首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Endothelium-derived nitric oxide (NO) attenuates arteriolar constriction in the rat small intestine during periods of increased sympathetic nerve activity. This study was undertaken to test the hypothesis that a flow-dependent fall in arteriolar wall PO(2) serves as the stimulus for endothelial NO release under these conditions. Sympathetic nerve stimulation at 3-16 Hz induced frequency-dependent arteriolar constriction, with arteriolar wall O(2) tension (PO(2)) falling from 67 +/- 3 mmHg to as low as 41 +/- 6 mmHg. Arteriolar responses to nerve stimulation were enhanced after inhibition of NO synthase with N(G)-monomethyl-L-arginine (L-NMMA). Under a high-O(2) (20%) superfusate, the fall in wall PO(2) was significantly attenuated, arteriolar constrictions were increased by 57 +/- 9 to 66 +/- 12%, and these responses were no longer sensitive to L-NMMA. The high-O(2) superfusate had no effect on vascular smooth muscle responsiveness to NO (as judged by arteriolar responses to sodium nitroprusside) or on arteriolar wall oxidant activity (as determined by the reduction of tetranitroblue tetrazolium dye). These results indicate that a flow-dependent fall in arteriolar wall PO(2) may serve as a stimulus for the release of endothelium-derived NO during periods of increased sympathetic nerve activity.  相似文献   

2.
The role of nitric oxide (NO) and reactive oxygen species (ROS) in regulating capillary perfusion was studied in the hamster cheek pouch model during normoxia and after 20 min of exposure to 10% O2-90% N2. We measured PO2 by using phosphorescence quenching microscopy and ROS production in systemic blood. Identical experiments were performed after treatment with the NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA) and after the reinfusion of the NO donor 2,2'-(hydroxynitrosohydrazono)bis-etanamine (DETA/NO) after treatment with L-NMMA. Hypoxia caused a significant decrease in the systemic PO2. During normoxia, arteriolar intravascular PO2 decreased progressively from 47.0 +/- 3.5 mmHg in the larger arterioles to 28.0 +/- 2.5 mmHg in the terminal arterioles; conversely, intravascular PO2 was 7-14 mmHg and approximately uniform in all arterioles. Tissue PO2 was 85% of baseline. Hypoxia significantly dilated arterioles, reduced blood flow, and increased capillary perfusion (15%) and ROS (72%) relative to baseline. Administration of L-NMMA during hypoxia further reduced capillary perfusion to 47% of baseline and increased ROS to 34% of baseline, both changes being significant. Tissue PO2 was reduced by 33% versus the hypoxic group. Administration of DETA/NO after L-NMMA caused vasodilation, normalized ROS, and increased capillary perfusion and tissue PO2. These results indicate that during normoxia, oxygen is supplied to the tissue mostly by the arterioles, whereas in hypoxia, oxygen is supplied to tissue by capillaries by a NO concentration-dependent mechanism that controls capillary perfusion and tissue PO2, involving capillary endothelial cell responses to the decrease in lipid peroxide formation controlled by NO availability during low PO2 conditions.  相似文献   

3.
Many studies have suggested that endothelial cells can act as "oxygen sensors" to large reductions in oxygen availability by increasing nitric oxide (NO) production. This study determined whether small reductions in oxygen availability enhanced NO production from in vivo intestinal arterioles, venules, and parenchymal cells. In vivo measurements of perivascular NO concentration ([NO]) were made with NO-sensitive microelectrodes during normoxic and reduced oxygen availability. During normoxia, intestinal first-order arteriolar [NO] was 397 +/- 26 nM (n = 5), paired venular [NO] was 298 +/- 34 nM (n = 5), and parenchymal cell [NO] was 138 +/- 36 nM (n = 3). During reduced oxygen availability, arteriolar and venular [NO] significantly increased to 695 +/- 79 nM (n = 5) and 534 +/- 66 nM (n = 5), respectively, whereas parenchymal [NO] remained unchanged at 144 +/- 34 nM (n = 4). During reduced oxygenation, arteriolar and venular diameters increased by 15 +/- 3% and 14 +/- 5%, respectively: NG-nitro-L-arginine methyl ester strongly suppressed the dilation to lower periarteriolar Po2. Micropipette injection of a CO2 embolus into arterioles significantly attenuated arteriolar dilation and suppressed NO release in response to reduced oxygen availability. These results indicated that in rat intestine, reduced oxygen availability increased both arteriolar and venular NO and that the main site of NO release under these conditions was from endothelial cells.  相似文献   

