首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels have been reported to reduce the extent of apoptosis, the critical timing of mitoK(ATP) channel opening required to protect myocytes against apoptosis remains unclear. In the present study, we examined whether the mitoK(ATP) channel serves as a trigger of cardioprotection against apoptosis induced by oxidative stress. Apoptosis of cultured neonatal rat cardiomyocytes was determined by flow cytometry (light scatter and propidium iodide/annexin V-FITC fluorescence) and by nuclear staining with Hoechst 33342. Mitochondrial membrane potential (DeltaPsi) was measured by flow cytometry of cells stained with rhodamine-123 (Rh-123). Exposure to H(2)O(2) (500 microM) induced apoptosis, and the percentage of apoptotic cells increased progressively and peaked at 2 h. This H(2)O(2)-induced apoptosis was associated with the loss of DeltaPsi, and the time course of decrease in Rh-123 fluorescence paralleled that of apoptosis. Pretreatment of cardiomyocytes with diazoxide (100 microM), a putative mitoK(ATP) channel opener, for 30 min before exposure to H(2)O(2) elicited transient and mild depolarization of DeltaPsi and consequently suppressed both apoptosis and DeltaPsi loss after 2-h exposure to H(2)O(2). These protective effects of diazoxide were abrogated by the mitoK(ATP) channel blocker 5-hydroxydecanoate (500 microM) but not by the sarcolemmal K(ATP) channel blocker HMR-1098 (30 microM). Our results suggest for the first time that diazoxide-induced opening of mitoK(ATP) channels triggers cardioprotection against apoptosis induced by oxidative stress in rat cardiomyocytes.  相似文献   

2.
The aims of this study were to determine whether preconditioning blocks cardiocyte apoptosis and to determine the role of mitochondrial ATP-sensitive K(+) (K(ATP)) channels and the protein kinase C epsilon-isoform (PKC-epsilon) in this effect. Ventricular myocytes from 10-day-old chick embryos were used. In the control series, 10 h of simulated ischemia followed by 12 h of reoxygenation resulted in 42 +/- 3% apoptosis (n = 8). These results were consistent with DNA laddering and TdT-mediated dUTP nick-end labeling (TUNEL) assay. Preconditioning, elicited with three cycles of 1 min of ischemia separated by 5 min of reoxygenation before subjection to prolonged simulated ischemia, markedly attenuated the apoptotic process (28 +/- 4%, n = 8). The selective mitochondrial K(ATP) channel opener diazoxide (400 micromol/l), given before ischemia, mimicked preconditioning effects to prevent apoptosis (22 +/- 4%, n = 6). Pretreatment with 5-hydroxydecanoate (100 micromol/l), a selective mitochondrial K(ATP) channel blocker, abolished preconditioning (42 +/- 2%, n = 6). In addition, the effects of preconditioning and diazoxide were blocked with the specific PKC inhibitors G?-6976 (0.1 micromol/l) or chelerythrine (4 micromol/l), given at simulated ischemia and reoxygenation. Furthermore, preconditioning and diazoxide selectively activated PKC-epsilon in the particulate fraction before simulated ischemia without effect on the total fraction, cytosolic fraction, and PKC delta-isoform. The specific PKC activator phorbol 12-myristate 13-acetate (0.2 micromol/l), added during simulated ischemia and reoxygenation, mimicked preconditioning to block apoptosis. Opening mitochondrial K(ATP) channels blocks cardiocyte apoptosis via activating PKC-epsilon in cultured ventricular myocytes. Through this signal transduction, preconditioning blocks apoptosis and preserves cardiac function in ischemia-reperfusion.  相似文献   

