首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microinjection of S-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the nucleus of the solitary tract (NTS) of conscious rats causes hypertension, bradycardia, and vasoconstriction in the renal, mesenteric, and hindquarter vascular beds. In the hindquarter, the initial vasoconstriction is followed by vasodilation with AMPA doses >5 pmol/100 nl. To test the hypothesis that this vasodilation is caused by activation of a nitroxidergic pathway in the NTS, we examined the effect of pretreatment with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 10 nmol/100 nl, microinjected into the NTS) on changes in mean arterial pressure, heart rate, and regional vascular conductance (VC) induced by microinjection of AMPA (10 pmol/100 nl in the NTS) in conscious rats. AMPA increased hindquarter VC by 18 +/- 4%, but after pretreatment with L-NAME, AMPA reduced hindquarter VC by 16 +/- 7% and 17 +/- 9% (5 and 15 min after pretreatment, P < 0.05 compared with before pretreatment). Pretreatment with L-NAME reduced AMPA-induced bradycardia from 122 +/- 40 to 92 +/- 32 beats/min but did not alter the hypertension induced by AMPA (35 +/- 5 mmHg before pretreatment, 43 +/- 6 mmHg after pretreatment). Control injections with D-NAME did not affect resting values or the response to AMPA. The present study shows that stimulation of AMPA receptors in the NTS activates both vasodilatatory and vasoconstrictor mechanisms and that the vasodilatatory mechanism depends on production of nitric oxide in the NTS.  相似文献   

2.
We sought to test the hypothesis that cardiovascular responses to activation of ionotropic, but not metabotropic, glutamate receptors in the nucleus tractus solitarii (NTS) depend on soluble guanylate cyclase (sGC) and that inhibition of sGC would attenuate baroreflex responses to changes in arterial pressure. In adult male Sprague-Dawley rats anesthetized with chloralose, the ionotropic receptor agonists N-methyl-d-aspartate (NMDA) and dl-alpha-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA) and the metabotropic receptor agonist trans-dl-amino-1,3-cyclopentane-dicarboxylic acid (ACPD) were microinjected into the NTS before and after microinjection of sGC inhibitors at the same site. Inhibition of sGC produced significant dose-dependent attenuation of cardiovascular responses to NMDA but did not alter responses produced by injection of AMPA or ACPD. Bilateral inhibition of sGC did not alter arterial pressure, nor did it attenuate baroreflex responses to pharmacologically induced changes in arterial pressure. This study links sGC with NMDA, but not AMPA or metabotropic, receptors in cardiovascular signal transduction through NTS.  相似文献   

3.
Evidence suggests that transmission of barosensitive input from arterial baroreceptors and cardiac mechanoreceptors at nucleus tractus solitarius (NTS) neurons involves non-N-methyl-d-aspartate (NMDA) glutamate receptors, but there is a possibility that the contribution of NMDA receptors might increase during periods of increased afferent input, when enhanced neuronal depolarization could increase the activation of NMDA receptors by removal of a Mg(2+) block. Thus the effects of NMDA on cardiac mechanoreceptor-modulated NTS neuronal discharges were examined at different levels of arterial pressure used to change cardiac mechanoreceptor afferent input. To determine whether the response was specific to NMDA, (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) was also administered at different levels of neuronal discharge. In anesthetized dogs, neuronal activity was recorded from the NTS while NMDA or AMPA was picoejected at high versus low arterial stimulating pressures. NMDA, but not AMPA, produced a significantly greater discharge of mechanoreceptor-driven NTS neurons at higher versus lower levels of stimulating pressure. These data suggest that the role played by NMDA receptors is greater during periods of enhanced neuronal depolarization, which could be produced by increases in afferent barosensitive input.  相似文献   