4.
ATP and adenosine are important extracellular regulators of glomerular functions. In this study, ATP release from glomeruli suspension and its extracellular metabolism were investigated. Basal extraglomerular ATP concentration (1nM) increased several fold during inhibition of ecto-ATPase activity, reflecting the basal ATP release rate. Mechanical perturbation increased the amounts of ATP released from glomeruli. ATP added to glomeruli was almost completely degraded within 20 minutes. In that time, AMP was the main product of extracellular ATP metabolism. Significant accumulation of AMP was observed after 5 min (194 +/-16 microM) and 20 min (271 +/-11 microM), whereas at the same time concentration of adenosine was only 10 muM. A competitive inhibitor of ecto-5-nucleotidase alpha-beta-methylene-ADP (AOPCP), decreased extraglomerular ATP and adenosine concentration by 80% and 50%, respectively. Similarly, AMP (100 microM) also markedly reduced extraglomerular ATP accumulation, whereas IMP, its deamination product, was not effective. P1, P5-diadenosine pentaphosphate (Ap5A) - an inhibitor of ecto-adenylate kinase prevented significantly the disappearance of ATP from extraglomerular media caused by AMP. These findings demonstrate that the decrease in extracellular ATP concentration observed after addition of AOPCP or AMP is caused by the presence of ecto-adenylate kinase activity in the glomeruli. The enzyme catalyses reversible reaction 2ADP<->ATP+AMP, and a rise in the AMP concentration can lead to fall in ATP level. The present study provides evidence the extraglomerular accumulation of ATP reflects both release of ATP from glomeruli cells and its metabolism by ecto-enzymes. Our data suggest that AMP, produced from ATP in the Bowman's capsular space, might plays a dual role as a substrate for ecto-adenylate kinase and ecto-nucleotidase reactions being responsible for the regulation of intracapsular ATP and adenosine concentration. We conclude that AMP degrading and converting ecto-enzymes effectively determine the balance between ATP and adenosine concentration and thus the activation of P2 and/or adenosine receptors.  相似文献   

5.
ATP is thought to be released to the extracellular compartment by neurons and astrocytes during neural activation. We examined whether ATP exerts its effect of promoting pial arteriolar dilation (PAD) directly or upon conversion (via ecto-nucleotidase action) to AMP and adenosine. Blockade of extracellular direct ATP to AMP conversion, with ARL-67156, significantly reduced sciatic nerve stimulation-evoked PADs by 68%. We then monitored PADs during suffusions of ATP, ADP, AMP, and adenosine in the presence and absence of the following: 1) the ecto-5'-nucleotidase inhibitor α,β-methylene adenosine 5'-diphosphate (AOPCP), 2) the A(2) receptor blocker ZM 241385, 3) the ADP P2Y(1) receptor antagonist MRS 2179, and 4) ARL-67156. Vasodilations induced by 1 and 10 μM, but not 100 μM, ATP were markedly attenuated by ZM 241385, AOPCP, and ARL-67156. Substantial loss of reactivity to 100 μM ATP required coapplications of ZM 241385 and MRS 2179. Dilations induced by ADP were blocked by MRS 2179 but were not affected by either ZM 241385 or AOPCP. AMP-elicited dilation was partially inhibited by AOPCP and completely abolished by ZM 241385. Collectively, these and previous results indicate that extracellular ATP-derived adenosine and AMP, via A(2) receptors, play key roles in neural activation-evoked PAD. However, at high extracellular ATP levels, some conversion to ADP may occur and contribute to PAD through P2Y(1) activation.  相似文献   

