首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Costimulation of T cells by OX40, 4-1BB,and CD27   总被引:6,自引:0,他引:6  
Costimulatory signals have been defined as signals brought about by ligation of membrane bound molecules that synergize with, or modify, signals provided when the T cell receptor engages peptide-MHC complexes. In large part, costimulatory signals are essential for many facets of a T cell response, and the general rule is that without these signals, a T cell is ineffective and may often succumb to death or become unresponsive. Until recently, costimulation has been dominated by studies of the Ig superfamily member, CD28, a constitutively expressed molecule that is required to initiate a majority of T cell responses. However, growing evidence over the past few years has now shown that several members of the TNFR family, OX40 (CD134), 4-1BB (CD137), and CD27, are equally important to the effective generation of many types of T cell response. In contrast to CD28, these molecules are either induced or highly upregulated on the T cell surface a number of hours or days after recognition of antigen, and appear to provide signals to allow continued cell division initially regulated by CD28 and/or to prevent excessive cell death several days into the response. An argument can be made that these molecules control the absolute number of effector T cells that are generated at the peak of the immune response and dictate the frequency of memory T cells that subsequently develop. The exact relationship between OX40, 4-1BB, and CD27, is at present unknown, including whether these molecules act together, or sequentially, or control differing types of T cell response. This review will focus on recent studies of these molecules and discuss their implications.  相似文献   

2.
Effector memory T cells (T(EM)) have an important role in immunity against infection. However, little is known about the factors regulating T(EM) maintenance and proliferation. In this study, we investigated the role of direct interactions between CD4(+) and CD8(+) T cells (TC) for human T(EM) expansion. Proliferation of separated or mixed CD4(+) and CD8(+)T(EM) populations was analyzed after polyclonal stimulation in vitro. Compared to each isolated subset mixed T(EM) populations showed increased proliferation and expansion of both CD4(+) and CD8(+)T(EM) subpopulations. Combined activation of CD4(+) and CD8(+) memory T cells (Tmem) induced an increased expression of CD40L and CD40 on both populations. Subsequently, CD40/CD40L caused a bi-directional stimulation of CD40(+)CD4(+)T(EM) by CD40L(+)CD8(+)T(EM) and of CD40(+)CD8(+)T(EM) by CD40L(+)CD4(+)T(EM). Blocking of CD40L on activated CD8(+)T(EM) selectively inhibited proliferation of CD4(+)T(EM), while blocking of CD40L on CD4(+)T(EM) abrogated proliferation of CD8(+)T(EM). Taken together, we demonstrate for the first time that the expression of CD40L is exploited on the one hand by CD8(+)T(EM) to increase the proliferation of activated CD4(+)T(EM) and on the other hand by CD4(+)T(EM) to support the expansion of activated CD8(+)T(EM). Thus, efficient T(EM) expansion requires bi-directional interactions between CD4(+) and CD8(+)T(EM) cells.  相似文献   

3.
Kinetic studies and short pulses of injected 5-bromo-2-deoxyuridine have been used to analyze the development and renewal of peripheral CD8(+) memory T cells in the lungs during primary and secondary respiratory virus infections. We show that developing peripheral CD8(+) memory T cells proliferate during acute viral infection with kinetics that are indistinguishable from those of lymphoid CD8(+) memory T cells. Secondary exposure to the same virus induces a new round of T cell proliferation and extensive renewal of the peripheral and lymphoid CD8(+) memory T cell pools in both B cell-deficient mice and mice with immune Abs. In mice with virus-specific Abs, CD8(+) T cell proliferation takes place with minimal inflammation or effector cell recruitment to the lungs. The delayed arrival of CD8(+) memory T cells to the lungs of these animals suggests that developing memory cells do not require the same inflammatory signals as effector cells to reach the lung airways. These studies provide important new insight into mechanisms that control the maintenance and renewal of peripheral memory T cell populations during natural infections.  相似文献   

