首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Genes and proteins form complex dynamical systems or gene regulatory networks (GRN) that can reach several steady states (attractors). These may be associated with distinct cell types. In plants, the ABC combinatorial model establishes the necessary gene combinations for floral organ cell specification. We have developed dynamic gene regulatory network (GRN) models to understand how the combinatorial selection of gene activity is established during floral organ primordia specification as a result of the concerted action of ABC and non-ABC genes. Our analyses have shown that the floral organ specification GRN reaches six attractors with gene configurations observed in primordial cell types during early stages of flower development and four that correspond to regions of the inflorescence meristem. This suggests that it is the overall GRN dynamics rather than precise signals that underlie the ABC model. Furthermore, our analyses suggest that the steady states of the GRN are robust to random alterations of the logical functions that define the gene interactions. Here we have updated the GRN model and have systematically altered the outputs of all the logical functions and addressed in which cases the original attractors are recovered. We then reduced the original three-state GRN to a two-state (Boolean) GRN and performed the same systematic perturbation analysis. Interestingly, the Boolean GRN reaches the same number and type of attractors as reached by the three-state GRN, and it responds to perturbations in a qualitatively identical manner as the original GRN. These results suggest that a Boolean model is sufficient to capture the dynamical features of the floral network and provide additional support for the robustness of the floral GRN. These findings further support that the GRN model provides a dynamical explanation for the ABC model and that the floral GRN robustness could be behind the widespread conservation of the floral plan among eudicotyledoneous plants. Other aspects of evolution of flower organ arrangement and ABC gene expression patterns are discussed in the context of the approach proposed here. álvaro Chaos, Max Aldana and Elena Alvarez-Buylla contributed equally to this work.  相似文献   

2.
Spontaneous homeotic transformations have been described in natural populations of both plants and animals, but little is known about the molecular-genetic mechanisms underlying these processes in plants. In the ABC model of floral organ identity in Arabidopsis thaliana, the B- and C-functions are necessary for stamen morphogenesis, and C alone is required for carpel identity. We provide ABC model-based molecular-genetic evidence that explains the unique inside-out homeotic floral organ arrangement of the monocotyledonous mycoheterotroph species Lacandonia schismatica (Triuridaceae) from Mexico. Whereas a quarter million flowering plant species bear central carpels surrounded by stamens, L. schismatica stamens occur in the center of the flower and are surrounded by carpels. The simplest explanation for this is that the B-function is displaced toward the flower center. Our analyses of the spatio-temporal pattern of B- and C-function gene expression are consistent with this hypothesis. The hypothesis is further supported by conservation between the B-function genes of L. schismatica and Arabidopsis, as the former are able to rescue stamens in Arabidopsis transgenic complementation lines, and Ls-AP3 and Ls-PI are able to interact with each other and with the corresponding Arabidopsis B-function proteins in yeast. Thus, relatively simple molecular modifications may underlie important morphological shifts in natural populations of extant plant taxa.  相似文献   

3.
SEPALLATA gene diversification: brave new whorls   总被引:1,自引:0,他引:1  
SEPALLATA (SEP) genes form an integral part of models that outline the molecular basis of floral organ determination and are hypothesized to act as co-factors with ABCD floral homeotic genes in specifying different floral whorls. The four SEP genes in Arabidopsis function redundantly, but the extent to which SEP genes in other flowering plants function similarly is unknown. Using a recent 113-gene SEP phylogeny as a framework, we find surprising heterogeneity among SEP gene C-terminal motifs, mRNA expression patterns, protein-protein interactions and inferred function. Although some SEP genes appear to function redundantly, others have novel roles in fruit maturation, floral organ specification and plant architecture, and have played a major role in floral evolution of diverse plants.  相似文献   

4.
The architecture of a flower is tightly linked to the way a plant pollinates, making it one of the most physiologically and ecologically important traits of angiosperms. Floral organ development is proposed to be governed by the activity of three different classes of organ identity genes (the ABC model), and the expression of those genes are regulated by a number of meristem identity genes. Here we use a transgenetic strategy to elucidate the role of one floral meristem identify gene,LEAFY (LFY), in the evolution of floral organogenesis of a self pollinatorIdahoa scapigera and a obligatory out-crosserLeavenworthia crassa in the mustard family, Brassicaceae. By introducing theLFY genes from these two types of pollination habit into the genetic model speciesArabidopsis thaliana, we provide evidence that changes inLFY influenced flower architecture probably by controlling the downstream organ identity genes.  相似文献   