6.
The cerebrovascular response to decreases in hematocrit and viscosity depends on accompanying changes in arterial O2 content. This study examines whether 1) the arteriolar dilation seen after exchange transfusion with a 5% albumin solution can be reduced by the K(ATP) channel antagonist glibenclamide (known to inhibit hypoxic dilation), and 2) the arteriolar constriction seen after exchange transfusion with a cell-free hemoglobin polymer to improve O2-carrying capacity can be blocked by inhibitors of the synthesis or vasoconstrictor actions of 20-HETE. In anesthetized rats, decreasing hematocrit by one-third with albumin exchange transfusion dilated pial arterioles (14 +/- 2%; SD), whereas superfusion of the surface of the brain with 10 muM glibenclamide blocked this response (-10 +/- 7%). Exchange transfusion with polymeric hemoglobin decreased the diameter of pial arterioles by 20 +/- 3% without altering arterial pressure. This constrictor response was attenuated by superfusing the surface of the brain with a 20-HETE antagonist, WIT-002 (10 microM; -5 +/- 1%), and was blocked by two chemically dissimilar selective inhibitors of the synthesis of 20-HETE, DDMS (50 microM; 0 +/- 4%) and HET-0016 (1 microM; +6 +/- 4%). The constrictor response to hemoglobin transfusion was not blocked by an inhibitor of nitric oxide (NO) synthase, and the inhibition of the constrictor response by DDMS was not altered by coadministration of the NO synthase inhibitor. We conclude 1) that activation of K(ATP) channels contributes to pial arteriolar dilation during anemia, whereas 2) constriction to polymeric hemoglobin transfusion at reduced hematocrit represents a regulatory response that limits increased O2 transport and that is mediated by increased formation of 20-HETE, rather than by NO scavenging.  相似文献   

7.
Venular control of arteriolar perfusion has been the focus of several investigations in recent years. This study investigated 1) whether endogenous adenosine helps control venule-dependent arteriolar dilation and 2) whether venular leukocyte adherence limits this response via an oxidant-dependent mechanism in which nitric oxide (NO) levels are decreased. Intravital microscopy was used to assess changes in arteriolar diameters and NO levels in rat mesentery. The average resting diameter of arterioles (27.5 +/- 1.0 microm) paired with venules with minimal leukocyte adherence (2.1 +/- 0.3 per 100-microm length) was significantly larger than that of unpaired arterioles (24.5 +/- 0.8 microm) and arterioles (23.3 +/- 1.3 microm) paired with venules with higher leukocyte adherence (9.0 +/- 0.5 per 100-microm length). Local superfusion of adenosine deaminase (ADA) induced significant decreases in diameter and perivascular NO concentration in arterioles closely paired to venules with minimal leukocyte adherence. However, ADA had little effect on arterioles closely paired to venules with high leukocyte adherence or on unpaired arterioles. To determine whether the attenuated response to ADA for the high-adherence group was oxidant dependent, the responses were also observed in arterioles treated with 10(-4) M Tempol. In the high-adherence group, Tempol fully restored NO levels to those of the low-adherence group; however, the ADA-induced constriction remained attenuated, suggesting a possible role for an oxidant-independent vasoconstrictor released from the inflamed venules. These findings suggest that adenosine- and venule-dependent dilation of paired arterioles may be mediated, in part, by NO and inhibited by venular leukocyte adherence.  相似文献   

8.
The effect of hypoxia on the release of adenosine was studied in vitro in the rat whole carotid body (CB) and compared with the effect of hypoxia (2%, 5% and 10% O(2)) on adenosine concentrations in superior cervical ganglia (SCG) and carotid arteries. Moderate hypoxia (10% O(2)) increased adenosine concentrations released from the CBs by 44%, but was not a strong enough stimulus to evoke adenosine release from SCG and arterial tissue. The extracellular pathways of adenosine production in rat CBs in normoxia and hypoxia were also investigated. S-(p-nitrobenzyl)-6-thioinosine (NBTI) and dipyridamole were used as pharmacological tools to inhibit adenosine equilibrative transporters (ENT) and alpha,beta-methylene ADP (AOPCP) to inhibit ecto-5'-nucleotidase. Approximately 40% of extracellular adenosine in the CB came from the extracellular catabolism of ATP, under both normoxic and hypoxic conditions. Low pO(2) triggers adenosine efflux through activation of NBTI-sensitive ENT. This effect was only apparent in hypoxia and when adenosine extracellular concentrations were reduced by the blockade of ecto-5'-nucleotidase. We concluded that CB chemoreceptor sensitivity could be related to its low threshold for the release of adenosine in response to hypoxia here quantified for the first time.  相似文献   