4.
A T cell costimulatory molecule, OX40, contributes to T cell expansion, survival, and cytokine production. Although several roles for OX40 in CD8(+) T cell responses to tumors and viral infection have been shown, the precise function of these signals in the generation of memory CD8(+) T cells remains to be elucidated. To address this, we examined the generation and maintenance of memory CD8(+) T cells during infection with Listeria monocytogenes in the presence and absence of OX40 signaling. We used the expression of killer cell lectin-like receptor G1 (KLRG1), a recently reported marker, to distinguish between short-lived effector and memory precursor effector T cells (MPECs). Although OX40 was dispensable for the generation of effector T cells in general, the lack of OX40 signals significantly reduced the number and proportion of KLRG1(low) MPECs, and, subsequently, markedly impaired the generation of memory CD8(+) T cells. Moreover, memory T cells that were generated in the absence of OX40 signals in a host animal did not show self-renewal in a second host, suggesting that OX40 is important for the maintenance of memory T cells. Additional experiments making use of an inhibitory mAb against the OX40 ligand demonstrated that OX40 signals are essential during priming, not only for the survival of KLRG1(low) MPECs, but also for their self-renewing ability, both of which contribute to the homeostasis of memory CD8(+) T cells.  相似文献   

5.
One goal of vaccination is to promote development of mucosal effector cells that can immediately respond to peripheral infection. This is especially important for protection against viruses that enter the host through the respiratory tract. We show that targeting the OX40 costimulatory receptor (CD134) strongly promotes mucosal memory in the CD8 T cell compartment. Systemic injection of an agonist antibody to OX40 strongly enhanced development of polyfunctional effector CD8 T cells that were induced after intraperitoneal infection with a highly virulent strain of vaccinia virus. These cells were located in lymphoid organs and also the lung, and importantly, long-term memory CD8 T cells were maintained in the lung over 1 year. Anti-OX40 also boosted memory development when mice were vaccinated subcutaneously with viral peptide. These CD8 T cells were sufficient to provide protection from lethal respiratory infection with live vaccinia virus independent of CD4 T cells and antibody. Again, the CD8 T cell populations that were induced after secondary infection displayed polyfunctionality and were maintained in the lung for over a year. These data suggest that agonists to the OX40 costimulatory receptor represent potential candidates for incorporation into vaccines for respiratory viruses.  相似文献   

6.
We have previously shown that CD4(+) T cells are required to optimally expand viral-specific memory CD8(+) CTL responses using a human dendritic cell-T cell-based coculture system. OX40 (CD134), a 50-kDa transmembrane protein of the TNFR family, is expressed primarily on activated CD4(+) T cells. In murine models, the OX40/OX40L pathway has been shown to play a critical costimulatory role in dendritic cell/T cell interactions that may be important in promoting long-lived CD4(+) T cells, which subsequently can help CD8(+) T cell responses. The current study examined whether OX40 ligation on ex vivo CD4(+) T cells can enhance their ability to "help" virus-specific CTL responses in HIV-1-infected and -uninfected individuals. OX40 ligation of CD4(+) T cells by human OX40L-IgG1 enhanced the ex vivo expansion of HIV-1-specific and EBV-specific CTL from HIV-1-infected and -uninfected individuals, respectively. The mechanism whereby OX40 ligation enhanced help of CTL was independent of the induction of cytokines such as IL-2 or any inhibitory effect on CD4(+) T regulatory cells, but was associated with a direct effect on proliferation of CD4(+) T cells. Thus, OX40 ligation on CD4(+) T cells represents a potentially novel immunotherapeutic strategy that should be investigated to treat and prevent persistent virus infections, such as HIV-1 infection.  相似文献   

7.
Members of the TNFR family are thought to deliver costimulatory signals to T cells and modulate their function and survival. In this study, we compare the role of two closely related TNFR family molecules, OX40 and 4-1BB, in generating effector CD8 T cells to Ag delivered by adenovirus. OX40 and 4-1BB were both induced on responding naive CD8 T cells, but 4-1BB exhibited faster and more sustained kinetics than OX40. OX40-deficient CD8 T cells initially expanded normally; however, their accumulation and survival at late times in the primary response was significantly impaired. In contrast, 4-1BB-deficient CD8 T cells displayed hyperresponsiveness, expanding more than wild-type cells. The 4-1BB-deficient CD8 T cells also showed enhanced maturation attributes, whereas OX40-deficient CD8 T cells had multiple defects in the expression of effector cell surface markers, the synthesis of cytokines, and in cytotoxic activity. These results suggest that, in contrast to current ideas, OX40 and 4-1BB can have a clear functional dichotomy in modulating effector CD8 T cell responses. OX40 can positively regulate effector function and late accumulation/survival, whereas 4-1BB can initially operate in a negative manner to limit primary CD8 responses.  相似文献   