4.
Experiments were done in male Wistar rats to investigate the effects of microinjection of hypocretin-1 (Hcrt-1) into the nucleus of the solitary tract (NTS) on mean arterial pressure (MAP), heart rate (HR), and the baroreflex. In the first series, the distribution of Hcrt-1-like immunoreactivity (Ir) was mapped within the region of NTS. Hcrt-1 Ir was found throughout the NTS region, predominantly within the caudal dorsolateral (Slt), medial (Sm), and interstitial subnuclei of the NTS. In the second series, in alpha-chloralose or urethane-anesthetized rats, microinjection of Hcrt-1 (0.5-5 pmol) into the caudal NTS elicited a dose-dependent decrease in MAP and HR. A mapping of the caudal NTS region showed that the largest depressor and bradycardia responses elicited by Hcrt-1 were from sites in the Slt and Sm. In addition, doses >2.5 pmol at a small number of sites localized to the caudal commissural nucleus of NTS elicited pressor and tachycardia responses. Intravenous administration of the muscarinic receptor blocker atropine methyl bromide abolished the bradycardia response and attenuated the depressor response, whereas subsequent administration of the nicotinic receptor blocker hexamethonium bromide abolished the remaining MAP response. Finally, microinjection of Hcrt-1 into the NTS significantly potentiated the reflex bradycardia to activation of arterial baroreceptors as a result of increasing MAP by systemic injections of phenylephrine (2-4 microg/kg). These results suggest that Hcrt-1 in the NTS activates neuronal circuits that increases vagal activity to the heart, inhibits sympathetic activity to the heart and vasculature, and alters the excitability of NTS neuronal circuits that reflexly control the circulation.  相似文献   

5.
We tested the hypothesis that glucocorticoids attenuate changes in arterial pressure and renal sympathetic nerve activity (RSNA) in response to activation and blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors within the nucleus of the solitary tract (NTS). Experiments were performed in Inactin-anesthetized male Sprague-Dawley rats treated for 7 +/- 1 days with a subcutaneous corticosterone (Cort) pellet or in control rats. Baseline mean arterial pressure (MAP) was significantly higher in Cort-treated rats (109 +/- 2 mmHg, n = 39) than in control rats (101 +/- 1 mmHg, n = 48, P < 0.05). In control rats, microinjection of AMPA (0.03, 0.1, and 0.3 pmol/100 nl) into the NTS significantly decreased MAP at all doses and decreased RSNA at 0.1 and 0.3 pmol/100 nl. Responses to AMPA in Cort-treated rats were attenuated at all doses of AMPA (P < 0.05). Responses to the AMPA-kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were also significantly reduced in Cort-treated rats relative to control rats. Blockade of glucocorticoid type II receptors with mifepristone significantly enhanced responses to CNQX in both control and Cort rats. We conclude that glucocorticoids attenuate MAP and RSNA responses to activation and blockade of AMPA receptors in the NTS.  相似文献   

6.
The parasubthalamic nucleus (PSTN) projects extensively to the nucleus of the solitary tract (NTS); however, the function of PSTN in cardiovascular regulation is unknown. Experiments were done in alpha-chloralose anesthetized, paralyzed, and artificially ventilated rats to investigate the effect of glutamate (10 nl, 0.25 M) activation of PSTN neurons on mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA). Glutamate stimulation of PSTN elicited depressor (-20.4 +/- 0.7 mmHg) and bradycardia (-26.0 +/- 1.0 beats/min) responses and decreases in RSNA (67 +/- 17%). Administration (intravenous) of atropine methyl bromide attenuated the bradycardia response (46%), but had no effect on the MAP response. Subsequent intravenous administration of hexamethonium bromide blocked both the remaining bradycardia and depressor responses. Bilateral microinjection of the synaptic blocker CoCl(2) into the caudal NTS region attenuated the PSTN depressor and bradycardia responses by 92% and 94%, respectively. Additionally, prior glutamate activation of neurons in the ipsilateral NTS did not alter the magnitude of the MAP response to stimulation of PSTN, but potentiated HR response by 35%. Finally, PSTN stimulation increased the magnitude of the reflex bradycardia to activation of arterial baroreceptors. These data indicate that activation of neurons in the PSTN elicits a decrease in MAP due to sympathoinhibition and a cardiac slowing that involves both vagal excitation and sympathoinhibition. In addition, these data suggest that the PSTN depressor effects on circulation are mediated in part through activation of NTS neurons involved in baroreflex function.  相似文献   