9.
We have recently demonstrated that endogenous H2O2 plays an important role in coronary autoregulation in vivo. However, the role of H2O2 during coronary ischemia-reperfusion (I/R) injury remains to be examined. In this study, we examined whether endogenous H2O2 also plays a protective role in coronary I/R injury in dogs in vivo. Canine subepicardial small coronary arteries (>or=100 microm) and arterioles (<100 microm) were continuously observed by an intravital microscope during coronary I/R (90/60 min) under cyclooxygenase blockade (n=50). Coronary vascular responses to endothelium-dependent vasodilators (ACh) were examined before and after I/R under the following seven conditions: control, nitric oxide (NO) synthase (NOS) inhibitor NG-monomethyl-L-arginine (L-NMMA), catalase (a decomposer of H2O2), 8-sulfophenyltheophylline (8-SPT, an adenosine receptor blocker), L-NMMA+catalase, L-NMMA+tetraethylammonium (TEA, an inhibitor of large-conductance Ca2+-sensitive potassium channels), and L-NMMA+catalase+8-SPT. Coronary I/R significantly impaired the coronary vasodilatation to ACh in both sized arteries (both P<0.01); L-NMMA reduced the small arterial vasodilatation (both P<0.01), whereas it increased (P<0.05) the ACh-induced coronary arteriolar vasodilatation associated with fluorescent H2O2 production after I/R. Catalase increased the small arterial vasodilatation (P<0.01) associated with fluorescent NO production and increased endothelial NOS expression, whereas it decreased the arteriolar response after I/R (P<0.01). L-NMMA+catalase, L-NMMA+TEA, or L-NMMA+catalase+8-SPT further decreased the coronary vasodilatation in both sized arteries (both, P<0.01). L-NMMA+catalase, L-NMMA+TEA, and L-NMMA+catalase+8-SPT significantly increased myocardial infarct area compared with the other four groups (control, L-NMMA, catalase, and 8-SPT; all, P<0.01). These results indicate that endogenous H2O2, in cooperation with NO, plays an important cardioprotective role in coronary I/R injury in vivo.  相似文献   

10.
Large interindividual differences exist in resting sympathetic nerve activity (SNA) among normotensive humans with similar arterial pressure (AP). We recently showed inverse relationships of resting SNA with cardiac output (CO) and vascular adrenergic responsiveness that appear to balance the influence of differences in SNA on blood pressure. In the present study, we tested whether nitric oxide (NO)-mediated vasodilation has a role in this balance by evaluating hemodynamic responses to systemic NO synthase (NOS) inhibition in individuals with low and high resting muscle SNA (MSNA). We measured MSNA via peroneal microneurography, CO via acetylene uptake and AP directly, at baseline and during increasing systemic doses of the NOS inhibitor NG-monomethyl-L-arginine (L-NMMA). Baseline MSNA ranged from 9 to 38 bursts/min (13 to 68 bursts/100 heartbeats). L-NMMA caused dose-dependent increases in AP and total peripheral resistance and reflex decreases in CO and MSNA. Increases in AP with L-NMMA were greater in individuals with high baseline MSNA (PANOVA<0.05). For example, after 8.5 mg/kg of L-NMMA, in the low MSNA subgroup (n=6, 28+/-4 bursts/100 heartbeats), AP increased 9+/-1 mmHg, whereas in the high-MSNA subgroup (n=6, 58+/-3 bursts/100 heartbeats), AP increased 15+/-2 mmHg (P<0.01). The high-MSNA subgroup had lower baseline CO and smaller decreases in CO with L-NMMA, but changes in total peripheral resistance were not different between groups. We conclude that differences in CO among individuals with varying sympathetic traffic have important hemodynamic implications during disruption of NO-mediated vasodilation.  相似文献   

