首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F Harrisson 《Histochemistry》1976,48(3):241-256
The demonstration of biogenic amine-containing cell is classically performed by means of the formaldehyde-induced fluorescence technique after administration of the monoamine precursors, L-dopa or 5-hydroxytryptophan (5-HTP. The injection of these two two compounds rapidly leads to the formation of large amounts. The biochemical pathway evoked above is studied in the avian adenohypophysis by two different methods involving enzyme...  相似文献   

2.
Monoamine oxidase inhibitory properties of milacemide in rats   总被引:1,自引:0,他引:1  
Milacemide is a glycine prodrug with reported antiepileptic antimyoclonic properties. In this study, milacemide increased "wet dog shakes" in rats pretreated with 5-Hydroxytryptophan (5-HTP) and carbidopa. Moreover, it worsened the serotonin behavior syndrome precipitated by 5-HTP and the monoamine oxidase inhibitor tranylcypromine. The serotonin syndrome was also elicited by the combination of milacemide and 5-HTP without tranylcypromine. In vitro, milacemide inhibited both monoamine oxidase A and B from the frontal cortex of rats, to a greater extent for MAO B. This drug is currently under investigation in humans as an antiepileptic agent and precautions for the consequences of monoamine oxidase inhibition should be considered when the drug is used in high doses.  相似文献   

3.
Biogenic amines have been demonstrated to protect cells from apoptotic cell death. Herein we show for the first time that serotonin and dopamine increase H(2)S production by the endogenous enzyme cystathionine-β-synthase (CBS) and protect cells against hypothermia/rewarming induced reactive oxygen species (ROS) formation and apoptosis. Treatment with both compounds doubled CBS expression through mammalian target of rapamycin (mTOR) and increased H(2)S production in cultured rat smooth muscle cells. In addition, serotonin and dopamine treatment significantly reduced ROS formation. The beneficial effect of both compounds was minimized by inhibition of their re-uptake and by pharmacological inhibition of CBS or its down-regulation by siRNA. Exogenous administration of H(2)S and activation of CBS by Prydoxal 5'-phosphate also protected cells from hypothermic damage. Finally, serotonin and dopamine pretreatment of rat lung, kidney, liver and heart prior to 24 h of hypothermia at 3°C followed by 30 min of rewarming at 37°C upregulated the expression of CBS, strongly reduced caspase activity and maintained the physiological pH compared to untreated tissues. Thus, dopamine and serotonin protect cells against hypothermia/rewarming induced damage by increasing H(2)S production mediated through CBS. Our data identify a novel molecular link between biogenic amines and the H(2)S pathway, which may profoundly affect our understanding of the biological effects of monoamine neurotransmitters.  相似文献   

4.
Monoamine oxidase activity measurements using radioactive substrates   总被引:2,自引:0,他引:2  
The use of Amberlite CG-50, Dowex 50 and solvent extraction for separation of the oxidation products of the biogenic amines are compared, and measurements of monoamine oxidase activity using 14C-labeled biogenic amines are described. Km data for tyramine, dopamine, tryptamine, and serotonin for monoamine oxidase activity of rabbit brain mitochondria are reported. Rates of product formation from [14C]tyramine are compared with polarographic measurements of oxygen utilization using purified MAO and intact mitochondria from rabbit liver and brain. Difficulties in comparative measurements of monoamine oxidase activity and some reasons for wide variations in published data are discussed.  相似文献   

5.
Kidneys form dopamine (DA) from L-dopa and serotonin from L-5-hydroxytryptophan (L-5-HTP) via aromatic L-amino acid decarboxylase. We compared the ability of isolated perfused kidneys from adult (20-week-old) spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) to form these biogenic amines. Renal vascular resistance (RVR) was greater in perfused kidneys from SHR (n = 10) than WKY (n = 8) (p less than 0.01). Slight decreases in RVR were observed during L-dopa infusion but these were unrelated to DA formation. L-Dopa infusion was associated with greater DA output in SHR than WKY in both the renal venous and urinary effluents although the latter did not achieve statistical significance. L-5-HTP increased RVR to a greater degree in SHR than WKY kidneys. This was associated with larger quantities of serotonin in the urinary and venous effluents and greater pressor responses to exogenous serotonin in SHR than WKY kidneys; however, either parameter alone was not significantly increased. Our findings do not support a deficiency of intrarenal DA formation as a pathogenic factor for hypertension in SHR. Biogenic amine formation is as great if not greater in SHR than WKY kidneys and appears to contribute largely to the greater increases in renal resistance seen in SHR kidneys on infusion of L-5-HTP. Enhanced renal serotonin formation may elevate blood pressure, whereas enhanced renal DA formation would favor blood pressure lowering, perhaps as a compensatory mechanism.  相似文献   