7.
Selective activation of adenosine A(1) and A(2a) receptors in the subpostremal nucleus tractus solitarius (NTS) increases and decreases mean arterial pressure (MAP), respectively, and decreases heart rate (HR). We have previously shown that the decreases in MAP evoked by NTS A(2a) receptor stimulation were accompanied with differential sympathetic responses in renal (RSNA), lumbar (LSNA), and preganglionic adrenal sympathetic nerve activity (pre-ASNA). Therefore, now we investigated whether stimulation of NTS A(1) receptors via unilateral microinjection of N(6)-cyclopentyladenosine (CPA) elicits differential activation of the same sympathetic outputs in alpha-chloralose-urethane-anesthetized male Sprague-Dawley rats. CPA (0.33-330.0 pmol in 50 nl) evoked dose-dependent increases in MAP, variable decreases in HR, and differential increases in all recorded sympathetic outputs: upward arrow pre-ASNA > upward arrow RSNA > or = upward arrow LSNA. Sinoaortic denervation + vagotomy abolished the MAP and LSNA responses, reversed the normal increases in RSNA into decreases, and significantly attenuated increases in pre-ASNA. NTS ionotropic glutamatergic receptor blockade with kynurenate sodium (4.4 nmol/100 nl) reversed the responses in MAP, LSNA, and RSNA and attenuated the responses in pre-ASNA. We conclude that afferent inputs and intact glutamatergic transmission in the NTS are necessary to mediate the pressor and differential sympathoactivatory responses to stimulation of NTS A(1) receptors.  相似文献   

8.
Activation of adenosine A2a receptors in the nucleus of the solitary tract (NTS) decreases mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas increases in preganglionic adrenal sympathetic nerve activity (pre-ASNA) occur, a pattern similar to that observed during hypotensive hemorrhage. Central vasopressin V1 receptors may contribute to posthemorrhagic hypotension and bradycardia. Both V1 and A2a receptors are densely expressed in the NTS, and both of these receptors are involved in cardiovascular control; thus they may interact. The responses elicited by NTS A2a receptors are mediated mostly via nonglutamatergic mechanisms, possibly via release of vasopressin. Therefore, we investigated whether blockade of NTS V1 receptors alters the autonomic response patterns evoked by stimulation of NTS A2a receptors (CGS-21680, 20 pmol/50 nl) in alpha-chloralose-urethane anesthetized male Sprague-Dawley rats. In addition, we compared the regional sympathetic responses to microinjections of vasopressin (0.1-100 ng/50 nl) into the NTS. Blockade of V1 receptors reversed the normal decreases in MAP into increases (-95.6 +/- 28.3 vs. 51.4 +/- 15.7 integralDelta%), virtually abolished the decreases in HR (-258.3 +/- 54.0 vs. 18.9 +/- 57.8 integralDeltabeats/min) and RSNA (-239.3 +/- 47.4 vs. 15.9 +/- 36.1 integralDelta%), and did not affect the increases in pre-ASNA (279.7 +/- 48.3 vs. 233.1 +/- 54.1 integralDelta%) evoked by A2a receptor stimulation. The responses partially returned toward normal values approximately 90 min after the blockade. Microinjections of vasopressin into the NTS evoked dose-dependent decreases in HR and RSNA and variable MAP and pre-ASNA responses with a tendency toward increases. We conclude that the decreases in MAP, HR, and RSNA in response to NTS A2a receptor stimulation may be mediated via release of vasopressin from neural terminals in the NTS. The differential effects of NTS V1 and A2a receptors on RSNA versus pre-ASNA support the hypothesis that these receptor subtypes are differentially located/expressed on NTS neurons/neural terminals controlling different sympathetic outputs.  相似文献   

