in [3H]5-HT preloaded superfused rat brain slices. The [3H]5-HT overflow evoked by a 30-s exposure to 65 mM K+ was increased after 3 weeks of ingestion of lithium-containing diet in the three brain areas examined. Acute injection of 4 mEq/kg lithium chloride did not affect 5-HT release. The K+-induced release observed in both control and chronically lithium-treated animals was Ca2+-dependent. Chronic lithium treatment was also found to be associated with a decrease in basal [3H]5-HT overflow in the cortex and hypothalamus but not in hippocampus [corrected]. The Ca2+-independent overflow induced by fenfluramine was also decreased in cortical slices from lithium-treated animals. The sensitivity of the inhibitory 5-HT autoreceptors was assessed by the response to the 5-HT agonist 5-methoxytryptamine. The results indicate a marked reduction in the maximal inhibition of [3H]5-HT release induced by 5-methoxytryptamine in slices obtained from animals which have been treated with lithium for 3 weeks. These data suggest that the functional down regulation of the prejunctional 5-HT sites may be responsible for the increase in K+-stimulated 5-HT overflow in brain slices of animals treated chronically with lithium.  相似文献   

9.
In the present study we investigated whether serotonin release in the hippocampus is subject to regulation via cannabinoid receptors. Both rat and mouse hippocampal slices were preincubated with [3H]serotonin ([3H]5-HT) and superfused with medium containing serotonin reuptake inhibitor citalopram hydrobromide (300 nM). The cannabinoid receptor agonist R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate (WIN55,212-2, 1 microM) did not affect either the resting or the electrically evoked [3H]5-HT release. In the presence of the ionotropic glutamate receptor antagonists D(-)-2-amino-5-phosphonopentanoic acid (AP-5, 50 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione-disodium (CNQX, 10 microM) the evoked [3H]5-HT release was decreased significantly. Similar findings were obtained when CNQX (10 microM) was applied alone with WIN55,212-2. This effect was abolished by the selective cannabinoid receptor subtype 1 (CB1) antagonists N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716, 1 microM) and 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide trifluoroacetate salt (AM251, 1 microM). Similarly to that observed in rats, WIN55,212-2 (1 microM) decreased the evoked [3H]5-HT efflux in wild-type mice (CB1+/+). The inhibitory effect of WIN55,212-2 (1 microM) was completely absent in hippocampal slices derived from mice genetically deficient in CB1 cannabinoid receptors (CB1-/-). Relatively selective degeneration of fine serotonergic axons by the neurotoxin parachloramphetamine (PCA) reduced significantly the tritium uptake and the evoked [3H]5-HT release. In addition, PCA, eliminated the effect of WIN55,212-2 (1 microM) on the stimulation-evoked [3H]5-HT efflux. In contrast to the PCA-treated animals, WIN55,212-2 (1 microM) reduced the [3H]5-HT efflux in the saline-treated group. Our data suggest that a subpopulation of non-synaptic serotonergic afferents express CB1 receptors and activation of these CB1 receptors leads to a decrease in 5-HT release.  相似文献   

10.
GABA, THIP and muscimol enhance spontaneous and inhibit electrically induced release of tritium labelled compounds from rat striatal slices which have been pre-labelled with 3H-choline. Baclofen is inactive in this model. Muscimol can inhibit electrically induced release of tritiated material by approximately 75% with half maximal effects at 2 microM. The response to muscimol can be blocked by the GABA antagonists bicuculline methobromide, picrotoxin, anisatin, R 5135 and CPTBO (cyclopentylbicyclophosphate). Drugs which act on the benzodiazepine receptor (BR) require the presence of muscimol to be effective and they modulate the effects of muscimol in a bidirectional manner. Thus BR agonists enhance and inverse BR agonists attenuate the inhibitory effects of muscimol on electrically induced release. Ro15-1788, a BR antagonist, does not modulate the inhibitory effects of muscimol but antagonizes the actions of clonazepam, a BR agonist, and of DMCM, an inverse BR agonist. These results demonstrate that a GABA/benzodiazepine receptor complex can modulate acetylcholine release from rat striatal slices in vitro.  相似文献   