11.
Shear stress-dependent nitric oxide (NO) formation prevents immoderate vascular constriction. We examined whether shear stress-dependent NO formation limits exercise-induced coronary artery constriction after beta-adrenergic receptor blockade in dogs. Control exercise led to increases (P < 0.01) in coronary blood flow (CBF) by 38 +/- 5 ml/min from 41 +/- 5 ml/min and in the external diameter of epicardial coronary arteries (CD) by 0.24 +/- 0.03 mm from 3.33 +/- 0.20 mm. CD and shear stress were linearly related. After propranolol, CD fell (P < 0.01) during exercise (0.08 +/- 0.03 from 3.23 +/- 0.19 mm), and the slope of the relationship between CD and shear stress was reduced (P < 0.01). This slope was not further altered by the additional blockade of NO formation. In propranolol-treated resting dogs, flow-dependent effects of intracoronary adenosine to mimic exercise-induced increases in shear stress (after propranolol) led to increases (P < 0.01) in CD (0.09 +/- 0.02 from 3.68 +/- 0.27 mm). Thus both shear stress-dependent NO formation and beta-adrenergic receptor activation are required to cause CD dilation during exercise. Suppression of beta-adrenergic receptor activation leads to impaired shear stress-dependent NO formation and allows alpha-adrenergic constriction to become dominant.  相似文献   

12.
The contribution of neuronal ATP to interstitial adenosine levels was investigated in isolated perfused rat hearts. Ventricular surface transudates, representing interstitial fluid, were analyzed for norepinephrine, ATP, and adenosine. Exocytotic release of norepinephrine was induced by electrical stimulation of cardiac efferents emanating from the stellate ganglion. Ganglion stimulation increased contractility, interstitial norepinephrine, ATP, and adenosine. Interstitial adenosine was 11- to 27-fold higher than interstitial ATP, suggesting that the released ATP is unlikely the only source of adenosine. In the presence of AOPCP (alpha,beta-methyleneadenosine 5'-diphosphate), an ecto-5'-nucleotidase inhibitor, the ganglion-stimulated increase in interstitial ATP and adenosine reached levels similar to those in the absence of AOPCP, also suggesting that adenosine does not derive from extracellular ATP. The perfusate Ca2+ was raised from 1 to 4 mM to determine the importance of the enhanced contractile function on the levels of norepinephrine, ATP, and adenosine. The results were increases in contractility and interstitial norepinephrine, ATP, and adenosine, which were not suppressed with atenolol, indicating a norepinephrine-independent release of ATP and adenosine. Reserpine treatment and administration of guanethidine depleted the catecholamine stores and diminished the catecholamine release, respectively. However, neither agent altered Ca2+-induced increases in ATP and adenosine. It is concluded that the amount of neuronal-derived ATP is low and most likely does not contribute significantly to interstitial levels of adenosine. Furthermore, elevations in interstitial norepinephrine, ATP, and adenosine are associated with neuronal-independent increases in contractile function.  相似文献   

13.
Previous studies suggested indirectly that vascular endothelial cells (VECs) might be able to release intracellularly-formed adenosine. We isolated VECs from the rat soleus muscle using collagenase digestion and magnetic-activated cell sorting (MACS). The VEC preparation had >90% purity based on cell morphology, fluorescence immunostaining, and RT-PCR of endothelial markers. The kinetic properties of endothelial cytosolic 5′-nucleotidase suggested it was the AMP-preferring N-I isoform: its catalytic activity was 4 times higher than ecto-5′nucleotidase. Adenosine kinase had 50 times greater catalytic activity than adenosine deaminase, suggesting that adenosine removal in VECs is mainly through incorporation into adenine nucleotides. The maximal activities of cytosolic 5′-nucleotidase and adenosine kinase were similar. Adenosine and ATP accumulated in the medium surrounding VECs in primary culture. Hypoxia doubled the adenosine, but ATP was unchanged; AOPCP did not alter medium adenosine, suggesting that hypoxic VECs had released intracellularly-formed adenosine. Acidosis increased medium ATP, but extracellular conversion of ATP to AMP was inhibited, and adenosine remained unchanged. Acidosis in the buffer-perfused rat gracilis muscle elevated AMP and adenosine in the venous effluent, but AOPCP abolished the increase in adenosine, suggesting that adenosine is formed extracellularly by non-endothelial tissues during acidosis in vivo. Hypoxia plus acidosis increased medium ATP by a similar amount to acidosis alone and adenosine 6-fold; AOPCP returned the medium adenosine to the level seen with hypoxia alone. These data suggest that VECs release intracellularly formed adenosine in hypoxia, ATP during acidosis, and both under simulated ischaemic conditions, with further extracellular conversion of ATP to adenosine.  相似文献   