9.
Chronic exposure to intermittent hypoxia (CIH) has been used in animals to mimic the arterial hypoxemia that accompanies sleep apnea. Humans with sleep apnea and animals exposed to CIH have elevated blood pressures and augmented sympathetic nervous system responses to acute exposures to hypoxia. To test the hypothesis that exposure to CIH alters neurons within the nucleus of the solitary tract (NTS) that integrate arterial chemoreceptor afferent inputs, we measured whole cell currents induced by activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in enzymatically dispersed NTS neurons from normoxic (NORM) and CIH-exposed rats (alternating cycles of 3 min at 10% O2 followed by 3 min at 21% O2 between 8 AM and 4 PM for 7 days). To identify NTS neurons receiving carotid body afferent inputs the anterograde tracer 4- (4-(dihexadecylamino)styryl-N-methylpyridinum iodide (DiA) was placed onto the carotid body 1 wk before exposure to CIH. AMPA dose-response curves had similar EC50 but maximal responses increased in neurons isolated from DiA-labeled CIH (20.1 +/- 0.8 microM, n = 9) compared with NORM (6.0 +/- 0.3 microM, n = 8) rats. NMDA dose-response curves also had similar EC50 but maximal responses decreased in CIH (8.4 +/- 0.4 microM, n = 8) compared with NORM (19.4 +/- 0.6 microM, n = 9) rats. These results suggest reciprocal changes in the number and/or conductance characteristics of AMPA and NMDA receptors. Enhanced responses to AMPA receptor activation could contribute to enhanced chemoreflex responses observed in animals exposed to CIH and humans with sleep apnea.  相似文献   

10.
In the present study, we investigated the effects of inhibition of the caudal ventrolateral medulla (CVLM) with the GABA(A) agonist muscimol combined with the blockade of glutamatergic mechanism in the nucleus of the solitary tract (NTS) with kynurenic acid (kyn) on mean arterial pressure (MAP), heart rate (HR), and regional vascular resistances. In male Holtzman rats anesthetized intravenously with urethane/chloralose, bilateral injections of muscimol (120 pmol) into the CVLM or bilateral injections of kyn (2.7 nmol) into the NTS alone increased MAP to 186 +/- 11 and to 142 +/- 6 mmHg, respectively, vs. control: 105 +/- 4 mmHg; HR to 407 +/- 15 and to 412 +/- 18 beats per minute (bpm), respectively, vs. control: 352 +/- 12 bpm; and renal, mesenteric and hindquarter vascular resistances. However, in rats with the CVLM bilaterally blocked by muscimol, additional injections of kyn into the NTS reduced MAP to 88 +/- 5 mmHg and mesenteric and hindquarter vascular resistances below control baseline levels. Moreover, in rats with the glutamatergic mechanisms of the NTS blocked by bilateral injections of kyn, additional injections of muscimol into the CVLM also reduced MAP to 92 +/- 2 mmHg and mesenteric and hindquarter vascular resistances below control baseline levels. Simultaneous blockade of NTS and CVLM did not modify the increase in HR but also abolished the increase in renal vascular resistance produced by each treatment alone. The results suggest that important pressor mechanisms arise from the NTS and CVLM to control vascular resistance and arterial pressure under the conditions of the present study.  相似文献   

11.
N-methyl-d-aspartate (NMDA) and non-NMDA excitatory amino acid (EAA) receptor subtypes are involved in the integration of visceral afferent inputs within the nucleus of the solitary tract (NTS). Microinjection studies indicate interactions between nitric oxide (NO) and EAA receptors within the NTS. To examine these interactions at the single cell level, this study characterized the effects of the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) and the NO donor 3-[2-hydroxy-2-nitroso-1-propylhydrazino]-1-propanamine (PAPA-NONOate) on the excitatory responses of vagus nerve (VN)-evoked NTS neurons to the activation of (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA receptors in rats. Iontophoresis of l-NAME did not alter spontaneous or VN-evoked discharges, but significantly decreased the number of action potentials (APs) evoked by iontophoretic application of AMPA. The effects of l-NAME on NMDA-evoked discharge were variable; for the population, l-NAME did not change the number of APs evoked by NMDA. PAPA-NONOate enhanced the spontaneous discharge and the number of APs elicited by AMPA but not NMDA. Iontophoresis of the inactive enantiomers N(G)-nitro-d-arginine methyl ester and hydroxydiazenesulfonic acid 1-oxide disodium salt had no effect on AMPA-evoked discharge. Our data suggest that NO facilitates AMPA-mediated neuronal transmission within the NTS.  相似文献   