6.
Adult beagle dogs of either sex were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-HCl (2.5 mg/kg, i.v.) alone or after pretreatment with pargyline (5.0 mg/kg, s.c., twice), with pargyline alone, or were uninjected. Groups were killed 2 h, 3 weeks, or 3 months after injection, and several brain areas were assayed for biogenic amines and their synthetic and degradative enzymes. MPTP caused a massive and permanent loss of striatal dopamine, tyrosine hydroxylase, and 3,4-dihydroxyphenylalanine decarboxylase activities and the loss of cells within the substantia nigra pars compacta. Dopamine and norepinephrine also were depleted to various degrees in cortex, olfactory bulb, and hypothalamus; however, dopamine beta-hydroxylase activity in cortex was normal. There was no cell loss in the ventral tegmental area or locus ceruleus. The activities of monoamine oxidase (MAO)-A and MAO-B in cortex and caudate were not affected by MPTP. Despite a permanent loss of the nigrostriatal system, the dogs exhibited only a transient hypokinesia lasting 1-2 weeks. Pargyline pretreatment prevented the loss of striatal dopamine and cells from the substantia nigra, but did not prevent a prolonged but reversible decrease in the concentration of dopamine metabolites. It is argued that this apparent inhibition of MAO is due not to suicide inactivation of the enzyme by MPTP, but to reversible inhibition by accumulation of the pyridinium metabolite, 1-methyl-4-phenylpyridinium, selectivity in aminergic terminals.  相似文献   

7.
Summary The postnatal development of formaldehyde induced fluorescence (FIF) was studied in the pituitary glands of female rats. The effects of 3,4-dihydroxyphenylalanine (L-dopa), D,L-5-hydroxytryptophan (DL-5-HTP) and dopamine (DA) treatments on the FIF were followed during the postnatal period.The appearance of specifically fluorescing monoamines into the cells of the pars intermedia occurred postnatally and the level of the adult fluorescence was reached at 4–5 weeks' age. The intensity of the fluorescence was independent on the density of the fluorescing nerves. Among the fluorescing nerves droplet fibres were regularly observed from the age of 3 weeks, which confirms the theory that these fibres are caused by toxic factors when the blood-brain barrier is not functioning.There was no change postnatally in the number of fluorescing cells in the pars distalis.The fluorescing innervation of the median eminence, developed most rapidly at the age of 1–3 weeks and the level of the adult fluorescence was reached at the age of 4–5 weeks.The first specifically fluorescing cells after L-dopa treatment were observed at 6 days age. A remarkable increase in the number of fluorescing cells was seen between 12 and 18 days. After DL-5-HTP treatment fluorescent cells were seen but at later stages. These observations suggest that the cells in the pituitary gland, which store amine-precursors and monoamines developmentally differ from the APUD-cells. The rapid increase of the fluorescing cells between 12 and 18 days and the simultaneous development of the fluorescing innervation of the median eminence suggest the following correlations: the development of dopaminergic innervation of the median eminence — the secretion of releasing hormones — the activity of PAS-positive cells (FSH, LH and TSH secretion) — the uptake of L-dopa and DL-5-HTP into the PAS-positive cells.Dopamine was not uptaken into the cells of pars distalis. The walls of the blood vessels began to show fluorescence suggesting a barrier mechanism, which prevents the DA-uptake into the PAS-positive cells.This work was supported by the Grant for Young Research Workers, University of Helsinki.  相似文献   