14.
The mechanism of myocardial hibernation, the reversible downregulation of contractile activity on reduction of coronary flow with unchanged cardiac energetics, is presently not understood. The oxygen consumption (VO(2)), shortening fraction (DeltaL), energy status [phosphocreatine (PCr), ATP, and adenosine and lactate release], and free intracellular Ca(2+) concentration ([Ca(2+)](i)) were measured in isolated rat cardiomyocytes at precisely controlled ambient PO(2) (Oxystat). When PO(2) was reduced from 25 to 6 mmHg, VO(2) decreased by 50%, while DeltaL was downregulated from 11.2 +/- 4.1 to 7.6 +/- 4.0%, and energy status was unchanged in the steady state (observation time 12 min). Only transiently PCr decreased, and lactate and adenosine release increased. Further reduction of PO(2) (to 3 mmHg) reduced VO(2) by 80%, decreased PCr by 35%, moderately increased adenosine and lactate release, and progressively reduced DeltaL by 50% (to 5.6 +/- 3.3%). All parameters fully recovered during reoxygenation. PO(2)-dependent downregulation of DeltaL was accompanied by a progressive reduction in systolic [Ca(2+)](i) (from 512 +/- 110 to 357 +/- 91 nmol/l at 6 mmHg and to 251 +/- 69 nmol/l at 3 mmHg), whereas diastolic free [Ca(2+)](i) remained unchanged. Therefore, the mechanism of the reversible, PO(2)-dependent downregulation of contractile activity (myocardial hibernation) involves a substantial reduction of systolic calcium.  相似文献   

15.
Abstract: The release of adenosine and ATP evoked by electrical field stimulation in rat hippocampal slices was investigated with the following two patterns of stimulation: (1) a brief, high-frequency burst stimulation (trains of stimuli at 100 Hz for 50 ms applied every 2 s for 1 min), to mimic a long-term potentiation (LTP) stimulation paradigm, and (2) a more prolonged (3 min) and low-frequency (5 Hz) train stimulation, to mimic a long-term depression (LTD) stimulation paradigm. The release of ATP was greater at a brief, high-frequency burst stimulation, whereas the release of [3H]adenosine was slightly greater at a more prolonged and low-frequency stimulation. To investigate the source of extracellular adenosine, the following two pharmacological tools were used; α,β-methylene ADP (AOPCP), an inhibitor of ecto-5′-nucleotidase, to assess the contribution of the catabolism of released adenine nucleotides as a source of extracellular adenosine, and S-(4-nitrobenzyl)-6-thioinosine (NBTI), an inhibitor of adenosine transporters, to assess the contribution of the release of adenosine, as such, as a source of extracellular adenosine. At low-frequency stimulation, NBTI inhibited by nearly 50% the evoked outflow of [3H]adenosine, whereas AOPCP inhibited [3H]adenosine outflow only marginally. In contrast, at high-frequency stimulation, AOPCP inhibited by 30% the evoked release of [3H]adenosine, whereas NBTI produced a 40% inhibition of [3H]adenosine outflow. At both frequencies, the kinetics of evoked [3H]adenosine outflow was affected in different manners by AOPCP and NBTI; NBTI mainly depressed the rate of evoked [3H]adenosine outflow, whereas AOPCP mainly inhibited the later phase of evoked [3H]adenosine accumulation. These results show that there is a simultaneous, but quantitatively different, release of ATP and adenosine from rat hippocampal slices stimulated at frequencies that can induce plasticity phenomena such as LTP (100 Hz) or LTD (5 Hz). The source of extracellular adenosine is also different according to the frequency of stimulation; i.e., at a brief, high-frequency stimulation there is a greater contribution of released adenine nucleotides for the formation of extracellular adenosine than at a low frequency with a more prolonged stimulation.  相似文献   