12.
Vasoconstricting prostaglandins were injected, in bolus doses, into the lower abdominal aorta on the left circumflex coronary artery (LCCA) of conscious sheep. Local blood flow, mean arterial pressure (MAP), heart rate (HR) and ECG were continuously monitored. Thromboxane B2 had no effect on either vascular bed in doses up to 100 micrograms. PGF2 alpha produced mild vasoconstriction in both vascular beds with no systemic response. The endoperoxide analogues, U-44069 and U-46619, produced complex responses in both vascular beds. Initial vasodilation was followed rapidly by prolonged vasoconstriction. In the coronary circulation, vasoconstriction was temporarily masked by a hyperaemic phase. The U-compounds also affected MAP, possibly as a result of pulmonary and systemic vasoconstriction.  相似文献   

13.
Nitric oxide (NO) is involved in cardiovascular regulation and sympathetic nerve activity of the central nervous system (CNS). The nucleus tractus solitarius (NTS) is important to cardiovascular regulation. However, the physiological role of NO in cardiovascular regulation effecting through the NTS remains unclear. The purpose of this study is to investigate the effect of NO measured by in vivo voltammetry on the cardiovascular responses in NTS induced by N-methyl-D-aspartate (NMDA) in anesthetized cats. Extracellular NO concentration was monitored through a Nafion- and porphyrin-coated carbon fiber electrode, which has previously been demonstrated sensitive and selective to NO responses. Microinjection of NMDA into NTS elicited a dose-dependent decrease in cardiovascular responses associated with NO release. Following the dose-response curve, a dose of 3 nmol of NMDA was selected. Microinjection of NMDA into NTS produced depressor responses and NO release. These responses in NTS to NMDA were attenuated by pretreatment with a competitive antagonist, 2-amino-5-phosphonopentanoat (AP-5, 1 nmol), and methylene blue (MB, 1 nmol), an inhibitor of guanylate cyclase. These results suggest that NO is formed from NMDA activation in NTS and that NO diffuses out of neurons into the nearby target neurons to produce depressor response and NO release through cyclic guanosine monophosphate (cGMP) formation. In conclusion, NO mediates depressor response consequent to activation of NMDA receptors in neurons of NTS.  相似文献   

14.
We examined the effect of alpha(2)-adrenoreceptor blockade in the nucleus of the solitary tract (NTS) on baroreflex responses elicited by electrical stimulation of the left aortic depressor nerve (ADN) in urethane-anesthetized spontaneously hypertensive rats (SHR, n = 11) and normotensive Wistar-Kyoto rats (WKY, n = 11). ADN stimulation produced a frequency-dependent decrease in mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and heart rate (HR). In SHR, unilateral microinjection of idazoxan into the NTS markedly reduced baroreflex control of MAP, RSNA, and HR and had a disproportionately greater influence on baroreflex control of MAP than of RSNA. In WKY, idazoxan microinjections did not significantly alter baroreflex function relative to control vehicle injections. These results suggest that baroreflex regulation of arterial pressure in SHR is highly dependent on NTS adrenergic mechanisms. The reflex regulation of sympathetic outflow to the kidney is less influenced by the altered alpha(2)-adrenoreceptor mechanisms in SHR.  相似文献   

15.
Exercise training (ExTr) has been associated with alterations in neural control of the circulation, including effects on arterial baroreflex function. The nucleus tractus solitarius (NTS) is the primary termination site of cardiovascular afferents and critical in the regulation of baroreflex-mediated changes in heart rate (HR) and sympathetic nervous system outflow. The purpose of the present study was to determine whether ExTr is associated with alterations in neurotransmitter regulation of neurons involved in control of cardiovascular function at the level of the NTS. We hypothesized that ExTr would increase glutamatergic and reduce GABAergic transmission in the NTS and that, collectively, these changes would result in a greater overall sympathoinhibitory drive from the NTS in ExTr animals. To test these hypotheses, male Sprague-Dawley rats were treadmill trained or maintained under sedentary conditions for 8-10 wk. NTS microinjections were performed in Inactin-anesthetized animals instrumented to record mean arterial pressure (MAP), HR, and lumbar sympathetic nerve activity (LSNA). Generalized activation of the NTS with unilateral microinjections of glutamate (1-10 mM, 30 nl) produced dose-dependent decreases in MAP, HR, and LSNA that were unaffected by ExTr. Bilateral inhibition of NTS with the GABAA agonist muscimol (1 mM, 90 nl) produced increases in MAP and LSNA that were blunted by ExTr. In contrast, pressor and sympathoexcitatory responses to bilateral microinjections of the ionotropic glutamate receptor antagonist, kynurenate (40 mM, 90 nl), were similar between groups. Bradycardic responses to bilateral microinjections of the GABAA antagonist bicuculline (0.1 mM, 90 nl) were attenuated by ExTr. These data indicate that alterations in neurotransmission at the level of the NTS contribute importantly to regulation of HR and LSNA in ExTr animals. In addition to alterations at NTS, these experiments suggest indirectly that changes in other cardiovascular nuclei contribute to the observed alterations in neural control of the circulation following ExTr.  相似文献   