8.
Abstract: The in vivo formation of acid-hydrolyzable conjugates of dopamine and of serotonin (presumably dopamine- -O- -sulfate and serotonin- O -sulfate) in ventriculo- cisternal perfusions of the cat is described. Small amounts of these amine conjugates were detected under quiescent conditions and during evoked release of the parent amines. The amounts of conjugated dopamine in perfusate were increased during and immediately after the period in which release of dopamine was evoked, but were not affected by inhibition of monoamine oxidase. In contrast, the efflux of serotonin conjugate during the evoked release of serotonin was not increased unless monoamine oxidase was inhibited. The data suggest that conjugation of amines in the CNS may be of functional importance in their disposition either under conditions of augmented release or during inhibition of oxidative deamination.  相似文献   

9.
Although the alpha-adrenergic antagonist phentolamine potentiates glucose-stimulated insulin secretion of intact animals, it either does not alter, or it inhibits in vitro insulin secretion. This may be because in the higher concentration used in in vitro studies, phentolamine exerts a second pharmacological effect that counterbalances its primary effect of blocking monoamine action. We recently demonstrated that pancreatic islets contain substantial amounts of monoamine oxidase (MAO), and that MAO inhibitors such as iproniazid and tranylcypromine can alter insulin secretion. In the present study, we determined if other drugs that affect insulin secretion, alter the MAO activity of homogenates of rabbit pancreatic islets (collagenase technique) or liver. Phentolamine, phenoxybenzamine and propranolol (10 muM and 100 muM) inhibit islet and hepatic MAO. Haloperidol (10muM) inhibits hepatic but not islet MAO, while haloperidol (10muM) does not inhibit MAO in either tissue. Ethanol (270 to 2.7mM) inhibits islet MAO. Hepatic MAO is inhibited by high (270 to 180mM) but not by low (27 to 2.7mM) concentrations of ethanol. Collagenase digestion does not increase the sensitivity of islet and liver MAO to inhibition by phentolamine or ethanol. In the absence of added monoamines, phentolamine and phenoxybenzamine do not alter basal or glucose-stimulated insulin secretion from rabbit pancreas. Preincubation of rabbit pancreas with the serotonin precursor 5-hydroxytryptophan (5-HTP) increases the beta cell serotonin content and inhibits glucose-stimulated insulin secretion. Alpha adrenergic antagonists not only fail to block, but actually potentiate the serotonin inhibition of insulin secretion. We conclude that inhibition of islet MAO may cause an increase in islet monoamine content and these monoamines may alter in vitro insulin secretion. One mechanism through which adrenergic antagonists and ethanol modify in vitro insulin secretion may be by inhibiting pancreatic islet MAO.  相似文献   

10.
Abstract— Some parameters affecting the activity of monoamine oxidase (MAO) in purified beef brain mitochondria were investigated, and diversities in enzyme properties were found as a function of substrate. The deamination of the biogenic amines: serotonin, dopamine, tyramine, tryptamine, phenylethylamine and two non-physiological amines, kynuramine and m-iodobenzylamine, was studied. Anions in high concentrations inhibited enzyme activity with kynuramine being the substrate most affected. Among the biogenic amines, the activity with the indolalkylamines showed greater sensitivity to mono-valent anions such as chloride than to polyvalent ions such as phosphate whereas the opposite was true with the phenylalkylamines. However, pyrophosphate ion had little or no effect on MAO activity, regardless of substrate. The inhibition of kynuramine and serotonin deamination was non-competitive but mixed competitive inhibition was found with tyramine and phenylethylamine. The activity of MAO was markedly affected by pH, and it had been previously reported that the substrates showed different pH optima in their oxidation. The effect of pH on activity has been attributed in part to changes in the ionization of the substrate and the hypothesis that the true substrate is the non-protonated amine. This was reflected in kinetic studies showing high substrate inhibition with increased pH. It was calculated that phenylethylamine would have the highest percentage of un-ionized amine at pH 8.2 and 9.1. At these pHs, there was more pronounced inhibition with high substrate concentrations of phenylethylamine than with the other substrates. In contrast, there was little inhibition with high substrate concentrations of tyramine which was the most ionizable of the substrates tested. When Km values obtained at pH 7.4, 8.2 and 9.1 were corrected for ionization of the substrate, the corrected Km was lowest at pH 7.4 for all substrates. Less than 50% of MAO activity was lost when beef brain mitochondria was heated at 50°C for 20 min. However, there was only a slight variation with substrate in the thermal inactivation experiments. It is concluded that the mitochondrial membrane environment surrounding the enzyme imposes certain restrictions on the enzymatic activity with respect to the different substrates which, in turn, are also affected by such parameters as pH and ions. The results are discussed in terms of the relationship of these factors to the question of enzyme multiplicity.  相似文献   