8.
CD40, 4-1BB, and OX40 are costimulatory molecules belonging to the TNF/nerve growth factor superfamily of receptors. We examined whether simultaneous costimulation affected the responses of T cells using several different in vivo tracking models in mice. We show that enforced dual costimulation through 4-1BB and OX40, but not through CD40, induced profound specific CD8 T cell clonal expansion. In contrast, the response of specific CD4 T cells to dual costimulation was additive rather than synergistic. The synergistic response of the specific CD8 T cells persevered for several weeks, and the expanded effector cells resided throughout lymphoid and nonlymphoid tissue. Dual costimulation through 4-1BB and OX40 did not increase BrdU incorporation nor an increase in the number of rounds of T cell division in comparison to single costimulators, but rather enhanced accumulation in a cell-intrinsic manner. Mechanistically speaking, we show that CD8 T cell clonal expansion and effector function did not require T help, but accumulation in (non)lymphoid tissue was predominantly CD4 T cell dependent. To determine whether this approach would be useful in a physiological setting, we demonstrated that dual costimulation mediated rejection of an established murine sarcoma. Importantly, effector function directed toward established tumors was CD8 T cell dependent while being entirely CD4 T cell independent, and the timing of enforced dual costimulation was exquisitely regulated. Collectively, these data suggest that simultaneous dual costimulation through 4-1BB and OX40 induces a massive burst of CD8 T cell effector function sufficient to therapeutically treat established tumors even under immunocompromising conditions.  相似文献   

9.
Recent advances have shown that direct type I IFN signaling on T cells is required for their efficient expansion in response to viral infections in vivo. It is not clear which intracellular signaling molecule is responsible for this effect. Although STAT1 has been shown to mediate many of the type I IFN-dependent biological effects, its role in T cells remains uncertain in vivo. In this study, we demonstrated that STAT1 signaling in CD8 T cells was required for their efficient expansion by promoting the survival of activated CD8 T cells upon vaccinia viral infection in vivo, suggesting that the direct effect of type I IFNs on CD8 T cells is mediated by STAT1. Furthermore, effector CD8 T cells that lack STAT1 signaling did not survive the contraction phase to differentiate into long-lived memory cells. These results identify a critical role for type I IFN-STAT1 signaling in multiple stages of CD8 T cell response in vivo and suggest that strategies to activate type I IFN-STAT1 signaling pathway may enhance vaccine potency.  相似文献   

10.
α-Galactosylceramide (α-GalCer) is the prototypical lipid ligand for invariant NKT cells. Recent studies have proposed that α-GalCer is an effective adjuvant in vaccination against a range of immune challenges, however its mechanism of action has not been completely elucidated. A variety of delivery methods have been examined including pulsing dendritic cells with α-GalCer to optimize the potential of α-GalCer. These methods are currently being used in a variety of clinical trials in patients with advanced cancer but cannot be used in the context of vaccine development against pathogens due to their complexity. Using a simple delivery method, we evaluated α-GalCer adjuvant properties, using the mouse model for cytomegalovirus (MCMV). We measured several key parameters of the immune response to MCMV, including inflammation, effector, and central memory CD8(+) T cell responses. We found that α-GalCer injection at the time of the infection decreases viral titers, alters the kinetics of the inflammatory response, and promotes both increased frequencies and numbers of virus-specific memory CD8(+) T cells. Overall, our data suggest that iNKT cell activation by α-GalCer promotes the development of long-term protective immunity through increased fitness of central memory CD8(+) T cells, as a consequence of reduced inflammation.  相似文献   

11.
Mice deficient in OX40 or 4-1BB costimulatory pathways show defects in T cell recall responses, with predominant effects on CD4 vs CD8 T cells, respectively. However, OX40L can also stimulate CD8 T cells and 4-1BBL can influence CD4 T cells, raising the possibility of redundancy between the two TNFR family costimulators. To test this possibility, we generated mice deficient in both 4-1BBL and OX40L. In an adoptive transfer model, CD4 T cells expressed 4-1BB and OX40 sequentially in response to immunization, with little or no overlap in the timing of their expression. Under the same conditions, CD8 T cells expressed 4-1BB, but no detectable OX40. Thus, in vivo expression of 4-1BB and OX40 can be temporally and spatially segregated. In the absence of OX40L, there were decreased CD4 T cells late in the primary response and no detectable secondary expansion of adoptively transferred CD4 T cells under conditions in which primary expansion was unaffected. The 4-1BBL had a minor effect on the primary response of CD4 T cells in this model, but showed larger effects on the secondary response, although 4-1BBL(-/-) mice show less impairment in CD4 secondary responses than OX40L(-/-) mice. The 4-1BBL(-/-) and double knockout mice were similarly impaired in the CD8 T cell response, whereas OX40L(-/-) and double knockout mice were similarly impaired in the CD4 T cell response to both protein Ag and influenza virus. Thus, 4-1BB and OX40 act independently and nonredundantly to facilitate robust CD4 and CD8 recall responses.  相似文献   