16.
The cardiovascular and respiratory responses to relatively specific μ or δ agonists microinjected (0.5 μl/kg) into the region of the nucleus of tractus solitarius (NTS) were examined in anesthetized cats. Blood pressure, heart rate, and respiratory rate were monitored for 30 min after the microinjection of opioid compounds or saline vehicle. The δ agonist, (d-Ala2,d-Leu5)-enkephalin (10–100 nmol/kg) elicited dose-dependent decreases in blood pressure, heart rate, and respiratory rate which were naloxone reversible. In contrast the μ agonists, morphine (10–54 nmol/kg) and morphiceptin (100–320 nmol/kg) had no effect on blood pressure or respiratory rate; yet, naloxone elicited pressor responses in animals pretreated with these μ agonists. A receptor-binding assay demonstrated a predominance of μ sites in the NTS. These data show that the δ opiate agonist is more effective than μ agonists in modifying cardiovascular variables in the NTS; we suggest caution in relating specific cardiovascular function to receptor subtypes defined by binding assays.  相似文献   

17.
Our previous studies concluded that stimulation of the nucleus of the solitary tract (NTS) A2a receptors evokes preferential hindlimb vasodilation mainly via inducing increases in preganglionic sympathetic nerve activity (pre-ASNA) directed to the adrenal medulla. This increase in pre-ASNA causes the release of epinephrine and subsequent activation of beta-adrenergic receptors that are preferentially located in the skeletal muscle vasculature. Selective activation of NTS A1 adenosine receptors evokes variable, mostly pressor effects and increases pre-ASNA, as well as lumbar sympathetic activity, which is directed to the hindlimb. These counteracting factors may have opposite effects on the hindlimb vasculature resulting in mixed vascular responses. Therefore, in chloralose-urethane-anesthetized rats, we evaluated the contribution of vasodilator versus vasoconstrictor effects of stimulation of NTS A1 receptors on the hindlimb vasculature. We compared the changes in iliac vascular conductance evoked by microinejctions into the NTS of the selective A1 receptor agonist N6-cyclopentyladenosine (330 pmol in 50 nl volume) in intact animals with the responses evoked after beta-adrenergic blockade, bilateral adrenalectomy, bilateral lumbar sympathectomy, and combined adrenalectomy + lumbar sympathectomy. In intact animals, stimulation of NTS A1 receptors evoked variable effects: increases and decreases in mean arterial pressure and iliac conductance with prevailing pressor and vasoconstrictor effects. Peripheral beta-adrenergic receptor blockade and bilateral adrenalectomy eliminated the depressor component of the responses, markedly potentiated iliac vasoconstriction, and tended to increase the pressor responses. Lumbar sympathectomy tended to decrease the pressor and vasoconstrictor responses. After bilateral adrenalectomy plus lumbar sympathectomy, a marked vasoconstriction in iliac vascular bed still persisted, suggesting that the vasoconstrictor component of the response to stimulation of NTS A1 receptors is mediated mostly via circulating factors (e.g., vasopressin, angiotensin II, or circulating catecholamines released from other sympathetic terminals). These data strongly suggest that stimulation of NTS A1 receptors exerts counteracting effects on the iliac vascular bed: activation of the adrenal medulla and beta-adrenergic vasodilation versus vasoconstriction mediated by neural and humoral factors.  相似文献   