11.
Summary Various endocrine cells contain biogenic amines in addition to their peptide hormones. In the digestive tract, one of these amines is serotonin that is regularly present in enterochromaffin (EC-) cells. Previously, it has been assumed that other entero-endocrine cell types also contain this amine. Moreover, it was presumed that chromogranin A, an acidic glycoprotein, is involved in storage mechanisms for biogenic amines in endocrine cells. Using immunohistochemical techniques, we now exemplarily investigated cholecystokinin (CCK-) and secretin (S-) cells of five adult mammalian species for their content of serotonin and of chromogranin A. In all mammalian species, CCK-cells were devoid of serotonin but contained chromogranin A immunoreactivity of varying densities. In contrast, S-cells of all mammals were immunoreactive for serotonin; however, immunoreactivities for this biogenic monoamine were heterogeneous and varied from dense to faint or lacking immunostainings. Likewise, immunoreactivities for chromogranin A in S-cells showed inter-species and inter-cellular heterogeneities. S-cells containing serotonin were simultaneously immunoreactive for chromogranin A and the density of immunoreactivities for both were correlated in given S-cells. Based on mutual relationships of chromogranin A and serotonin immunoreactivities, we assume that chromogranin A is virtually a prerequisite for the S-cells' content of serotonin and that this protein participates in storage mechanisms for biogenic amines in endocrine cells.S-cells have now to be added to the family of amine-storing endocrine cells. Basically, serotonin-storing endocrine cells in the digestive tract cannot be simply regarded as enterochromaffin (EC-) cells any longer; the current nomenclature and classification of entero-endocrine cells should be reviewed in this respect.This work was supported by grants of the Deutsche Forschungs-gemeinschaft (EN 65/15-2)  相似文献   

12.
Increased plasma histamine levels were associated with significantly lowered diamine and type B monoamine oxidase activities in platelet-rich plasma of atopic eczema (AE) patients. The diamine oxidase has almost normal cofactor levels (pyridoxal phosphate and Cu(2+)) but the cofactor levels for type B monoamine oxidase (flavin adenine dinucleotide and Fe(2+)) are lowered. The biogenic amines putrescine, cadaverine, spermidine, spermine, tyramine and serotonin in the sera, as well as dopamine and epinephrine in EDTA-plasma were found to be normal. It is unlikely, therefore, that these amines are responsible for the decreased activities of monoamine and diamine oxidase in these patients. The most likely causative factors for the inhibition of the diamine oxidase are nicotine, alcohol, food additives and other environmental chemicals, or perhaps a genetic defect of the diamine oxidase.  相似文献   

13.
Epinephrine (E) and sympathetic nerve stimulation were described by Thomas Renton Elliott in 1905 for the first time. Dopamine (DA), norepinephrine (NE), E, and serotonin (5-HT) belong to the classic biogenic amines (or monoamines). Parkinson’s disease (PD) is among the diseases in which it has been established that catecholamines may account for the neurodegeneration of central and peripheral catecholamine neural systems. PD is a chronic and progressive neurological disorder characterized by resting tremor, rigidity, and bradykinesia, affecting 2% of individuals above the age of 65 years. This disorder is a result of degeneration of DA-producing neurons of the substantia nigra and a significant loss of noradrenergic neurons in the locus coeruleus. In PD and other related neurodegerative diseases, catecholamines play the role of endogenous neurotoxins. Catechol-O-methyltransferase (COMT) and/or monoamine oxidase (MAO) catalyze the metabolism of monoamines. However, the monoamine transporters for DA, NE, and 5-HT namely DAT, NET, and SERT, respectively regulate the monoamine concentration. The metabolism of catecholamines and 5-HT involves common factors. Monoamine transporters represent targets for many pharmacological agents that affect brain function, including psychostimulators and antidepressants. In PD, polymorphisms of the COMT, MAO, DAT, NET, and 5- HTT genes may change the levels of biogenic amines and their metabolic products. The currently available therapies for PD improve the symptoms but do not halt the progression of the disease. The most effective treatment for PD patients is therapy with L-dopa. Combined therapy for PD involves a DA agonist and decarboxylase, MAOs and COMT inhibitors, and is the current optimal form of PD treatment maintaining monoamine balance.  相似文献   

