首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To obtain in situ measurements of the distensibility of small (100- to 1,000-microns-diam) pulmonary arterial vessels of the dog lung, X-ray angiograms were obtained from isolated lung lobes with the vascular pressure adjusted to various levels. The in situ diameter-pressure relationships were compared with the diameter-pressure relationships for small arteries that were dissected free from the lungs and cannulated with small glass pipettes for the measurement of diameter and transmural pressure. The diameter-vascular or diameter-transmural pressure curves from both in situ and cannulated vessels were sufficiently linear in the pressure range studied (0-30 Torr) that they could be characterized by linear regression to obtain estimates of D0, the diameter at zero vascular pressure, and beta, the change in diameter (micron) per Torr change in pressure. The vessel distensibility coefficient (alpha) was defined as alpha = beta/D0. The mean values of alpha were approximately 2.0 +/- 0.8%/Torr (SD) for the in situ vessels and 1.7 +/- 0.6%/Torr for the cannulated vessels, with no statistically significant difference between the two methods. The influence of vasoconstriction elicited by serotonin was evaluated in the in situ vessels. Serotonin-induced vasoconstriction caused a decrease in D0 and little change in alpha.  相似文献   

2.
The objective of this study was to determine the nitric oxide (NO) concentration and vessel diameter dependence of the pulmonary arterial dilation induced by inhaled NO. Isolated dog lung lobes were situated between a microfocal X-ray source and X-ray detector and perfused with either blood or plasma. Boluses of radiopaque contrast medium were injected into the lobar artery under control conditions, when the pulmonary arteries were constricted by infusion of serotonin and when the serotonin infusion was accompanied by inhalation of from 30 to 960 parts/million NO. Arterial diameter measurements were obtained from X-ray images of vessels having control diameters in the 300- to 3,400-microm range. Serotonin constricted the vessels throughout the size range studied, with an average decrease in diameter of approximately 20%. The fractional reversal of the serotonin-induced constriction by inhaled NO was directly proportional to inhaled NO concentration, inversely proportional to vessel size, and greater with plasma than with blood perfusion in vessels as large as 3 mm in diameter. The latter indicates that intravascular hemoglobin affected the bronchoalveolar-to-arterial luminal NO concentration gradient in fairly large pulmonary arteries. The data provide information regarding pulmonary arterial smooth muscle accessibility to intrapulmonary gas that should be useful as part of the database for modeling the communication between intrapulmonary gas and pulmonary arterial smooth muscle cells in future studies.  相似文献   

3.
Little is known about the constituent hemodynamic consequences of structural changes that occur in the pulmonary arteries during the onset and progression of pulmonary arterial remodeling. Many disease processes are known to be responsible for vascular remodeling that leads to pulmonary arterial hypertension, cor pulmonale, and death. Histology has been the primary tool for evaluating pulmonary remodeling, but it does not provide information on intact vascular structure or the vessel mechanical properties. This study is an extension of our previous work in which we developed an alternative imaging technique to evaluate pulmonary arterial structure. The lungs from Sprague-Dawley rats were removed, perfusion analysis was performed on the isolated lungs, and then an X-ray contrast agent was used to fill the arterial network for imaging. The lungs were scanned over a range of intravascular pressures by volumetric micro-computed tomography, and the arterial morphometry was mapped and measured in the reconstructed isotropic volumes. A quantitative assessment of hemodynamic, structural, and biomechanical differences between rats exposed for 21 days to hypoxia (10% O(2)) or normoxia (21.0% O(2)) was performed. One metric, the normalized distensibility of the arteries, is significantly (P < 0.001) larger [0.025 +/- 0.0011 (SE) mmHg(-1)] (n = 9) in normoxic rats compared with hypoxic [0.015 +/- 0.00077 (SE) mmHg(-1)] (n = 9). The results of the study show that these models can be applied to the Sprague-Dawley rat data and, specifically, can be used to differentiate between the hypoxic and the control groups.  相似文献   