18.
Previously, we have shown that activation of adenosine A(2a) receptors in the subpostremal nucleus tractus solitarii (NTS) via microinjection of the selective A(2a) receptor agonist CGS-21680 elicits potent, dose-dependent decreases in mean arterial pressure and preferential, marked hindlimb vasodilation. Although A(2a) receptor activation does not change lumbar sympathetic nerve activity, it does markedly enhance the preganglionic adrenal sympathetic nerve activity, which will increase epinephrine release and could subsequently elicit hindlimb vasodilation via activation of beta(2)-adrenergic receptors. Therefore we investigated whether this hindlimb vasodilation was due to neural or humoral mechanisms. In chloralose-urethan-anesthetized male Sprague-Dawley rats, we monitored cardiovascular responses to stimulation of NTS adenosine A(2a) receptors (CGS-21680, 20 pmol/50 nl) in the intact control animals; after pretreatment with propranolol (2 mg/kg iv), a beta-adrenergic antagonist; after bilateral lumbar sympathectomy; after bilateral adrenalectomy; and after combined bilateral lumbar sympathectomy and adrenalectomy. After beta-adrenergic blockade, stimulation of NTS adenosine A(2a) receptors produced a pressor response and a hindlimb vasoconstriction. Lumbar sympathectomy reduced the vasodilation seen in the intact animals by approximately 40%, and adrenalectomy reduced it by approximately 80%. The combined sympathectomy and adrenalectomy virtually abolished the hindlimb vasodilation evoked by NTS A(2a) receptor activation. We conclude that the preferential, marked hindlimb vasodilation produced by stimulation of NTS adenosine A(2a) receptors is mediated by both the efferent sympathetic nerves directed to the hindlimb and the adrenal glands via primarily a beta-adrenergic mechanism.  相似文献   

19.
Nitric oxide (NO) in the nucleus tractus solitarii (NTS) plays an important role in regulating sympathetic nerve activity. The aims of this study were to determine whether the activation of N-methyl-D-aspartate (NMDA) receptors in the NTS facilitates the release of L-glutamate (Glu) via NO production, and, if so, to determine whether this mechanism is involved in the depressor and bradycardic responses evoked by NMDA. We measured the production of NO in the NTS as NO2- and NO3- (NO(x)) or Glu levels by in vivo microdialysis before, during, and after infusion of NMDA in anesthetized rats. We also examined effects of N(omega)-nitro-L-arginine methyl ester (L-NAME) on the changes in these levels. NMDA elicited depressor and bradycardic responses and increased the levels of NO(x) and Glu. L-NAME abolished the increases in the levels of NO(x) and Glu and attenuated cardiovascular responses evoked by NMDA. These results suggest that NMDA receptor activation in the NTS induces Glu release through NO synthesis and that Glu released via NO enhances depressor and bradycardic responses.  相似文献   

20.
The neuromodulatory effect of NO on glutamatergic transmission has been studied in several brain areas. Our previous single-cell studies suggested that NO facilitates glutamatergic transmission in the nucleus of the solitary tract (NTS). In this study, we examined the effect of the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) on glutamatergic and reflex transmission in the NTS. We measured mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) from Inactin-anesthetized Sprague-Dawley rats. Bilateral microinjections of L-NAME (10 nmol/100 nl) into the NTS did not cause significant changes in basal MAP, HR, or RSNA. Unilateral microinjection of (RS)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA, 1 pmol/100 nl) into the NTS decreased MAP and RSNA. Fifteen minutes after L-NAME microinjections, AMPA-evoked cardiovascular changes were significantly reduced. N-methyl-D-aspartate (NMDA, 0.5 pmol/100 nl) microinjection into the NTS decreased MAP, HR, and RSNA. NMDA-evoked falls in MAP, HR, and RSNA were significantly reduced 30 min after L-NAME. To examine baroreceptor and cardiopulmonary reflex function, L-NAME was microinjected at multiple sites within the rostro-caudal extent of the NTS. Baroreflex function was tested with phenylephrine (PE, 25 microg iv) before and after L-NAME. Five minutes after L-NAME the decrease in RSNA caused by PE was significantly reduced. To examine cardiopulmonary reflex function, phenylbiguanide (PBG, 8 microg/kg) was injected into the right atrium. PBG-evoked hypotension, bradycardia, and RSNA reduction were significantly attenuated 5 min after L-NAME. Our results indicate that inhibition of NOS within the NTS attenuates baro- and cardiopulmonary reflexes, suggesting that NO plays a physiologically significant neuromodulatory role in cardiovascular regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号