5.
6.
7.
The ULTRAPETALA gene controls shoot and floral meristem size in Arabidopsis   总被引:3,自引:0,他引:3  
The regulation of proper shoot and floral meristem size during plant development is mediated by a complex interaction of stem cell promoting and restricting factors. The phenotypic effects of mutations in the ULTRAPETALA gene, which is required to control shoot and floral meristem cell accumulation in Arabidopsis thaliana, are described. ultrapetala flowers contain more floral organs and whorls than wild-type plants, phenotypes that correlate with an increase in floral meristem size preceding organ initiation. ultrapetala plants also produce more floral meristems than wild-type plants, correlating with an increase in inflorescence meristem size without visible fasciation. Expression analysis indicates that ULTRAPETALA controls meristem cell accumulation partly by limiting the domain of CLAVATA1 expression. Genetic studies show that ULTRAPETALA acts independently of ERA1, but has overlapping functions with PERIANTHIA and the CLAVATA signal transduction pathway in controlling shoot and floral meristem size and meristem determinacy. Thus ULTRAPETALA defines a novel locus that restricts meristem cell accumulation in Arabidopsis shoot and floral meristems.  相似文献   

8.
Evolutionary dynamics of genes controlling floral development   总被引:1,自引:0,他引:1  
Advances in the understanding of floral developmental genetics in model species such as Arabidopsis continue to provide an important foundation for comparative studies in other flowering plants. In particular, floral organ identity genes are the focus of many projects that are addressing both ancient and recent evolutionary questions. Expanded analyses of the evolution of these gene lineages have highlighted the dynamic nature of the gene birth-and-death process, and may have significant implications for the evolution of genetic pathways. Crucial functional studies of floral organ identity genes in diverse taxa are allowing the first real insight into the conservation of gene function, while findings on the genetic control of organ elaboration offer to open up new avenues for investigation. Taken together, these trends show that the field of floral developmental evolution continues to make significant progress towards elucidating the processes that have shaped the evolution of flower development and morphology.  相似文献   

9.
Understanding how flowers develop from undifferentiated stem cells has occupied developmental biologists for decades. Key to unraveling this process is a detailed knowledge of the global regulatory hierarchies that control developmental transitions, cell differentiation and organ growth. These hierarchies may be deduced from gene perturbation experiments, which determine the effects on gene expression after specific disruption of a regulatory gene. Here, we tested experimental strategies for gene perturbation experiments during Arabidopsis thaliana flower development. We used artificial miRNAs (amiRNAs) to disrupt the functions of key floral regulators, and expressed them under the control of various inducible promoter systems that are widely used in the plant research community. To be able to perform genome‐wide experiments with stage‐specific resolution using the various inducible promoter systems for gene perturbation experiments, we also generated a series of floral induction systems that allow collection of hundreds of synchronized floral buds from a single plant. Based on our results, we propose strategies for performing dynamic gene perturbation experiments in flowers, and outline how they may be combined with versions of the floral induction system to dissect the gene regulatory network underlying flower development.  相似文献   

10.
Dong ZC  Zhao Z  Liu CW  Luo JH  Yang J  Huang WH  Hu XH  Wang TL  Luo D 《Plant physiology》2005,137(4):1272-1282
Floral patterning in Papilionoideae plants, such as pea (Pisum sativum) and Medicago truncatula, is unique in terms of floral organ number, arrangement, and initiation timing as compared to other well-studied eudicots. To investigate the molecular mechanisms involved in the floral patterning in legumes, we have analyzed two mutants, proliferating floral meristem and proliferating floral organ-2 (pfo-2), obtained by ethyl methanesulfonate mutagenesis of Lotus japonicus. These two mutants showed similar phenotypes, with indeterminate floral structures and altered floral organ identities. We have demonstrated that loss of function of LjLFY and LjUFO/Pfo is likely to be responsible for these mutant phenotypes, respectively. To dissect the regulatory network controlling the floral patterning, we cloned homologs of the ABC function genes, which control floral organ identity in Arabidopsis (Arabidopsis thaliana). We found that some of the B and C function genes were duplicated. RNA in situ hybridization showed that the C function genes were expressed transiently in the carpel, continuously in stamens, and showed complementarity with the A function genes in the heterogeneous whorl. In proliferating floral meristem and pfo-2 mutants, all B function genes were down-regulated and the expression patterns of the A and C function genes were drastically altered. We conclude that LjLFY and LjUFO/Pfo are required for the activation of B function genes and function together in the recruitment and determination of petals and stamens. Our findings suggest that gene duplication, change in expression pattern, gain or loss of functional domains, and alteration of key gene functions all contribute to the divergence of floral patterning in L. japonicus.  相似文献   