4.
T Fukushima  T Homma 《Biorheology》1988,25(1-2):37-48
In order to describe a possible effect of smooth muscle cell (SMC) activation on arterial wall distensibility, the present study derived a mathematical equation applicable to relaxed and contracted arterial walls. Pressure(P)-diameter(D) relationship of dog renal arteries was investigated in vitro under a cyclic loading and unloading process in the pressure range of 5-180 mmHg. Smooth muscle cells were activated by 10(-5)M norepinephrine. On the basis of the P-D curves obtained with fully contracted arteries, the vessel wall compliance dD/dP was assumed to be given by a second order polynomial of D, (formula; see text) The equation, including three parameters, Dmin, Dmax, and E, is integrated to yield the solution similar to the logistic curve as follows (formula; see text) where M(O) = (Dmax - D(O]/(D(O) - Dmin), and D(O) is the diameter at the point P = O. The constant, E, has the same dimension as the modulus of elasticity. The calculated P-D relationships coincided well with the experimental data for contracted and relaxed arteries. The most significant change due to wall contraction took place in the magnitude of M. This result, therefore, suggests that the parameter M is a good index of the degree of SMC contraction.  相似文献   

5.
A proper analysis of blood flow is contingent upon accurate modelling of the branching pattern and vascular geometry of the network of interest. It is challenging to reconstruct the entire vascular network of any organ experimentally, in particular the pulmonary vasculature, because of its very high number of vessels, complexity of the branching pattern and poor accessibility in vivo. The objective of our research is to develop an innovative approach for the reconstruction of the full pulmonary vascular tree from available morphometric data. Our method consists of the use of morphometric data on those parts of the pulmonary vascular tree that are too small to reconstruct by medical imaging methods. This method is a three-step technique that reconstructs the entire pulmonary arterial tree down to the capillary bed. Vessels greater than 2 mm are reconstructed from direct volume and surface analysis using contrast-enhanced computed tomography. Vessels smaller than 2 mm are reconstructed from available morphometric and distensibility data and rearranged by applying Murray's laws. Implementation of morphometric data to reconstruct the branching pattern and applying Murray's laws to every vessel bifurcation simultaneously leads to an accurate vascular tree reconstruction. The reconstruction algorithm generates full arterial tree topography down to the ?rst capillary bifurcation. Geometry of each order of the vascular tree is generated separately to minimize the construction and simulation time. The node-to-node connectivity along with the diameter and length of every vessel segment is established and order numbers, according to the diameter-de?ned Strahler system, are assigned. In conclusion, the present model provides a morphological foundation for future analysis of blood flow in the pulmonary circulation  相似文献   

6.
We examine the influence of vessel distensibility on the fraction of the total network flow passing through each vessel of a model vascular network. An exact computational methodology is developed yielding an analytic proof. For a class of structurally heterogeneous asymmetric vascular networks, if all the individual vessels share a common distensibility relation when the total network flow is changed, this methodology proves that each vessel will continue to receive the same fraction of the total network flow. This constant flow partitioning occurs despite a redistribution of pressures, which may result in a decrease in the diameter of one and an increase in the diameter of the other of two vessels having a common diameter at a common pressure. This theoretical observation, taken along with published experimental observations on pulmonary vessel distensibilities, suggests that vessel diameter-independent distensibility in the pulmonary vasculature may be an evolutionary adaptation for preserving the spatial distribution of pulmonary blood flow in the face of large variations in cardiac output.  相似文献   

7.
8.
For the maxillofacial region, there are various indications that cannot be interpreted from 2D images and will benefit from multiplanar viewing. Dental cone beam CT (CBCT) utilises a cone- or pyramid-shaped X-ray beam using mostly flat-panel detectors for 3D image reconstruction with high spatial resolution. The vast increase in availability and amount of these CBCT devices offers many clinical benefits, and their ongoing development has potential to bring various new clinical applications for medical imaging. Additionally, there is also a need for high quality research and education. European guidelines promote the use of a medical physics expert for advice on radiation protection, patient dose optimisation, and equipment testing. In this review article, we perform a comparison of technical equipment based on manufacturer data, including scanner specific X-ray spectra, and describe issues concerning CBCT image reconstruction and image quality, and also address radiation dose issues, dosimetry, and optimisation. We also discuss clinical needs and what type of education users should have in order to operate CBCT systems safely. We will also take a look into the future and discuss the issues that still need to be solved.  相似文献   