14.
Y Cetin 《Histochemistry》1990,93(6):601-606
Various endocrine cells contain biogenic amines in addition to their peptide hormones. In the digestive tract, one of these amines is serotonin that is regularly present in enterochromaffin (EC-) cells. Previously, it has been assumed that other entero-endocrine cell types also contain this amine. Moreover, it was presumed that chromogranin A, an acidic glycoprotein, is involved in storage mechanisms for biogenic amines in endocrine cells. Using immunohistochemical techniques, we now exemplarily investigated cholecystokinin (CCK-) and secretin (S-) cells of five adult mammalian species for their content of serotonin and of chromogranin A. In all mammalian species, CCK-cells were devoid of serotonin but contained chromogranin A immunoreactivity of varying densities. In contrast, S-cells of all mammals were immunoreactive for serotonin; however, immunoreactivities for this biogenic monoamine were heterogeneous and varied from dense to faint or lacking immunostainings. Likewise, immunoreactivities for chromogranin A in S-cells showed inter-species and inter-cellular heterogeneities. S-cells containing serotonin were simultaneously immunoreactive for chromogranin A and the density of immunoreactivities for both were correlated in given S-cells. Based on mutual relationships of chromogranin A and serotonin immunoreactivities, we assume that chromograinin A is virtually a prerequisite for the S-cells' content of serotonin and that this protein participates in storage mechanisms for biogenic amines in endocrine cells. S-cells have now to be added to the family of amine-storing endocrine cells. Basically, serotonin-storing endocrine cells in the digestive tract cannot be simply regarded as enterochromaffin (EC-) cells any longer; the current nomenclature and classification of entero-endocrine cells should be reviewed in this respect.  相似文献   

15.
M Naoi  T Nagatsu 《Life sciences》1987,40(4):321-328
L-3,4-Dihydroxyphenylalanine (DOPA) was found to inhibit type A monoamine oxidase in human placental mitochondria. The inhibition proved to be noncompetitive with the substrate, kynuramine, and the inhibition was completely reversible. D-DOPA was found to inhibit monoamine oxidase in the same way, and the apparent Ki values of L- and D-DOPA were obtained to be 154 microM and 133 microM, respectively. L-alpha-Methyl-DOPA was found to inhibit the MAO activity competitively with the substrate, but studies with other analogues of DOPA revealed that the inhibition required an amino and a carboxyl group at alpha-position. The substitution of a hydroxy group at 3 or 4 position of catechol ring with a methoxy group was found to abolish the inhibition of the MAO activity. In addition to type A MAO in human liver and placental mitochondria, type B MAO in liver mitochondria was inhibited by L-DOPA, but type B MAO was less sensitive to L-DOPA. These results were discussed in terms of its possible regulation of the level of biogenic amines in the brain.  相似文献   

16.
Dimebone was shown to inhibit monoamine oxidase (MAO) deaminating dopamine and serotonin, decrease dopamine metabolism in the basal ganglia of the rat brain, increase noradrenaline level and depress dopamine deamination in the hypothalamus. Dimebone first increased and then diminished the release of dopamine in the cortex, with the concomitant MAO activation and the increase in dopamine and noradrenaline levels. The in vitro experiments have demonstrated that dimebone (10(-4)) preferentially inhibited MAO activity, type B and dopamine deamination in homogenates of different rat brain structures. The role of MAO inhibition in the mechanism of dimebone action on the catecholamine metabolism in the brain structures and its stimulating effect on CNS are discussed.  相似文献   