3.
The relative role of plasmalemmal and mitochondrial ATP-sensitive K(+) (K(ATP)) channels in calcium homeostasis of the atrium is little understood. Electrically triggered (1 Hz) cytoplasmic calcium transients were measured by 340-to-380-nm wavelength fura 2 emission ratios in cultured rat atrial myocytes. CCCP, a mitochondrial protonophore (100-400 nmol/l), dose dependently reduced the transient amplitude by up to 85%, caused a slow rise in baseline calcium, and reduced the recovery time constant of the transient from 143 to 91 ms (P < 0.05). However, neither 5-hydroxydecanoate, a mitochondrial K(ATP) channel blocker, nor diazoxide (500 micromol/l) affected the amplitude, baseline, or time constant in CCCP-treated cells. HMR-1098 (30 micromol/l), a plasmalemmal K(ATP) channel blocker, and glibenclamide (1 micromol/l) increased the amplitude in CCCP-treated myocytes by 69-82%, sharply elevated the calcium baseline, and prolonged the recovery time constant to 181-193 ms (P < 0.01). Thus opening of plasmalemmal but not mitochondrial K(ATP) channels reduces the calcium overload in metabolically compromised but otherwise intact atrial myocytes. Mitochondrial K(ATP) channels probably operate through a different mechanism to afford ischemic protection.  相似文献   

4.
Protection of heart against ischemia-reperfusion injury by ischemic preconditioning and K(ATP) channel openers is known to involve the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). Brain is also protected by ischemic preconditioning and K(ATP) channel openers, and it has been suggested that mitoK(ATP) may also play a key role in brain protection. However, it is not known whether mitoK(ATP) exists in brain mitochondria, and, if so, whether its properties are similar to or different from those of heart mitoK(ATP). We report partial purification and reconstitution of a new mitoK(ATP) from rat brain mitochondria. We measured K(+) flux in proteoliposomes and found that brain mitoK(ATP) is regulated by the same ligands as those that regulate mitoK(ATP) from heart and liver. We also examined the effects of opening and closing mitoK(ATP) on brain mitochondrial respiration, and we estimated the amount of mitoK(ATP) by means of green fluorescence probe BODIPY-FL-glyburide labeling of the sulfonylurea receptor of mitoK(ATP) from brain and liver. Three independent methods indicate that brain mitochondria contain six to seven times more mitoK(ATP) per milligram of mitochondrial protein than liver or heart.  相似文献   

5.
We examined the role of the sarcolemmal and mitochondrial K(ATP) channels in a rat model of ischemic preconditioning (IPC). Infarct size was expressed as a percentage of the area at risk (IS/AAR). IPC significantly reduced infarct size (7 +/- 1%) versus control (56 +/- 1%). The sarcolemmal K(ATP) channel-selective antagonist HMR-1098 administered before IPC did not significantly attenuate cardioprotection. However, pretreatment with the mitochondrial K(ATP) channel-selective antagonist 5-hydroxydecanoic acid (5-HD) 5 min before IPC partially abolished cardioprotection (40 +/- 1%). Diazoxide (10 mg/kg iv) also reduced IS/AAR (36.2 +/- 4.8%), but this effect was abolished by 5-HD. As an index of mitochondrial bioenergetic function, the rate of ATP synthesis in the AAR was examined. Untreated animals synthesized ATP at 2.12 +/- 0.30 micromol x min(-1) x mg mitochondrial protein(-1). Rats subjected to ischemia-reperfusion synthesized ATP at 0.67 +/- 0.06 micromol x min(-1) x mg mitochondrial protein(-1). IPC significantly increased ATP synthesis to 1.86 +/- 0.23 micromol x min(-1) x mg mitochondrial protein(-1). However, when 5-HD was administered before IPC, the preservation of ATP synthesis was attenuated (1.18 +/- 0.15 micromol x min(-1) x mg mitochondrial protein(-1)). These data are consistent with the notion that inhibition of mitochondrial K(ATP) channels attenuates IPC by reducing IPC-induced protection of mitochondrial function.  相似文献   