9.
The purpose of this investigation was to assess the interactive influence of sympathetic activation and supplemental nitric oxide (NO) on brachial artery distensibility vs. its diameter. It was hypothesized that 1) sympathetic activation and NO competitively impact muscular conduit artery (brachial artery) mechanics, and 2) neurogenic constrictor input affects conduit vessel stiffness independently of outright changes in conduit vessel diastolic diameter. Lower body negative pressure (LBNP) and a cold pressor stress (CPT) were used to study the changes in conduit vessel mechanics when the increased sympathetic outflow occurred with and without changes in heart rate (LBNP -40 vs. -15 mmHg) and blood pressure (CPT vs. LBNP). These maneuvers were performed in the absence and presence of nitroglycerin. Neither LBNP nor CPT altered brachial artery diastolic diameter; however, distensibility was reduced by 25 to 54% in each reflex (all P < 0.05). This impact of sympathetic activation on brachial artery distensibility was not altered by nitroglycerin supplementation (21-54%; P < 0.05), although baseline diameter was increased by the exogenous NO (P < 0.05). The results indicate that sympathetic excitation can reduce the distensibility of the brachial artery independently of concurrent changes in diastolic diameter, heart rate, and blood pressure. However, exogenous NO did not minimize or reverse brachial stiffening during sympathetic activation. Therefore, sympathetic outflow appears to impact the stiffness of this conduit vessel rather than its diastolic diameter or, by inference, its local resistance to flow.  相似文献   

10.
In this work, non-invasive high-spatial resolution three-dimensional (3D) X-ray micro-computed tomography (μCT) of healthy mouse lung vasculature is performed. Methodologies are presented for filtering, segmenting, and skeletonizing the collected 3D images. Novel methods for the removal of spurious branch artefacts from the skeletonized 3D image are introduced, and these novel methods involve a combination of distance transform gradients, diameter-length ratios, and the fast marching method (FMM). These new techniques of spurious branch removal result in the consistent removal of spurious branches without compromising the connectivity of the pulmonary circuit. Analysis of the filtered, skeletonized, and segmented 3D images is performed using a newly developed Vessel Network Extraction algorithm to fully characterize the morphology of the mouse pulmonary circuit. The removal of spurious branches from the skeletonized image results in an accurate representation of the pulmonary circuit with significantly less variability in vessel diameter and vessel length in each generation. The branching morphology of a full pulmonary circuit is characterized by the mean diameter per generation and number of vessels per generation. The methods presented in this paper lead to a significant improvement in the characterization of 3D vasculature imaging, allow for automatic separation of arteries and veins, and for the characterization of generations containing capillaries and intrapulmonary arteriovenous anastomoses (IPAVA).  相似文献   

11.
Structure-function relationships in the pulmonary arterial tree   总被引:1,自引:0,他引:1  
Knowledge of the relationship between structure and function ofthe normal pulmonary arterial tree is necessary for understanding normal pulmonary hemodynamics and the functional consequences of thevascular remodeling that accompanies pulmonary vascular diseases. In aneffort to provide a means for relating the measurable vascular geometryand vessel mechanics data to the mean pressure-flow relationship andlongitudinal pressure profile, we present a mathematical model of thepulmonary arterial tree. The model is based on the observation that thenormal pulmonary arterial tree is a bifurcating tree in which theparent-to-daughter diameter ratios at a bifurcation and vesseldistensibility are independent of vessel diameter, and although theactual arterial tree is quite heterogeneous, the diameter of eachroute, through which the blood flows, tapers from the arterial inlet toessentially the same terminal arteriolar diameter. In the model theaverage route is represented as a tapered tube through which the bloodflow decreases with distance from the inlet because of the diversion offlow at the many bifurcations along the route. The taper and flowdiversion are expressed in terms of morphometric parameters obtainedusing various methods for summarizing morphometric data. To help putthe model parameter values in perspective, we applied one such methodto morphometric data obtained from perfused dog lungs. Modelsimulations demonstrate the sensitivity of model pressure-flowrelationships to variations in the morphometric parameters. Comparisonsof simulations with experimental data also raise questions as to the"hemodynamically" appropriate ways to summarize morphometric data.  相似文献   

