首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular autoprocessing of a metalloprotease from Streptomyces cacaoi.   总被引:4,自引:0,他引:4  
We have previously demonstrated that the extracellular neutral metalloprotease (Npr) of Streptomyces cacaoi is synthesized as a 60-kDa preproenzyme (P60), then processed to the 35-kDa mature form (P35) (Chang, P. C., Kuo, T.-C., Tsugita, A., and Lee, Y.-H. W. (1990) Gene (Amst.) 88, 87-95). In this study, we investigated the active site and the mechanism involved in the maturation of the protease. Site-specific mutations at the putative zinc-binding ligands and active site of Npr at His202, Glu203, His206, and Glu240 led to complete abolishment of Npr activity and concomitant accumulation of a 57-kDa inactive protein (P57) which was secreted. Sequence analysis of the NH2 terminus indicated that P57 was derived from P60 after removal of the signal peptide and represented the proenzyme form of Npr (pro-Npr). Analysis of the zinc content of purified mutant P57 proteins revealed a dramatic loss of zinc atom as compared with the wild-type P35 protein. In vitro with the aid of exogenous active Npr, the mutant P57 protein could be converted to the mature inactive P35 with an identical NH2-terminal sequence and a molecular mass the same as that of the wild-type P35. From these studies, we conclude that these highly conserved residues (His202, Glu203, His206, and Glu240) are indispensable for zinc binding and protease activity, as well as processing of Npr. In addition, we have clearly demonstrated that maturation of Npr occurs extracellularly via an autocatalytic cleavage of the pro-Npr propeptide. This is the first report of such a maturation mechanism for an extracellular protease in streptomycetes which can serve as a model for further studies on the mechanism of secretion and processing of proteases from Gram-positive bacteria.  相似文献   

2.
alpha-Lytic protease is a 19.8-kDa protein secreted from the Gram-negative bacterium Lysobacter enzymogenes. We have cloned and sequenced the gene for this serine protease. The nucleotide sequence contains an open reading frame which codes for the 198-residue mature enzyme and a potential prepro-peptide, also of 198 residues. The COOH-terminal 49 residues of the pro-peptide are significantly homologous to the propeptides of Streptomyces griseus proteases A and B. We suggest that this pro-peptide region facilitates formation of the active enzyme. A region bridging the NH2-terminal pre- and pro-peptides is homologous to a maize inhibitor of serine proteases. We speculate that this region inhibits enzymatic activity of the prepro-enzyme.  相似文献   

3.
Bacillus cereus KCTC 3674 excretes several kinds of extracellular proteases into the growth medium. Two proteases with molecular masses of approximately 36-kDa and 38-kDa, as shown by SDS-PAGE, were purified from the culture broth. The 38-kDa protease was purified from B. cereus cultivated at 37 degrees C, and the 36-kDa protease was obtained from the B. cereus cultivated at 20 degrees C. The 38-kDa protease was identified as an extracellular neutral (metallo-) protease and was further characterized. The 36-kDa protease was shown to be a novel enzyme based on its N-terminal amino acid sequence, its identification as a metallo-enzyme that was strongly inhibited by EDTA and o-phenanthroline, its hemolysis properties, and its optimal pH and temperature for activity of 8.0 and 70 degrees C, respectively.  相似文献   

4.
Two chromosomal loci containing the Corynebacterium glutamicum ATCC 17965 proB and proC genes were isolated by complementation of Escherichia coli proB and proC auxotrophic mutants. Together with a proA gene described earlier, these new genes describe the major C. glutamicum proline biosynthetic pathway. The proB and proA genes, closely linked in most bacteria, are in C. glutamicum separated by a 304-amino-acid open reading frame (unk) whose predicted sequence resembles that of the 2-hydroxy acid dehydrogenases. C. glutamicum mutants that carry null alleles of proB, proA, and proC were constructed or isolated from mutagenized cultures. Single proC mutants are auxotrophic for proline and secrete delta1-pyrroline-5-carboxylate, which are the expected phenotypes of bacterial proC mutants. However, the phenotypes or proB and proA mutants are unexpected. A proB mutant has a pleiotropic phenotype, being both proline auxotrophic and affected in cell morphology. Null proA alleles still grow slowly under proline starvation, which suggests that a proA-independent bypass of this metabolic step exists in C. glutamicum. Since proA mutants are complemented by a plasmid that contains the wild-type asd gene of C. glutamicum, the asd gene may play a role in this bypass.  相似文献   