16.
A number of studies have demonstrated an important role for nitric oxide (NO) in central and peripheral neural modulation of sympathetic activity. To assess the interaction and integrative effects of NO release and sympathetic reflex actions, we investigated the influence of inhibition of NO on cardiac-cardiovascular reflexes. In anesthetized, sinoaortic-denervated and vagotomized cats, transient reflex increases in arterial blood pressure (BP) were induced by application of bradykinin (BK, 0.1-10 microg/ml) to the epicardial surface of the heart. The nonspecific NO synthase (NOS) inhibitor NG-monomethyl-L-arginine (L-NMMA, 10 mg/kg iv) was then administered and stimulation was repeated. L-NMMA increased baseline mean arterial pressure (MAP) from 129 +/- 8 to 152 +/- 9 mmHg and enhanced the change in MAP in response to BK from 32 +/- 3 to 39 +/- 5 mmHg (n = 9, P < 0.05). Pulse pressure was significantly enhanced during the reflex response from 6 +/- 4 to 27 +/- 6 mmHg after L-NMMA injection due to relatively greater potentiation of the rise in systolic BP. Both the increase in baseline BP and the enhanced pressor reflex were reversed by L-arginine (30 mg/kg iv). Because L-NMMA can inhibit both brain and endothelial NOS, the effects of 7-nitroindazole (7-NI, 25 mg/kg ip), a selective brain NOS inhibitor, on the BK-induced cardiac-cardiovascular pressor reflex also were examined. In contrast to L-NMMA, we observed significant reduction of the pressor response to BK from 37 +/- 5 to 18 +/- 3 mmHg 30 min after the administration of 7-NI (n = 9, P < 0.05), an effect that was reversed by L-arginine (300 mg/kg iv, n = 7). In a vehicle control group for 7-NI (10 ml of peanut oil ip), the pressor response to BK remained unchanged (n = 6, P > 0.05). In conclusion, neuronal NOS facilitates, whereas endothelial NOS modulates, the excitatory cardiovascular reflex elicited by chemical stimulation of sympathetic cardiac afferents.  相似文献   

17.
In skeletal muscle arterioles of normotensive rats fed a high salt diet, the bioavailability of endothelium-derived nitric oxide (NO) is reduced by superoxide anion. Because the impact of dietary salt on resistance vessels in other species is largely unknown, we investigated endothelium-dependent dilation and oxidant activity in spinotrapezius muscle arterioles of C57BL/6J mice fed normal (0.45%, NS) or high salt (7%, HS) diets for 4 wk. Mean arterial pressure in HS mice was not different from that in NS mice, but the magnitude of arteriolar dilation in response to different levels of ACh was 42-57% smaller in HS mice than in NS mice. Inhibition of nitric oxide synthase (NOS) with N(G) monomethyl L-arginine (L-NMMA) significantly reduced resting diameters and reduced responses to ACh (by 45-63%) in NS mice but not in HS mice. Arteriolar wall oxidant activity, as assessed by tetranitroblue tetrazolium reduction or hydroethidine oxidation, was greater in HS mice than in NS mice. Exposure to the superoxide scavenger 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) + catalase reduced this oxidant activity to normal and restored normal arteriolar responsiveness to ACh in HS mice but had no effect in NS mice. L-NMMA also restored arteriolar oxidant activity to normal in HS mice. ACh further increased arteriolar oxidant activity in HS mice but not in NS mice, and this effect was prevented with L-NMMA. These data suggest that a high salt diet promotes increased generation of superoxide anion from NOS in the murine skeletal muscle microcirculation, thus impairing endothelium-dependent dilation through reduced NO bioavailability.  相似文献   