12.
Structural changes of the pulmonary circulation during the pathogenesis of pulmonary arterial hypertension remain to be fully elucidated. Although angiography has been used for visualizing the pulmonary circulation, conventional angiography systems have considerable limitations for visualizing small microvessels (diameters < 200 microm), particularly within a closed-chest animal model. In this study we assess the effectiveness of monochromatic synchrotron radiation (SR) for microangiography of the pulmonary circulation in the intact-chest rat. Male adult Sprague-Dawley rats were anesthetized, and a catheter was positioned within the right ventricle, for administering iodinated contrast agent (Iomeron 350). Subsequently, microangiography of pulmonary arterial branches within the left lung was performed using monochromatic SR. Additionally, we assessed dynamic changes in vessel diameter during acute hypoxic (10% and 8% O2 for 4 min each) pulmonary vasoconstriction (HPV). Using SR we were able to visualize pulmonary microvessels with a diameter of <100 microm (the 4th generation of branching from the left axial artery). Acute hypoxia caused a significant decrease in the diameter of all vessels less than 500 microm. The greatest degree of pulmonary vasoconstriction was observed in vessels with a diameter between 200 and 300 microm. These results demonstrate the effectiveness of SR for visualizing pulmonary vessels in a closed-chest rat model and for assessing dynamic changes associated with HPV. More importantly, these observations implicate SR as an effective tool in future research for assessing gross structural changes associated with the pathogenesis of pulmonary arterial hypertension.  相似文献   

13.
Structural and functional changes of the pulmonary circulation, particularly during the pathogenesis of pulmonary arterial hypertension (PAH), remain to be fully elucidated. In this study, we utilized monochromatic synchrotron radiation (SR) microangiography to assess changes in pulmonary arteriole blood flow in the intact-chest rat after 4 wk of chronic hypoxia. Sprague-Dawley rats were exposed to normoxia (N-rats) or chronic hypoxia (10% O(2); CH-rats) for 28 days. Rats were anesthetized, and microangiography was performed on the left lung to assess 1) the branching distribution of pulmonary arteriole blood flow (internal diameter >80 microm) and 2) dynamic changes in vessel lumen diameter during acute hypoxic (8% O(2) for 4 min) pulmonary vasoconstriction (HPV) before and after beta-adrenoceptor blockade (2 mg/kg i.v. propranolol). Using SR angiography, we observed that the number of opaque third- and fourth-generation vessels (100-300 microm) for CH-rats was significantly fewer than the number for N-rats. The magnitude of HPV was not different between CH-rats and N-rats. Beta-adrenoceptor blockade accentuated the HPV in 200- to 300-microm vessels for CH-rats, but even more so in N-rats. However, in CH-rats, beta-adrenoceptor blockade also accentuated the HPV in 100- to 200-microm vessels. In summary, we utilized SR to assess gross blood flow changes and functional changes (i.e., HPV) of the pulmonary circulation in PAH. These results highlight the benefits of SR for assessing pulmonary circulatory pathology. Of particular importance, future use of SR will provide an effective method for assessing potential therapeutic treatments for PAH.  相似文献   