6.
7.
It has been shown that orally administered geranylgeranylacetone (GGA), an anti-ulcer drug, induces expression of heat shock protein 72 (HSP72) and provides protection against ischemia-reperfusion in rat hearts. The underlying protective mechanisms, however, remain unknown. Mitochondria have been shown to be a selective target for heat stress-induced cardioprotection. Therefore, we hypothesized that preservation of mitochondrial function, owing to an opening of a putative channel in the inner mitochondrial membrane, the mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel, could be involved in GGA- or heat stress-induced cardioprotection against ischemia-reperfusion. Rats were treated with oral GGA or vehicle. Twenty-four hours later, each heart was isolated and perfused with a Langendorff apparatus. GGA-treated hearts showed better functional recovery, and less creatine kinase was released during a 30-min reperfusion period, after 20 min of no-flow ischemia. Concomitant perfusion with 5-hydroxydecanoate (5-HD, 100 microM) or glibenclamide (10 microM) abolished the GGA-induced cardioprotective effect. GGA also showed preserved mitochondrial respiratory function, isolated at the end of the reperfusion period, which was abolished with 5-HD treatment. GGA prevented destruction of the mitochondrial structure by ischemia-reperfusion, as shown by electron microscopy. In cultured cardiomyocytes, GGA induced HSP72 expression and resulted in less damage to cells, including less apoptosis in response to hypoxia-reoxygenation. Treatment with 5-HD abolished the GGA-induced cardioprotective effects but did not affect HSP72 expression. Our results indicate that preserved mitochondrial respiratory function, owing to GGA-induced HSP72 expression, may, at least in part, have a role in cardioprotection against ischemia-reperfusion. These processes may involve opening of the mitoK(ATP) channel.  相似文献   

8.
Role of the mitochondrial ATP-sensitive K+ channels in cardioprotection   总被引:9,自引:0,他引:9  
The mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel was discovered more than a decade ago. Since then, several pharmacological studies have identified agents that target this channel some of which selectively target mitoK(ATP). These and other studies have also suggested that mitoK(ATP) plays a key role in the process of ischemic preconditioning (IPC) and prevention of apoptosis. The mechanism by which mitoK(ATP) exerts its protective effects is unclear, however, changes in mitochondrial Ca(2+) uptake and levels of reactive oxygen species, and mitochondrial matrix swelling are believed to be involved. Despite major advances, several important issues regarding mitoK(ATP) remain unanswered. These questions include, but are not limited to: the molecular structure of mitoK(ATP), the downstream and upstream mechanisms that leads to IPC and cell death, and the pharmacological profile of the channel. This review attempts to provide an up-to-date overview of the role of mitoK(ATP) in cardioprotection.  相似文献   

9.
In previous study we demonstrated the presence of ATP-sensitive potassium current in the inner mitochondrial membrane, which was sensitive to diazoxide and glybenclamide, in mitochondria isolated from the rat uterus. This current was supposed to be operated by mitochondrial ATP-sensitive potassium channel (mitoK(ATP)). Regulation of the mitoK(ATP) in uterus cells is not studied well enough yet. It is well known that the reactive oxygen species (ROS) can play a dual role. They can damage cells in high concentrations, but they can also act as messengers in cellular signaling, mediating survival of cells under stress conditions. ROS are known to activate mitoK(ATP) during the oxidative stress in the brain and heart, conferring the protection of cells. The present study examined whether ROS mediate the mitoK(ATP) activation in myometrium cells. Oxidative stress was induced by rotenone. ROS generation was measured by 2',7'-dichlorofluorescin diacetate. The massive induction of ROS production was demonstrated in the presence of rotenone. Hyperpolarization of the mitochondrial membrane was also detected with the use of the potential-sensitive dye DiOC6 (3,3'-dihexyloxacarbocyanine iodide). Diazoxide, a selective activator of mitoK(ATP), depolarized mitochondrial membrane either under oxidative stress or under normal conditions, while mitoK(ATP) blocker glybenclamide effectively restored mitochondrial potential in rat myocytes. Estimated value for diazoxide to mitoK(ATP) under normoxia was four times higher than under oxidative stress conditions: 5.01 +/- 1.47-10(-6) M and 1.24 +/- 0.21 x 10(-6) M respectively. The ROS scavenger N-acetylcysteine (NAC) successfully eliminates depolarization of mitochondrial membrane by diazoxide under oxidative stress. These results suggest that elimination of ROS by NAC prevents the activation of mitoK(ATP) under oxidative stress. Taking into account the higher affinity of diazoxide to mitoK(ATP) under stress conditions than under normoxia, we conclude that the oxidative stress conditions are more favourable than normoxia for the activation of mitoK(ATP). Thus we hypothesize that the ROS regulate the activity of the mitoK(ATP) in myocytes.  相似文献   