11.
Electrical stimulation has certain advantages over chemical stimulation methods for the study of neurotransmitter release in brain slices. However, measuring detectable quantities of electrically evoked release of endogenous or radiolabeled markers of excitatory amino acid neurotransmitters has required current intensities or frequencies much higher than those usually required to study other transmitter systems. We demonstrate here that [3H]-D-aspartate (D-ASP) release can be detected from hippocampal slices at lower stimulation intensities in the presence of a glutamate reuptake inhibitor. Subsequently, we optimized the electrical stimulus parameters for characterizing electrically evoked D-ASP release. Under the experimental conditions described, greater than 90% of electrically evoked D-ASP release is calcium-dependent. Evoked D-ASP release is markedly reduced by pre-treating slices with the synaptic vesicle toxin bafilomycin A1 (BAF A1) or in the presence of 10-mM magnesium. Evoked D-ASP release is also reduced to variable degrees by N- and P/Q type voltage-sensitive calcium channel antagonists. Neither spontaneous efflux nor evoked D-ASP release were affected by NMDA, AMPA or group I metabotropic glutamate receptor (mGluR) antagonists. Evoked D-ASP release was reduced in the presence of an adenosine A1 receptor agonist and potentiated by treatment with a group I mGluR5 agonist. Evoked [3H]-D-ASP release was similar in magnitude to evoked [3H]-L-glutamate (L-GLU) release. Finally, in separate experiments using the same electrical stimulus parameters, more than 90% of electrically evoked endogenous L-GLU release was calcium dependent, a pattern similar to that observed for evoked [3H]-D-ASP release. Taken together, these results indicate that electrically evoked [3H]-D-ASP release mimics evoked glutamate release in brain slices under the experimental conditions employed in these studies.  相似文献   

12.
GABAA receptor agonists modulate [3H]diazepam binding in rat cortical membranes with different efficacies. At 23 degrees C, the relative potencies for enhancement of [3H]diazepam binding by agonists parallel their potencies in inhibiting [3H]gamma-aminobutyric acid [( 3H]GABA) binding. The agonist concentrations needed for enhancement of [3H]diazepam binding are up to 35 times higher than for [3H]GABA binding and correspond closely to the concentrations required for displacement of [3H]bicuculline methochloride (BMC) binding. The maximum enhancement of [3H]diazepam varied among agonists: muscimol = GABA greater than isoguvacine greater than 3-aminopropane sulphonic acid (3APS) = imidazoleacetic acid (IAA) greater than 4,5,6,7-tetrahydroisoxazolo (4,5,6)-pyridin-3-ol (THIP) = taurine greater than piperidine 4-sulphonic acid (P4S). At 37 degrees C, the potencies of agonists remained unchanged, but isoguvacine, 3 APS, and THIP acquired efficacies similar to GABA, whereas IAA, taurine, and P4S maintained their partial agonist profiles. At both temperatures the agonist-induced enhancement of [3H]diazepam binding was reversible by bicuculline methobromide and by the steroid GABA antagonist RU 5135. These results stress the importance of studying receptor-receptor interaction under near-physiological conditions and offer an in vitro assay that may predict the agonist status of putative GABA receptor ligands.  相似文献   