14.
Blood flow in the microcirculation of the rat skeletal muscle during transient changes of arterial pressure is analyzed theoretically. Although flow in such small vessels is quasi-steady and has a very low Reynolds number, time-dependent nonuniform flows along the length of the blood vessels can be observed due to vessel distensibility. The governing equations for a single microvessel are derived using previously measured microvessel elasticity, and several solutions to different inflow and outflow pressures and flow conditions are investigated. The results indicate that when such distensible microvessels are subjected to a step increase of arterial pressure, the arterial flow shows a rapid overshoot followed by a progressive decay to steady-state. An arterial step flow induces a different response which takes the form of a monotonically increasing pressure. Pressure and flows are nonuniform along the vessel length during such transients. In-vitro whole organ pressure-flow data are presented in the dilated rat gracilis muscle which qualitatively agree with the theoretical predictions.  相似文献   

15.
Studies of the origin of pulmonary blood flow heterogeneity have highlighted the significant role of vessel branching structure on flow distribution. To enable more detailed investigation of structure-function relationships in the pulmonary circulation, an anatomically based finite element model of the arterial and venous networks has been developed to more accurately reflect the geometry found in vivo. Geometric models of the arterial and venous tree structures are created using a combination of multidetector row X-ray computed tomography imaging to define around 2,500 vessels from each tree, a volume-filling branching algorithm to generate the remaining accompanying conducting vessels, and an empirically based algorithm to generate the supernumerary vessel geometry. The explicit generation of supernumerary vessels is a unique feature of the computational model. Analysis of branching properties and geometric parameters demonstrates close correlation between the model geometry and anatomical measures of human pulmonary blood vessels. A total of 12 Strahler orders for the arterial system and 10 Strahler orders for the venous system are generated, down to the equivalent level of the terminal bronchioles in the bronchial tree. A simple Poiseuille flow solution, assuming rigid vessels, is obtained within the arterial geometry of the left lung, demonstrating a large amount of heterogeneity in the flow distribution, especially with inclusion of supernumerary vessels. This model has been constructed to accurately represent available morphometric data derived from the complex asymmetric branching structure of the human pulmonary vasculature in a form that will be suitable for application in functional simulations.  相似文献   

16.
Coronary artery pressure-drop and distensibility (compliance) are two major, seemingly unrelated, parameters in the cardiovascular clinical setting, which are indicative of coronary arteries patency and atherosclerosis severity. While pressure drop is related to flow, and therefore serves as a functional indicator of a stenosis severity, the arterial distensibility is indicative of the arterial stiffness, and hence the arterial wall composition. In the present study, we hypothesized that local pressure drops are dependent on the arterial distensibility, and hence can provide information on both indices. The clinical significance is that a single measurement of pressure drop could potentially provide both functional and bio-mechanical metrics of lesions, and thus assist in real-time decision making prior to stenting. The goal of the current study was to set the basis for understanding this relationship, and define the accuracy and sensitivity required from the pressure measurement system. The investigation was performed using numerical fluid–structure interaction (FSI) simulations, validated experimentally using our high accuracy differential pressure measurement system. Simplified silicone mock coronary arteries with zero to intermediate size stenoses were used, and various combinations of arterial distensibility, diameter, and flow rate were simulated. Results of hyperemic flow cases were also compared to fractional flow reserve (FFR). The results indicate the potential clinical superiority of a high accuracy pressure drop-based parameter over FFR, by: (i) being more lesion-specific, (ii) the possibility to circumvent the FFR dependency on pharmacologically-induced hyperemia, and, (iii) by providing both functional and biomechanical lesion-specific information.  相似文献   

17.
Patient-specific haemodynamic computations have been used as an effective tool in researches on cardiovascular disease associated with haemodynamics such as atherosclerosis and aneurysm. Recent development of computer resource has enabled 3D haemodynamic computations in wide-spread arterial network but there are still difficulties in modelling vascular geometry because of noise and limited resolution in medical images. In this paper, an integrated framework to model an arterial network tree for patient-specific computational haemodynamic study is developed. With this framework, 3D vascular geometry reconstruction of an arterial network and quantification of its geometric feature are aimed. The combination of 3D haemodynamic computation and vascular morphology quantification helps better understand the relationship between vascular morphology and haemodynamic force behind 'geometric risk factor' for cardiovascular diseases. The proposed method is applied to an intracranial arterial network to demonstrate its accuracy and effectiveness. The results are compared with the marching-cubes (MC) method. The comparison shows that the present modelling method can reconstruct a wide-ranged vascular network anatomically more accurate than the MC method, particularly in peripheral circulation where the image resolution is low in comparison to the vessel diameter, because of the recognition of an arterial network connectivity based on its centreline.  相似文献   