12.
Persistent viral infections and inflammatory syndromes induce the accumulation of T cells with characteristics of terminal differentiation or senescence. However, the mechanism that regulates the end-stage differentiation of these cells is unclear. Human CD4(+) effector memory (EM) T cells (CD27(-)CD45RA(-)) and also EM T cells that re-express CD45RA (CD27(-)CD45RA(+); EMRA) have many characteristics of end-stage differentiation. These include the expression of surface KLRG1 and CD57, reduced replicative capacity, decreased survival, and high expression of nuclear γH2AX after TCR activation. A paradoxical observation was that although CD4(+) EMRA T cells exhibit defective telomerase activity after activation, they have significantly longer telomeres than central memory (CM)-like (CD27(+)CD45RA(-)) and EM (CD27(-)CD45RA(-)) CD4(+) T cells. This suggested that telomerase activity was actively inhibited in this population. Because proinflammatory cytokines such as TNF-α inhibited telomerase activity in T cells via a p38 MAPK pathway, we investigated the involvement of p38 signaling in CD4(+) EMRA T cells. We found that the expression of both total and phosphorylated p38 was highest in the EM and EMRA compared with that of other CD4(+) T cell subsets. Furthermore, the inhibition of p38 signaling, especially in CD4(+) EMRA T cells, significantly enhanced their telomerase activity and survival after TCR activation. Thus, activation of the p38 MAPK pathway is directly involved in certain senescence characteristics of highly differentiated CD4(+) T cells. In particular, CD4(+) EMRA T cells have features of telomere-independent senescence that are regulated by active cell signaling pathways that are reversible.  相似文献   

13.
Following intranasal administration, the model paramyxovirus simian virus 5 (SV5) establishes an infection in the respiratory tract of mice, which is subsequently cleared by CD8+ T cells. In this study, we sought to understand the maturation of the antiviral immune response over time by assessing the functional avidity of the responding T cells and the expansion of immunodominant populations. Surprisingly, we determined that the initial response to Ag at day 3 (d3) in the mediastinal lymph node was exclusively high avidity. However, by d5 postinfection, low avidity cells were approximately 50% of the responding T cell population. Following secondary exposure to SV5, high avidity CD8+ T cells again are the exclusive cell type present at early times postinfection (d2). Similarly, high avidity cells were preferentially elicited at d3 following infection with the unrelated vaccinia virus. We also made the observation that the immunodominance profile has not been established at d3 postinfection with SV5. However, by d5 a clear immunodominance pattern arises and is permanently maintained. These data indicate that high avidity cells are the predominant population responding at early times postinfection following respiratory infection with SV5 or vaccinia virus. However, as the response progresses, low avidity cells are activated/expanded to a greater extent compared with high avidity cells.  相似文献   

14.
Impaired clonal expansion in athymic nude CD8+CD4- T cells   总被引:3,自引:0,他引:3  
A comparative study of the phenotype and immune functions of highly purified CD8+CD4- T cells obtained from the spleen and thymus of normal mice and from the spleen of athymic nude mice was conducted. Of seven individual normal and nude mice examined, the range of V beta 8+ cells among CD8+ T cells was a heterogeneous 4.3 to 30.5% for athymic nude mice and a much more uniform spread from 14.7 to 18.5% for normal mice. In six of the seven nude mice examined, the fraction of V beta 8+ cells was below the lower limit of the V beta 8 distribution in normal mice. However, one of the seven nude mice contained nearly twice the percentage of normal V beta 8+ cells. A reduction in the density of V beta 8 as well as CD3 Ag expression was also observed in athymic CD8+CD4- cells although an Ly-6-linked Ag, B4B2 displayed a highly increased expression. Considering the battery of Ag analyzed in entirety, athymic CD8+CD4- T cells were clearly distinct from their "counterpart" CD8+CD4- T cells isolated from either thymus or spleen of normal (euthymic) mice. Anti-CD3-mediated triggering of the TCR:CD3 complex caused extensive clonal proliferation in cultures to which single responding CD8+ T cells had been deposited. Under identical conditions, however, anti-CD3 caused little, if any clonal expansion in CD8+ cells from athymic nude mice. Highly purified athymic CD8+CD4- cells produced readily detectable IL-2R expression and IL-2 synthesis and secretion upon stimulation by anti-CD3 and by Con A. Production of IL-2 by purified athymic CD8+CD4- cells was due to CD8+CD4- cells and not due to a minor population of contaminating CD8- cells as anti-CD8 + C treatment completely abrogated the ability of athymic CD8+CD4- cells to produce IL-2. Despite IL-2 production and IL-2R expression by athymic nude CD8+CD4- T cells in response to anti-CD3 and to Con A, an impaired proliferative response followed.  相似文献   