18.
Release of Purines from Postsynaptic Structures of Amphibian Ganglia   总被引:5,自引:5,他引:0  
Isolated sympathetic paravertebral ganglia of the frog were incubated for 1 h with [3H]adenosine. Then, after washout of excess label, the contribution of pre- and post-synaptic activation on the release of 3H-labeled purines was studied. The ganglion was superfused with Ringer's solution at room temperature, and extracellular electrodes were used for stimulation and recording. Preganglionic stimulation enhanced overall release of 3H-labeled purines. At rest, the release of 3H-labeled purines per minute represented 0.62 +/- 0.02% of the total 3H-label in the ganglion, and this fraction increased depending on the frequency of orthodromic stimulation. Analyses of the effluent from resting and stimulated ganglia showed that in both cases the nonnucleotide fractions constituted greater than 97% of the total counts in the medium: adenosine (58.4 +/- 10.1%); inosine (31.7 +/- 12.9%); hypoxanthine (7.1 +/- 2.4%); and AMP, ADP, and ATP together (1.6 +/- 0.9%) (n = 11). Nucleotides were released, but their levels were not increased significantly during stimulation. Inclusion of ectophosphatase inhibitors slightly enhanced nucleotide release (from 1.1 +/- 0.5 to 1.8 +/- 0.7%; n = 5) but did not alter the amount of nucleosides. Hence, nucleosides are the main products released by the ganglion and do not arise from hydrolysis of extracellular ATP. Preganglionic stimulation enhanced release of labeled purines, which was frequency dependent from 1 to 20 Hz. Atropine (2 microM) and tubocurarine (150 microM) totally blocked the release of 3H-labeled purines associated with preganglionic stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Intracellular calcium concentration ([Ca2+]i) governs the contractile status of arteriolar smooth muscle cells (SMC). Although studied in vitro, little is known of SMC [Ca2+]i dynamics during the local control of blood flow. We tested the hypothesis that the rise and fall of SMC [Ca2+]i underlies arteriolar constriction and dilation in vivo. Aparenchymal segments of second-order arterioles (diameter 35 +/- 2 microm) were prepared in the superfused cheek pouch of anesthetized hamsters (n = 18) and perifused with the ratiometric dye fura PE-3 (AM) to load SMC (1 microM, 20 min). Resting SMC [Ca2+]i was 406 +/- 37 nM. Elevating superfusate O2 from 0 to 21% produced constriction (11 +/- 2 microm) that was unaffected by dye loading; [Ca2+]i increased by 108 +/- 53 nM (n = 6, P < 0.05). Cycling of [Ca2+]i during vasomotion (amplitude, 150 +/- 53 nM; n = 4) preceded corresponding diameter changes (7 +/- 1 microm) by approximately 2 s. Microiontophoresis (1 microm pipette tip; 1 microA, 1 s) of phenylephrine (PE) transiently increased [Ca2+]i by 479 +/- 64 nM (n = 8, P < 0.05) with constriction (26 +/- 3 microm). Flushing blood from the lumen with saline increased fluorescence at 510 nm by approximately 45% during excitation at both 340 and 380 nm with no difference in resting [Ca2+]i, diameter or respective responses to PE (n = 7). Acetylcholine microiontophoresis (1 microA, 1 s) transiently reduced resting SMC [Ca2+]i by 131 +/- 21 nM (n = 6, P < 0.05) with vasodilation (17 +/- 1 microm). Superfusion of sodium nitroprusside (10 microM) transiently reduced SMC [Ca2+]i by 124 +/- 18 nM (n = 6, P < 0.05), whereas dilation (23 +/- 5 microm) was sustained. Resolution of arteriolar SMC [Ca2+]i in vivo discriminates key signaling events that govern the local control of tissue blood flow.  相似文献   

20.
By determining the sum of the supernatant concentrations of nitrite and nitrate the stimulated generation of nitric oxide (NO) by human washed platelets induced by a range of fibrillar collagen concentrations (0.0156-25 microg ml(-1)) was investigated. Platelet serotonin (5-hydroxytryptamine, 5-HT) efflux and platelet aggregation were also measured. Under resting conditions (0 microg ml(-1) collagen) platelet NO release was equivalent to 1.06+/-0.17 nmol per 10(8) platelets. Maximal NO release, equivalent to 2.1+/-0. 37 nmol per 10(8) platelets, was observed with only 0.0625 microg ml(-1) collagen (P<0.02, stimulated vs. resting release), higher collagen concentrations producing no further increases in platelet NO output. By contrast, maximal platelet aggregation and 5-HT efflux did not occur until collagen concentrations of 2.5 microg ml(-1) and 10-25 microg ml-1), respectively, had been achieved. L-NAME (1 mmol l(-1)) and L-NMMA (1 mmol l(-1)) inhibited stimulated platelet NO generation by 78+/-6% and 72%, respectively. Contrasting with fibrillar collagen, fibrillar beta-amyloid protein had no effect on platelet NO generation, or on 5-HT efflux or aggregation. These data perhaps indicate that NO generation by human platelets is stimulated by concentrations of fibrillar collagen insufficient to elicit an aggregatory response. Such a mechanism could operate in vivo to inhibit platelet aggregation which might otherwise be induced by low concentrations of circulating agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号