18.
Microcalcification is a hallmark of breast cancer and a key diagnostic feature for mammography. We recently described the first robust animal model of breast cancer microcalcification. In this study, we hypothesized that high-resolution computed tomography (CT) could potentially detect the genesis of a single microcalcification in vivo and quantify its growth over time. Using a commercial CT scanner, we systematically optimized acquisition and reconstruction parameters. Two ray-tracing image reconstruction algorithms were tested: a voxel-driven "fast" cone beam algorithm (FCBA) and a detector-driven "exact" cone beam algorithm (ECBA). By optimizing acquisition and reconstruction parameters, we were able to achieve a resolution of 104 μm full width at half-maximum (FWHM). At an optimal detector sampling frequency, the ECBA provided a 28 μm (21%) FWHM improvement in resolution over the FCBA. In vitro, we were able to image a single 300 μm × 100 μm hydroxyapatite crystal. In a syngeneic rat model of breast cancer, we were able to detect the genesis of a single microcalcification in vivo and follow its growth longitudinally over weeks. Taken together, this study provides an in vivo "gold standard" for the development of calcification-specific contrast agents and a model system for studying the mechanism of breast cancer microcalcification.  相似文献   

19.
We evaluate a newly developed dedicated cone-beam transmission computed mammotomography (CmT) system configuration using an optimized quasi-monochromatic cone beam technique for attenuation correction of SPECT in a planned dual-modality emission and transmission system for pendant, uncompressed breasts. In this study, we perform initial CmT acquisitions using various sized breast phantoms to evaluate an offset cone-beam geometry. This offset geometry provides conjugate projections through a full 360 degree gantry rotation, and thus yields a greatly increased effective field of view, allowing a much wider range of breast sizes to be imaged without truncation in reconstructed images. Using a tungsten X-ray tube and digital flat-panel X-ray detector in a compact geometry, we obtained initial CmT scans without shift and with the offset geometry, using geometrical frequency/resolution phantoms and two different sizes of breast phantoms. Acquired data were reconstructed using an ordered subsets transmission iterative algorithm. Projection images indicate that the larger, 20 cm wide, breast requires use of a half-cone-beam offset scan to eliminate truncation artifacts. Reconstructed image results illustrate elimination of truncation artifacts, and that the novel quasi-monochromatic beam yields reduced beam hardening. The offset geometry CmT system can indeed potentially be used for structural imaging and accurate attenuation correction for the functional dedicated breast SPECT system.  相似文献   

20.
To improve our understanding of the pressure-flow characteristics of pulmonary capillaries, we analyzed by means of computer stimulation a theoretical model composed of 50 interconnected nonlinear elements. Each element required a critical pressure across it before flow occurred and there was a subsequent linear pressure-flow region whose slope, or resistance, could be related to the transmural pressure of the element ("distensibility"). The critical pressures and resistances of each element of the network were randomly chosen from distributions. We found that recruitment (i.e., onset of flow) occurred over a large range of network upstream or "arterial" pressures, and that relatively high arterial pressures were required before all elements had no distensibility. Intermittent and reverse flow were commonly seen in some elements as the arterial pressure was raised in steps. These flow reversals were particularly common when the critical pressures and resistances of the elements were inversely related. The critical pressures required for such behavior in the capillary segments of the pulmonary microcirculation were calculated to be extremely small, of the order of 0.02 cmH2O. Pressures of this magnitude might result from sticking of red cells to capillary walls or to each other. The properties of such a network may explain the patchiness of flow in the pulmonary microcirculation and the large range of arterial pressures over which recruitment is observed to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号