15.
During many viral infections, antigen-specific CD8(+) T cells undergo large-scale expansion. After viral clearance, the vast majority of effector CD8(+) T cells undergo apoptosis. Previous studies have implicated reactive oxygen intermediates (ROI) in lymphocyte apoptosis. The purpose of the experiments presented here was to determine the role of ROI in the expansion and contraction of CD8(+) T cells in vivo during a physiological response such as viral infection. Mice were infected with lymphocytic choriomeningitis virus (LCMV) and treated with Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP), a metalloporphyrin-mimetic compound with superoxide dismutase activity, from days 0 to 8 postinfection. At the peak of CD8(+)-T-cell response, on day 8 postinfection, the numbers of antigen-specific cells were 10-fold lower in MnTBAP-treated mice than in control mice. From days 8 to 30, a contraction phase ensued where the numbers of antigen-specific CD8(+) T cells declined 25-fold in vehicle-treated mice compared to a 3.5-fold decrease in MnTBAP-treated mice. Differences in contraction appeared to be due to greater proliferation in drug-treated mice. By day 38, the numbers of antigen-specific CD8(+) memory T cells were equivalent for the two groups. The administration of MnTBAP during secondary viral infection had no effect on the expansion of antigen-specific CD8(+) secondary effector T cells. These data suggest that ROI production is critical for the massive expansion and contraction of antigen-specific CD8(+) T cells during primary, but not secondary, viral infection.  相似文献   

16.
The Ag-specific cellular recall response to herpes virus infections is characterized by a swift recruitment of virus-specific memory T cells. Rapid activation is achieved through formation of the immunological synapse and supramolecular clustering of signal molecules at the site of contact. During the formation of the immunological synapse, epitope-loaded MHC molecules are transferred via trogocytosis from APCs to T cells, enabling the latter to function as Ag-presenting T cells (T-APCs). The contribution of viral epitope expressing T-APCs in the regulation of the herpes virus-specific CD8+ T cell memory response remains unclear. Comparison of CD4+ T-APCs with professional APCs such as Ag-presenting CD40L-activated B cells (CD40B-APCs) demonstrated reduced levels of costimulatory ligands. Despite the observed differences, CD4+ T-APCs are as potent as CD40B-APCs in stimulating herpes virus-specific CD8+ T cells resulting in a greater than 35-fold expansion of CD8+ T cells specific for dominant and subdominant viral epitopes. Virus-specific CD8+ T cells generated by CD4+ T-APCs or CD40B-APCs showed both comparable effector function such as specific lysis of targets and cytokine production and also did not differ in their phenotype after expansion. These results indicate that viral epitope presentation by Ag-specific CD4+ T cells may contribute to the rapid recruitment of virus-specific memory CD8+ T cells during a viral recall response.  相似文献   

17.
CD4(+) T cells are known to provide support for the activation and expansion of primary CD8(+) T cells, their subsequent differentiation, and ultimately their survival as memory cells. However, the importance of cognate memory CD4(+) T cells in the expansion of memory CD8(+) T cells after re-exposure to Ag has been not been examined in detail. Using bone marrow-derived dendritic cells pulsed with cognate or noncognate MHC class I- and class II-restricted peptides, we examined whether the presence of memory CD4(+) T cells with the same Ag specificity as memory CD8(+) T cells influenced the quantity and quality of the secondary CD8(+) T cell response. After recombinant vaccinia virus-mediated challenge, we demonstrate that, although cognate memory CD4(+) T cells are not required for activation of secondary CD8(+) T cells, their presence enhances the expansion of cognate memory CD8(+) T cells. Cognate CD4(+) T cell help results in an approximate 2-fold increase in the frequency of secondary CD8(+) T cells in secondary lymphoid tissues, and can be accounted for by enhanced proliferation in the secondary CD8(+) T cell population. In addition, cognate memory CD4(+) T cells further selectively enhance secondary CD8(+) T cell infiltration of tumor-associated peripheral tissue, and this is accompanied by increased differentiation into effector phenotype within the secondary CD8(+) T cell population. The consequence of these improvements to the magnitude and phenotype of the secondary CD8(+) T cell response is substantial increase in control of tumor outgrowth.  相似文献   