5.
A novel proteinaceous protease inhibitor was isolated from the culture supernatant of Bacillus brevis HPD31. The protease inhibitor of B. brevis (designated BbrPI) was produced extracellularly in multiple forms having at least three different molecular weights. One of them, BbrPI-a, was purified to near homogeneity and only showed inhibitory activity toward serine proteases, such as trypsin, chymotrypsin, and subtilisin. BbrPI was presumed to form a trypsin-inhibitor complex in a molar ratio of 1:1. The inhibitor was found to be heat resistant at neutral and acidic pHs. The gene coding for BbrPI was cloned into Escherichia coli, and its nucleotide sequence was determined. The sequence suggested that BbrPI is produced with a signal peptide of 24 amino acid residues. The amino acid sequence of the protein deduced from the DNA sequence contained the amino acid sequences of amino termini of the inhibitors, a, b, and c, and their putative precursor determined chemically. The molecular weight of the precursor was about 33,000, and the molecular weights of inhibitors a, b, and c were about 22,000, 23,500, and 24,000, respectively. It is presumed that the secreted precursor protein, which is probably inactive, is cleaved by protease into several active protease inhibitor molecules. BbrPI shows no significant homology to the protease inhibitors described previously and is unique in not having any cysteine residues in its molecule.  相似文献   

6.
7.
Aqualysin I is a subtilisin-type serine protease which is secreted into the culture medium by Thermus aquaticus YT-1, an extremely thermophilic Gram-negative bacterium. The nucleotide sequence of the entire gene for aqualysin I was determined, and the deduced amino acid sequence suggests that aqualysin I is produced as a large precursor, consisting of at least three portions, an NH2-terminal pre-pro-sequence (127 amino acid residues), the protease (281 residues), and a COOH-terminal pro-sequence (105 residues). When the cloned gene was expressed in Escherichia coli cells, aqualysin I was not secreted. However, a precursor of aqualysin I lacking the NH2-terminal pre-pro-sequence (38-kDa protein) accumulated in the membrane fraction. On treatment of the membrane fraction at 65 degrees C, enzymatically active aqualysin I (28-kDa protein) was produced in the soluble fraction. When the active site Ser residue was replaced with Ala, cells expressing the mutant gene accumulated a 48-kDa protein in the outer membrane fraction. The 48-kDa protein lacked the NH2-terminal 14 amino acid residues of the precursor, and heat treatment did not cause any subsequent processing of this precursor. These results indicate that the NH2-terminal signal sequence is cleaved off by a signal peptidase of E. coli, and that the NH2- and COOH-terminal pro-sequences are removed through the proteolytic activity of aqualysin I itself, in that order. These findings indicate a unique four-domain structure for the aqualysin I precursor; the signal sequence, the NH2-terminal pro-sequence, mature aqualysin I, and the COOH-terminal pro-sequence, from the NH2 to the COOH terminus.  相似文献   

8.
Human protein C, like other serine proteases, is normally secreted as an inactive zymogen. It is converted to its active form extracellularly by limited proteolysis with the thrombin-thrombomodulin complex. This activation results from the removal of a 12-residue activation peptide from the NH2 terminus of the heavy (COOH-terminal) chain. We report here a successful strategy for the activation of human protein C during post-translational cellular processing, resulting in the secretion of activated protein C from transfected mammalian cells. Deletion of the nucleotides encoding the activation peptide resulted in the expression of a protease with less than 5% of the expected activity. However, the replacement of the activation peptide with an 8-residue sequence (Pro-Arg-Pro-Ser-Arg-Lys-Arg-Arg) involved in the proteolytic processing of the human insulin receptor precursor resulted in the direct expression of fully activated protein C. The mutant protein was shown to be correctly processed by NH2-terminal sequence analysis. This strategy for successful expression of an activated form of protein C may apply to the expression of active forms of other proteases which are naturally expressed as zymogens.  相似文献   