13.
Radiation inactivation was used to estimate the molecular weight of the benzodiazepine (BZ), gamma-aminobutyric acid (GABA), and associated chloride ionophore (picrotoxinin/barbiturate) binding sites in frozen membranes prepared from rat forebrain. The target size of the BZ recognition site (as defined by the binding of the agonists [3H]diazepam and [3H]flunitrazepam, the antagonists [3H]Ro 15-1788 and [3H]CGS 8216, and the inverse agonist [3H]ethyl-beta-carboline-3-carboxylate) averaged 51,000 +/- 2,000 daltons. The presence or absence of GABA during irradiation had no effect on the target size of the BZ recognition site. The apparent molecular weight of the GABA binding site labelled with [3H]muscimol was identical to the BZ receptor when determined under identical assay conditions. However the target size of the picrotoxinin/barbiturate binding site labelled with the cage convulsant [35S]t-butylbicyclophosphorothionate was about threefold larger (138,000 daltons). The effects of lyophilization on BZ receptor binding activity and target size analysis were also determined. A decrease in the number of BZ binding sites (Bmax) was observed in the nonirradiated, lyophilized membranes compared with frozen membranes. Lyophilization of membranes prior to irradiation at -135 degrees C or 30 degrees C resulted in a 53 and 151% increase, respectively, in the molecular weight (target size) estimates of the BZ recognition site when compared with frozen membrane preparations. Two enzymes were also added to the membrane preparations for subsequent target size analysis. In lyophilized preparations irradiated at 30 degrees C, the target size for beta-galactosidase was also increased 71% when compared with frozen membrane preparations. In contrast, the target size for glucose-6-phosphate dehydrogenase was not altered by lyophilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Synaptosomes prepared from freshly obtained human cerebral cortex and labeled with [3H]choline have been used to investigate the modulation of [3H]acetylcholine ([3H]ACh) release by 5-hydroxytryptamine (5-HT). The Ca(2+)-dependent release of [3H]-ACh occurring when synaptosomes were exposed in superfusion to 15 mM KCl was inhibited by 5-HT (0.01-1 microM) in a concentration-dependent manner. The effect of 5-HT was mimicked by 1-phenylbiguanide, a 5-HT3 receptor agonist, but not by 8-hydroxy-2-(di-n-propylamino)tetralin, a 5-HT1A receptor agonist. The 5-HT3 receptor antagonists tropisetron and ondansetron blocked the effect of 5-HT, whereas spiperone and ketanserin were ineffective. It is suggested that cholinergic axon terminals in the human cerebral cortex possess 5-HT receptors that mediate inhibition of ACh release and appear to belong to the 5-HT3 type.  相似文献   

15.
Rats (N = 8) were trained to discriminate the stimulus properties of the potent benzodiazepine (BZ) receptor inverse agonist methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) from saline in a two-lever operant task. The initial training dose of DMCM was 0.4 mg/kg at which the discrimination developed slowly; increasing the dose to 0.8 mg/kg resulted in rapid acquisition. However, since convulsions eventually developed during further training (sensitization), the training dose was finally individualized below the convulsive threshold (0.4-0.7 mg/kg). The DMCM cue was mimicked by FG 7142 (10 mg/kg), a non-convulsant anxiogenic beta-carboline, by pentylenetrazol (20-30 mg/kg), and by the GABA antagonist bicuculline (2 mg/kg). The DMCM cue was not, or marginally, blocked by diazepam (2.5 mg/kg) or pentobarbital (10-15 mg/kg). Furthermore, the BZ receptor antagonists CGS 8216 (2.5 mg/kg), ZK 93426 (20 mg/kg), and Ro 15-1788 (20-80 mg/kg) also did not, or only marginally, block the DMCM cue. However, the receptor antagonists (alone) substituted for DMCM although Ro 15-1788 was less effective. The partial BZ receptor agonist ZK 91296 (25 mg/kg), which is structurally similar to DMCM, blocked completely the DMCM stimulus effect. THIP (4 mg/kg) did not block the DMCM cue. To explain these results, we suggest that the repeated DMCM treatment, necessary for maintaining the discrimination, shifts the balancing point ("set-point") for positive (i.e., BZ-like) agonist efficacy versus inverse agonist efficacy, towards inverse action. This hypothesis was supported by the finding of an enhanced ability of GABA to reduce 3H-DMCM binding to cortical neuronal membranes of animals treated chronically with DMCM in a regimen similar to that used to maintain the DMCM discrimination. Furthermore, this treatment did not affect baseline 3H-DMCM binding, baseline or GABA stimulated 3H-diazepam binding, or 35S-TBPS binding (to chloride channels).  相似文献   