18.
For many respiratory pathogens, CD8+ T cells have been shown to play a critical role in clearance. However, there are still many unanswered questions with regard to the factors that promote the most efficacious immune response and the potential for immunoregulation of effector cells at the local site of infection. We have used infection of the respiratory tract with the model paramyxovirus simian virus 5 (SV5) to study CD8+ T-cell responses in the lung. For the present study, we report that over time a population of nonresponsive, virus-specific CD8+ T cells emerged in the lung, culminating in a lack of function in approximately 85% of cells specific for the immunodominant epitope from the viral matrix (M) protein by day 40 postinfection. Concurrent with the induction of nonresponsiveness, virus-specific cells that retained function at later times postinfection exhibited an increased requirement for CD8 engagement. This change was coupled with a nearly complete loss of functional phosphoprotein-specific cells, a response previously shown to be almost exclusively CD8 independent. These studies add to the growing evidence for immune dysregulation following viral infection of the respiratory tract.  相似文献   

19.
Memory T cells can be divided into effector memory (T(EM)) and central memory (T(CM)) subsets based on their effector function and homing characteristics. Although previous studies have demonstrated that TCR and cytokine signals mediate the generation of the two memory subsets of CD8(+) T cells, the mechanisms for generation of the CD4(+) T(EM) and T(CM) cell subsets are unknown. We found that OX40-deficient mice showed a marked reduction in the number of CD4(+) T(EM) cells, whereas the number of CD4(+) T(CM) cells was normal. Adoptive transfer experiments using Ag-specific CD4(+) T cells revealed that OX40 signals during the priming phase were indispensable for the optimal generation of the CD4(+) T(EM), but not the CD4(+) T(CM) population. In a different transfer experiment with in vitro established CD4(+)CD44(high)CD62L(low) (T(EM) precursor) and CD4(+)CD44(high)CD62L(high) (T(CM) precursor) subpopulations, OX40-KO T(EM) precursor cells could not survive in the recipient mice, whereas wild-type T(EM) precursor cells differentiated into both T(EM) and T(CM) cells. In contrast, T(CM) precursor cells mainly produced T(CM) cells regardless of OX40 signals, implying the dispensability of OX40 for generation of T(CM) cells. Nevertheless, survival of OX40-KO T(EM) cells was partially rescued in lymphopenic mice. During in vitro recall responses, the OX40-KO T(EM) cells that were generated in lymphopenic recipient mice showed impaired cytokine production, suggesting an essential role for OX40 not only on generation but also on effector function of CD4(+) T(EM) cells. Collectively, the present results indicate differential requirements for OX40 signals on generation of CD4(+) T(EM) and T(CM) cells.  相似文献   

20.
For optimal quality, memory CD8(+) T cells require CD4(+) T cell help. We have examined whether CD4(+) T cells require CD27 to deliver this help, in a model of intranasal OVA protein immunization. CD27 deficiency reduced the capacity of CD4(+) T cells to support Ag-specific CD8(+) T cell accumulation at the tissue site after primary and secondary immunization. CD27-dependent CD4(+) T cell help for the memory CD8(+) T cell response was delivered during priming. It did not detectably affect formation of CD8(+) memory T cells, but promoted their secondary expansion. CD27 improved survival of primed CD4(+) T cells, but its contribution to the memory CD8(+) T cell response relied on altered CD4(+) T cell quality rather than quantity. CD27 induced a Th1-diagnostic gene expression profile in CD4(+) T cells, which included the membrane molecule MS4A4B. Accordingly, CD27 increased the frequency of IFN-gamma- and IL-2-producing CD4(+) T cells. It did not affect CD40L expression. Strikingly, MS4A4B was also identified as a unique marker of CD8(+) memory T cells that had received CD27-proficient CD4(+) T cell help during the primary response. This apparent imprinting effect suggests a role for MS4A4B as a downstream effector in CD27-dependent help for CD8(+) T cell memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号