9.
The linear double-stranded DNA plasmid pGKL1 in yeast encodes a killer toxin consisting of 97-kDa, 31-kDa and 28-kDa subunits. A 128-kDa protein precursor of the 97-kDa and 31-kDa subunits, was first synthesized with a 29-amino-acid extension at its NH2-terminus as a secretion signal sequence. In the present study, the property of this signal sequence was studied by the analysis of a fusion protein with mouse alpha-amylase. Using the secretion signal sequence of the killer protein, the mouse alpha-amylase was successfully secreted into the culture medium. An intracellular precursor form of alpha-amylase was identified and purified. Analysis of the NH2-terminal sequence of this precursor molecule indicated that it corresponded to the secretory intermediate (pro form) of alpha-amylase with the removal of the hydrophobic segment (Met1-Gly16) of the secretion signal. Both the secretion of alpha-amylase into the culture medium and the detection of the pro-alpha-amylase species in the cells were prohibited by a sec 11 mutation, or by the conversion of Gly to Val at the 16th position of the secretion signal. These results strongly suggest that the cleavage occurs between Gly16 and Leu17 by a signal peptidase, and that this cleavage is required for the secretion of alpha-amylase into the medium. Based on the data from the NH2-terminal amino acid sequences of secreted alpha-amylases, we conclude that the 29-amino-acid secretion signal present in the 128-kDa killer toxin precursor protein is a prepro structure.  相似文献   

10.
We identified a novel metalloprotease, which could be responsible for cleaving the Tyr842-Met843 peptide bond of von Willebrand factor (vWF). This metalloprotease was purified from Cohn Fraction-I precipitate of human pooled plasma by the combination of gel filtration, DEAE chromatography, and preparative polyacrylamide gel electrophoresis in the presence of SDS. The NH2-terminal amino acid sequence of the isolated protein was: AAGGILHLELLVAVGPDVFQAHQEDTRRY. Based on this sequence, we searched human genomic and EST databases, and identified compatible nucleotide sequences. These results suggested that this protein is a novel metalloprotease, a member of the family of a disintegrin and metalloprotease with thrombospondin type-1 motifs (ADAMTS), and its genomic DNA was mapped to human chromosome 9q34. Multiple human tissue northern blotting analysis indicated that the mRNA encoding this protease spanned approximately 5 kilobases and was uniquely expressed in the liver. Furthermore, we determined the cDNA sequence encoding this protease, and found that this protease was comprised of a signal peptide, a proregion followed by the putative furin cleavage site, a reprolysin-type zinc-metalloprotease domain, a disintegrin-like domain, a thrombospondin type-1 (TSP1) motif, a cysteine-rich region, a spacer domain, and COOH-terminal TSP1 motif repeats.  相似文献   

11.
Pollen coat contains ingredients that interact with the stigma surface during sexual reproduction. In maize (Zea mays L.) pollen coat, the predominant protein is a 35-kDa endoxylanase, whose mRNA is located in the tapetum cells enclosing the maturing pollen in the anthers. This 2.0-kb mRNA was found to have an open reading frame of 1,635 nucleotides encoding a 60-kDa pre-xylanase. In developing anthers, the pre-xylanase protein appeared prior to the 35-kDa xylanase protein and enzyme activity and then peaked and declined, whereas the 35-kDa xylanase protein and activity continued to increase until anther maturation. An acid protease in the anther extract converted the inactive pre-xylanase to the active 35-kDa xylanase in vitro. The protease activity was inhibited by inhibitors of serine proteases but unaffected by inhibitors of cysteine, aspartic, or metallic proteases. Sequence analysis revealed that the 60-kDa pre-xylanase was converted to the 35-kDa xylanase with the removal of 198 and 48 residues from the N and C termini, respectively. During in vitro and in vivo conversions, no intermediates of 60-35 kDa were observed, and the 35-kDa xylanase was highly stable. The pre-xylanase was localized in the tapetum-containing anther wall, whereas the 35-kDa xylanase was found in the pollen coat. The significance of having a large non-active pre-xylanase and the mode of transfer of the xylanase to the pollen coat are discussed. A gene encoding the barley (Hordeum vulgare L.) tapetum xylanase was cloned; this gene and the gene encoding the seed aleurone-layer xylanase had strict tissue-specific expressions.  相似文献   