17.
Sex differentiation and gametogenesis represent critical steps in the reproductive process and are subject to hormonal control by serotonin, dopamine and steroids such as estradiol-17beta and testosterone. The purpose of this study sought to examine the endocrine-disrupting activity that a primary-treated municipal effluent might have on the metabolism of biogenic amine levels. First, serotonin receptors transfected in Chinese hamster ovary (CHO) cells were used to screen for the presence of serotonin receptor agonist or antagonist. Second, one group of Elliptio complanata mussels were exposed to single compounds likely to be found in municipal wastewaters and another group was exposed in situ to the municipal effluent plume for 90 days in experimental cages. Results showed that solid phase C-8 extracts of surface water downstream a municipal effluent could activate the transport of serotonin by receptors at a distance of at least 5 km from its outfall thereby indicating the presence of serotonin mimics in the effluent dispersion plume. Levels of serotonin and monoamine oxidase (MAO) activity in nerve ganglia of mussels exposed for 90 days to the municipal effluent were, respectively, reduced and increased at a distance 10-km downstream. Injections of estradiol-17beta and nonylphenol in mussels decreased the levels of serotonin and dopamine, but increased MAO activity in the gonad and nerve ganglia. Exposure to estrogenic chemicals present in municipal effluents may therefore alter the normal metabolism of serotonin and dopamine, both of which are involved in sexual differentiation in bivalves and fish. Chemicals acting through E2 receptor-mediated pathways and serotonin receptors are likely to cause the observed effects.  相似文献   

18.
Oxidation of six amine substrates by rat, rabbit and guinea-pig lung mitochondrial monoamine oxidase (MAO) was investigated polarographically with a Clark oxygen electrode in the presence of chlorphentermine (CP). This amphiphilic drug decreased the deamination of serotonin, norepinephrine, tyramine and dopamine significantly in all three species. However, the oxidation of tryptamine and benzylamine was unchanged. Amine oxidation by MAO in guinea-pig lung mitochondria was much more sensitive to the CP-mediated inhibition than rat or rabbit. A kinetic study of serotonin oxidation in the absence and presence of CP showed that both Vmax and Km were affected. These combined data indicate that CP is a specific inhibitor of pulmonary, mitochondrial monoamine oxidase form A with mixed-type inhibition.  相似文献   

19.
Chromogranins (Cg) and secretogranins (Sg) are acidic proteins localized in the secretory granules of a large variety of endocrine cells collectively named APUD cells (amine precursor uptake and decarboxylation). To examine the possible function of Cg/Sg as amine storage proteins, enteroendocrine cells of the rat gastric antral mucosa, i.e., serotonin-containing enterochromaffin (EC)-cells, gastrin (G)-, and somatostatin (D)-cells, were investigated immunohistochemically in serial semi-thin sections of controls and after intervention in serotonin synthesis. CgA and CgB immunoreactivity was determined semiquantitatively by optical density measurements. Experiments included inhibition of serotonin synthesis by p-chlorophenylalanine (pCPA), exogenous application of the serotonin precursor 5-hydroxytryptophan (5-HTP), and a combination of both treatments. The cellular distribution of Cg and the density of its immunoreactivity were closely related to the primary content of serotonin and the ability to store serotonin after 5-HTP application. Thus, Cg may act as amine-binding proteins in enteroendocrine cells, binding most probably being due to ionic interactions between Cg and the biogenic amines. EC- and G-cells, however, differed in their amine-handling properties and in the response of their Cg immunoreactivity after intervention in serotonin synthesis. We conclude, therefore, that the physiological function of Cg as amine storage proteins is restricted to endocrine cells with an endogenous content of amines. In other endocrine cells, exhibiting only a potential amine production, APUD may be considered as a kind of supravital staining without physiological significance.  相似文献   

20.
5-Hydroxytryptamine (5-HT) and dopamine were found to inhibit glucose-induced insulin release and 45Ca2+ net uptake in islets microdissected from ob/ob-mice. Dopamine was more potent than 5-HT. L-DOPA, the precursor of dopamine, had an effect similar to that of dopamine and this effect was reduced by benserazide. L-5-hydroxytryptophan, the precursor of 5-HT, potentiated glucose-induced insulin release and stimulated 45Ca2+ uptake. This effect was also blocked by benserazide. It is concluded that dopamine is a stronger inhibitor than 5-HT and that the different actions of 5-HTP and L-DOPA might be explained by this difference in the magnitude of inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号