16.
Each of the four convulsants used significantly influenced the release of [3H]-GABA from brain slices, without affecting [3H]GABA uptake. Bicuculline (10?5M, but not 10-fold higher or lower concentrations) potentiated the electrically evoked release of [3H]GABA but not the resting release, whereas metrazol (10?4 to 10?6 M) was found to inhibit resting but not electrically evoked release. Strychnine (10?4 and 10?5 M) and picro-toxin (10?4 M) inhibited electrically evoked release.  相似文献   

17.
A superfusion system employed to measure the K+-stimulated release of [3H]5-hydroxytryptamine [(3H]5-HT, [3H]serotonin) from a synaptosomal-rich spinal cord tissue preparation was carefully characterized, then used to examine the regulation of spinal 5-HT release. Spinal 5-HT release is apparently modulated by an autoreceptor. Exogenous 5-HT depressed, in a concentration-dependent manner, the K+-stimulated release of [3H]5-HT. Similarly, lysergic acid diethylamide (LSD) produced a concentration-dependent decrease in [3H]5-HT release. Methiothepin and quipazine blocked the inhibition of release induced by exogenous 5-HT. The 5-HT2 receptor antagonists spiperone and ketanserin failed to alter the action of 5-HT at the spinal 5-HT autoreceptor. Spiperone and ketanserin were shown, however, to alter the storage of [3H]5-HT. When used in concentrations greater than 10 nM, the drugs evoked increases in basal [3H]5-HT and [3H]5-hydroxyindoleacetic acid ( [3H]5-HIAA) effluxes which were independent of the presence of calcium ions. A good agreement existed between the potencies of drugs for modifying autoreceptor function and their abilities to compete for high-affinity [3H]5-HT binding in the spinal cord (designated 5-HT1). Furthermore quipazine, in concentrations that preferentially interact with the 5-HT1B subtype, antagonized the actions of exogenous 5-HT on K+-stimulated release. Spiperone, in a concentration that approximated the affinity constant of 5-HT1A sites for the drug, was ineffective in altering the ability of exogenous 5-HT to modulate K+-stimulated [3H]5-HT release. These results suggest that 5-HT1B sites are associated with serotonergic autoreceptor function in the spinal cord.  相似文献   

18.
To explore if prolonged--as opposed to acute--5-HT uptake blockade can lead to changes in the function of ATP-dependent potassium (K(ATP)) channels, we investigated in rat and mouse neocortical slices the effects of K(ATP) channel blockers on electrically evoked [3H]-serotonin ([3H]-5-HT) release after short- and long-term exposure to 5-HT uptake blockers. Glibenclamide (1 microM), a K(ATP) channel blocker, enhanced the electrically evoked [3H]-5-HT release by 66 and by 77%, respectively, in rat and in mouse neocortex slices. This effect was confirmed in the rat by tolbutamide (1 microM), another K(ATP) channel antagonist. After short-term blockade (45 min) of 5-HT uptake, glibenclamide still increased the release of [3H]-5-HT in the rat. Glibenclamide, however, failed to enhance [3H]-5-HT release after long-term uptake blockade (210 min). In the mouse, however, both short- and long-term inhibition of 5-HT reuptake by citalopram (1 microM) prevented the facilitatory effect of glibenclamide. The Na(+)/K(+)-ATPase inhibitor ouabain (3.2 microM) abolished the glibenclamide-induced increase in [3H]-5-HT release in both rat and mouse, suggesting that an operative Na(+)/K(+)-ATPase is a prerequisite for activation of K(ATP) channels. The terminal 5-HT(1B) autoreceptor-mediated feedback control was involved in the glibenclamide-induced increase in [(3)H]-5-HT release only in mouse neocortical tissue, as evident from the use of the 5-HT(1B) autoreceptor ligands metitepin (1 microM) and cyanopindolol (1 microM). These results suggest that in the rat long-term uptake blockade leads to an impaired activity of the Na(+)/K(+)-ATPase, which increases intracellular ATP and consequently closes K(ATP) channels. In the mouse, however, short-term uptake blockade seems to already reduce the activity of the Na(+)/K(+)-ATPase and thereby the consumption of ATP. Blockade of 5-HT transporters thus may close K(ATP) channels through increased intracellular ATP. The following slight depolarisation seems to facilitate 5-HT release. These results may contribute to a better understanding of the mechanisms involved in the clinical time latency of antidepressant efficacy of monoamine uptake blockers.  相似文献   