12.
E chrysanthemi, a phytopathogenic enterobacterium, secretes several enzymes into the medium such as pectinases cellulases and proteases. It also produces 3 distinct and antigenically related extracellular proteases. The proteases secretion pathway seems to be distinct from that of the other extracellular enzymes since pleiotropic mutants impaired in cellulase and pectinase secretion are unimpaired in protease secretion. E chrysanthemi proteases B and C secretion occurs without an N-terminal signal peptide and is dependent upon specific secretion functions which are encoded by genes adjacent to the protease structural genes. This secretion pathway might be analogous to the alpha-hemolysin secretion pathway in E coli. Protection against intracellular proteolytic activity is achieved by 2 distinct mechanisms: the proteases are synthesized as inactive precursors with an N-terminal extension of 15 aminoacids (protease B) and 17 aminoacids (protease C) absent in the mature active extracellular enzymes; an intracellular specific protease inhibitor is produced by some E chrysanthemi strains.  相似文献   

13.
Bacillopeptidase F is an extracellular serine protease that is expressed at the beginning of the stationary phase. To study its structure, regulation of expression, and physiological roles, we have cloned and characterized the structural gene (bpf) encoding this protease from Bacillus subtilis. DNA sequence analysis suggests this protease is synthesized as a preproenzyme (Mr = 92,000). Through processing at both the NH2 and COOH termini, it is gradually converted into various forms with molecular mass ranging from 80 to 48 kDa. Shortening the 3' end of bpf demonstrates that at least 290 amino acid residues from the COOH-terminus of bacillopeptidase F are not required for either catalytic activity or secretion. Bacillopeptidase F exhibits sequence similarity with several serine proteases. Its gene is found immediately downstream from the fts operon which was mapped at 135 degrees on the B. subtilis genetic linkage map. Inactivation of the chromosomal copy of bpf shows no effect on cell growth and sporulation. A triple protease-deficient strain (WB300 with the structural genes for bacillopeptidase F and two other major proteases inactivated) was constructed to serve as a better expression host for the production and secretion of foreign proteins.  相似文献   

14.
We have cloned and sequenced the cDNA encoding the major component (43-kDa peptide) of 30kP protease A which selectively hydrolyzes 30-kDa yolk proteins of the silkworm, Bombix mori. The deduced amino acid sequence consisted of 318 amino acids and shared sequences conserved in many serine proteases. Northern blot analysis using the cDNA as probe revealed that 43-kDa peptide mRNA began to rise at the last phase of embryogenesis and reached a maximum level at larval hatching. This level was maintained with some fluctuations throughout post-embryonic development. The concentration of 43-kDa peptide increased greatly toward larval hatching coinciding with the changing pattern of mRNA. When larvae were fed, the peptide concentration abruptly decreased and remained near zero throughout post-embryonic development. The decrease in peptide concentration did not occur, however, when the hatched larvae were starved. Thus, the nutritional shift from endogenous yolk to exogenous food plays a key role in 30kP protease A elimination from neonate larvae.  相似文献   

15.
A novel proteinaceous protease inhibitor was isolated from the culture supernatant of Bacillus brevis HPD31. The protease inhibitor of B. brevis (designated BbrPI) was produced extracellularly in multiple forms having at least three different molecular weights. One of them, BbrPI-a, was purified to near homogeneity and only showed inhibitory activity toward serine proteases, such as trypsin, chymotrypsin, and subtilisin. BbrPI was presumed to form a trypsin-inhibitor complex in a molar ratio of 1:1. The inhibitor was found to be heat resistant at neutral and acidic pHs. The gene coding for BbrPI was cloned into Escherichia coli, and its nucleotide sequence was determined. The sequence suggested that BbrPI is produced with a signal peptide of 24 amino acid residues. The amino acid sequence of the protein deduced from the DNA sequence contained the amino acid sequences of amino termini of the inhibitors, a, b, and c, and their putative precursor determined chemically. The molecular weight of the precursor was about 33,000, and the molecular weights of inhibitors a, b, and c were about 22,000, 23,500, and 24,000, respectively. It is presumed that the secreted precursor protein, which is probably inactive, is cleaved by protease into several active protease inhibitor molecules. BbrPI shows no significant homology to the protease inhibitors described previously and is unique in not having any cysteine residues in its molecule.  相似文献   

16.
Streptomyces strain K1-02, which was identified as a strain of Streptomyces albidoflavus, secreted at least six extracellular proteases when it was cultured on feather meal-based medium. The major keratinolytic serine proteinase was purified to homogeneity by a two-step procedure. This enzyme had a molecular weight of 18,000 and was optimally active at pH values ranging from 6 to 9.5 and at temperatures ranging from 40 to 70 degrees C. Its sensitivity to protease inhibitors, its specificity on synthetic substrates, and its remarkably high level of NH2-terminal sequence homology with Streptomyces griseus protease B (SGPB) showed that the new enzyme, designated SAKase, was homologous to SGPB. We tested the activity of SAKase with soluble and fibrous substrates (elastin, keratin, and type I collagen) and found that it was very specific for keratinous substrates compared to SGPB and proteinase K.  相似文献   