11.
12.
Through multifaceted genome-scale research involving phylogenomics, targeted gene surveys, and gene expression analyses in diverse basal lineages of angiosperms, our studies provide insights into the most recent common ancestor of all extant flowering plants. MADS-box gene duplications have played an important role in the origin and diversification of angiosperms. Furthermore, early angiosperms possessed a diverse tool kit of floral genes and exhibited developmental 'flexibility', with broader patterns of expression of key floral organ identity genes than are found in eudicots. In particular, homologs of B-function MADS-box genes are more broadly expressed across the floral meristem in basal lineages. These results prompted formulation of the 'fading borders' model, which states that the gradual transitions in floral organ morphology observed in some basal angiosperms (e.g. Amborella) result from a gradient in the level of expression of floral organ identity genes across the developing floral meristem.  相似文献   

13.
14.
Flowers consist primarily of four basic organ types whose relative positions are universally conserved within the angiosperms. A model has been proposed to explain how a small number of regulatory genes, acting alone and in combination, specify floral organ identity. This model, known widely as the ABC model of flower development, is based on molecular generic experiments in two model organisms,Arabidopsis thaliana and Antirrhinum majus.Both of these species are considered to be eudicots, a clade within the angiosperms with a relatively conserved floral architecture. In this review, the application of the ABC model derived from studies of these typical eudicot species is considered with respect to angiosperms whose floral structure deviates from that of the eudicots. It is concluded that the model is universally applicable to the angiosperms as a whole, and the enormous diversity seen among angiosperms flowers is due to genetic pathways that are downstream, or independent, of the genetic programme that specifies floral organ identity.  相似文献   

15.
16.
Rao G  Wang Y  Zhang D  Liu D  Li F  Lu H 《Molecular biology reports》2012,39(6):6887-6894
Based on genetic and molecular analyses, the ABC model has been proposed to explain the genetic control of floral development. C-class MADS-box genes play crucial roles in Arabidopsis thaliana development by regulating the organ identities of stamens and gynoecium. The present research reports for the first time the cloning of an HpSHP gene from Hosta plantaginea (Lam.) Aschers. Phylogenetic analysis shows that HpSHP is a member of the C-class MADS-box genes that is closely related to C-lineage SHP homologues from monocot species. Semi-quantitative and real-time polymerase chain reaction analyses show that HpSHP expression is stamen and gynoecium specific. HpSHP also has spatial and temporal expression patterns in the reproductive organs of H. plantaginea. A functional analysis is carried out in Arabidopsis by overexpression of HpSHP. Homeotic transformations of sepals into carpelloid organs, bent ovaries, and prematurely shattering fruits are observed in 35S::HpSHP transgenic plants. All these results show that HpSHP plays a crucial role in gynoecium development.  相似文献   

17.
18.
The Arabidopsis floral regulatory genes APETALA3 (AP3) and PISTILLATA (PI) are required for the B function according to the ABC model for floral organ identity. AP3 and PI expression are positively regulated by the LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) genes. UFO encodes an F-box protein, and we have shown previously that UFO genetically interacts with the ASK1 gene encoding a SKP1 homologue; both the F-box containing protein and SKP1 are subunits of ubiquitin ligases. We show here that the ask1-1 mutation can enhance the floral phenotypes of weak lfy and ap3 mutants; therefore, like UFO, ASK1 also interacts with LFY and AP3 genetically. Furthermore, our results from RNA in situ hybridizations indicate that ASK1 regulates early AP3 and PI expression. These results support the idea that UFO and ASK1 together positively regulate AP3 and PI expression. We propose that the UFO and ASK1 proteins are components of a ubiquitin ligase that mediates the proteolysis of a repressor of AP3 and PI expression. Our genetic studies also indicate that ASK1 and UFO play a role in regulating the number of floral organ primordia, and we discuss possible mechanisms for such a regulation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号