19.
Binding of the benzodiazepine inverse agonist [3H]methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate [( 3H]DMCM) and the agonist [3H]flunitrazepam [( 3H]FNZ) was compared in rat cortical membranes. Halide ions enhanced [3H]DMCM binding three- to fourfold, increasing both the apparent affinity and the number of binding sites for this radioligand. The effect was present at both 0 and 37 degrees C. In contrast, the magnitude of halide stimulation of [3H]FNZ binding was much smaller, resulting solely from an increase in the apparent affinity for this radioligand, and was not observed at 37 degrees C. The potencies but not the efficacies of a series of anions to stimulate both [3H]DMCM and [3H]FNZ binding to benzodiazepine receptors were highly correlated with their relative permeabilities through gamma-aminobutyric acid (GABA)-gated chloride channels. Two stress paradigms (10 min of immobilization or ambient-temperature swim stress), previously shown to increase significantly the magnitude of halide-stimulated [3H]FNZ binding, did not significantly affect [3H]DMCM binding. Phospholipase A2 treatment of cortical membrane preparations was equipotent in preventing the stimulatory effect of chloride on both [3H]DMCM and [3H]FNZ binding. These data strongly suggest that anions modify the binding of [3H]DMCM and [3H]FNZ by acting at a common anion binding site that is an integral component of the GABA/benzodiazepine receptor chloride channel complex.  相似文献   

20.
[3H]Spiroxatrine: A 5-HT1A Radioligand with Agonist Binding Properties   总被引:1,自引:0,他引:1  
Spiroxatrine has been reported to be a 5-HT1A serotonin receptor antagonist. Therefore [3H]spiroxatrine was synthesized and its 5-HT1A receptor binding properties in homogenates of rat hippocampal membranes were characterized with the expectation that it would be the first 5-HT1A antagonist radioligand. [3H]8-Hydroxydipropylaminotetralin [( 3H]8-OH-DPAT), a well-characterized 5-HT1A agonist radioligand, was studied in parallel for comparative purposes. Scatchard analyses of saturation studies of [3H]spiroxatrine and [3H]8-OH-DPAT binding produced KD values of 0.9 nM and 1.8 nM, with Bmax values of 424 and 360 fmol/mg protein, respectively. A highly significant correlation (r = 0.98; p less than 0.001) exists between Ki values obtained for a series of drugs in competing for [3H]-spiroxatrine and [3H]8-OH-DPAT binding. Of special interest was the observation that 5-HT1A agonists such as serotonin, 8-OH-DPAT, and ipsapirone competed with equal high affinities for [3H]spiroxatrine or [3H]8-OH-DPAT-labelled 5-HT1A receptors. [3H]Spiroxatrine and [3H]8-OH-DPAT binding to 5-HT1A receptors was inhibited by guanosine 5'-(beta,gamma-imido)triphosphate (a nonhydrolyzable analog of GTP) in a concentration-dependent manner whereas adenosine 5'-(beta,gamma-imido)triphosphate (a nonhydrolyzable analog of ATP) had no effect. The similarities in the 5-HT1A receptor radiolabelling properties of [3H]spiroxatrine and [3H]8-OH-DPAT, i.e., the high affinities of agonists and the guanyl nucleotide sensitivity, indicate that [3H]spiroxatrine has "agonist-like" binding properties in its interaction with the 5-HT1A receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号