17.
L Tran  X C Wu    S L Wong 《Journal of bacteriology》1991,173(20):6364-6372
We have cloned from Bacillus subtilis a novel protease gene (nprB) encoding a neutral protease by using a shotgun cloning approach. The gene product was determined to have a molecular mass of 60 kDa. It has a typical signal peptide-like sequence at the N-terminal region. The expression of nprB can be stimulated by using a B. subtilis strain, WB30, carrying a sacU(h)h mutation. Expression of this protease gene results in production of a 37-kDa protease in the culture medium. The first five amino acid residues from the N terminus of the mature protease were determined to be Ala-Ala-Gly-Thr-Gly. This indicates that the protease is synthesized in a preproenzyme form. The purified protease has a pH optimum of around 6.6, and its activity can be inhibited by EDTA, 1,10-phenanthroline (a zinc-specific chelator), and dithiothreitol. It retained 65% of its activity after treatment at 65 degrees C for 20 min. Sequence comparison indicates that the mature form of this protease has 66% homology with the two thermostable neutral proteases from B. thermoproteolyticus and B. stearothermophilus. It also shares 65, 61, and 56% homology with the thermolabile neutral proteases from B. cereus, B. amyloliquefaciens, and B. subtilis, respectively. The zinc-binding site and the catalytic residues are all conserved among these proteases. Sequence homology extends into the "propeptide" region. The nprB gene was mapped between metC and glyB and was not required for growth or sporulation.  相似文献   

18.
19.
Aqualysin I is an alkaline serine protease which is secreted into the culture medium by Thermus aquaticus YT-1, an extreme thermophile [Matsuzawa, H., Hamaoki, M. & Ohta, T. (1983) Agric. Biol. Chem. 47, 25-28]. The gene encoding aqualysin I was cloned into Escherichia coli using synthetic oligodeoxyribonucleotides as hybridization probes. The nucleotide sequence of the cloned DNA was determined. The primary structure of aqualysin I, deduced from the nucleotide sequence, agreed with the NH2-terminal sequence previously reported and the determined amino acid sequences, including the COOH-terminal sequence, of the tryptic peptides derived from aqualysin I. Aqualysin I comprised 281 amino acid residues and its molecular mass was determined to be 28,350. On alignment of the whole amino acid sequence, aqualysin I showed high sequence homology with the subtilisin-type serine proteases, and 43% identity with proteinase K, 37-39% with subtilisins and 34% with thermitase. Extremely high sequence identity was observed in the regions containing the active-site residues, corresponding to Asp32, His64 and Ser221 of subtilisin BPN'. The nucleotide sequence of the cloned DNA (1105 nucleotides) revealed that it contains the entire gene encoding aqualysin I and one open reading frame without a translational stop codon. Therefore, aqualysin I was considered to be produced as a large precursor, which contains a NH2-terminal portion, the protease and a COOH-terminal portion. The G + C content of the coding region for aqualysin I was 64.6%, which is lower than those of other Thermus genes (68-74%). The codon usage in the aqualysin I gene was rather random in comparison with that in other Thermus genes.  相似文献   

20.
G S Dahler  F Barras    N T Keen 《Journal of bacteriology》1990,172(10):5803-5815
A 14-kilobase BamHI-EcoRI DNA fragment cloned from Erwinia chrysanthemi EC16 contained a gene encoding a metalloprotease inhibitor as well as three tandem prt genes encoding metalloproteases. The prt genes were separated from the inhibitor gene by a ca. 4-kilobase region that was necessary for extracellular secretion of the proteases. When individually subcloned downstream from vector promoters, the three prt genes each led to substantial extracellular secretion of the proteases by Escherichia coli cells, provided that the 4-kilobase required region was supplied in cis or trans. One of the protease structural genes, prtC, was sequenced and had high homology to a metalloprotease gene previously described from Serratia species as well as to the prtB gene of E. chrysanthemi B374. Marker exchange mutants of E. chrysanthemi EC16 defective in production of one or all of the extracellular proteases were not impaired in virulence on plant tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号