10.
Recent studies have suggested that apoptosis and necrosis share common features in their signaling pathway and that apoptosis requires intracellular ATP for its mitochondrial/apoptotic protease-activating factor-1 suicide cascade. The present study was, therefore, designed to examine the role of intracellular energy levels in determining the form of cell death in cardiac myocytes. Neonatal rat cardiac myocytes were first incubated for 1 h in glucose-free medium containing oligomycin to achieve metabolic inhibition. The cells were then incubated for another 4 h in similar medium containing staurosporine and graded concentrations of glucose to manipulate intracellular ATP levels. Under ATP-depleting conditions, the cell death caused by staurosporine was primarily necrotic, as determined by creatine kinase release and nuclear staining with ethidium homodimer-1. However, under ATP-replenishing conditions, staurosporine increased the percentage of apoptotic cells, as determined by nuclear morphology and DNA fragmentation. Caspase-3 activation by staurosporine was also ATP dependent. However, loss of mitochondrial transmembrane potential (DeltaPsi(m)), Bax translocation, and cytochrome c release were observed in both apoptotic and necrotic cells. Moreover, cyclosporin A, an inhibitor of mitochondrial permeability transition, attenuated staurosporine-induced apoptosis and necrosis through the inhibition of DeltaPsi(m) reduction, cytochrome c release, and caspase-3 activation. Our data therefore suggest that staurosporine induces cell demise through a mitochondrial death signaling pathway and that the presence of intracellular ATP favors a shift from necrosis to apoptosis through caspase activation.  相似文献   

11.
二氮嗪在长时程心脏低温保存中的作用   总被引:7,自引:1,他引:6  
Guo W  Shen YL  Chen YY  Hu ZB  Yan ZK  Xia Q 《生理学报》2004,56(5):632-638
延长心脏的体外有效保存时间对临床心脏移植具有重要意义。本文旨在研究线粒体ATP敏感性钾通道开放剂二氮嗪(diazoxide,DE)在离体大鼠心脏长时程低温保存中的作用。SD大鼠随机分成5组,包括对照组(单纯Celsior保存液),DE组(Celsior液中含15、30或45μmol/L的DE)和DE 5-HD组[Celsior液中含30μmol/L的DE和100μmol/L的5-羟基葵酸盐(5-hydroxydecanoate,5-HD)]。利用Langendorff离体鼠心灌注法,观察心脏在4℃条件下保存10h后,复灌期血流动力学恢复、冠脉流出液中心肌酶漏出量及心肌水含量变化,并做心肌超微结构检查。结果显示:与对照组比较,DE处理后,复灌期的左心室舒张末期压力明显降低,心率、左心室发展压、左心室压力变化率、冠脉流出量等的恢复率在多个复灌时间点上优于对照组,且能显著减少复灌过程中心肌酶(乳酸脱氢酶、磷酸肌酸激酶及谷草转氨酶)的漏出量,降低心肌水含量;其中30和45μmol/LDE组的保护作用优于15μmol/LDE组;电镜结果显示DE对长时程低温保存心脏的超微结构有较好的保护作用。DE的上述作用可被线粒体ATP敏感性钾通道的特异性阻断剂5-HD所取消。以上结果提示:DE可通过激活线粒体ATP敏感性钾通道显著改善离体大鼠心脏长时程低温保存效果。  相似文献   

12.
Ultraviolet radiation (UV) induces cell damages leading to skin photoaging and skin cancer. ATP-sensitive potassium (K(ATP)) channel openers (KCOs) have been shown to exert significant myocardial preservation and neuroprotection in vitro and in vivo, and yet the potential role of those KCOs in protection against UV-induced skin cell damage is unknown. We investigated the effects of pinacidil and diazoxide, two classical KCOs, on UV-induced cell death using cultured human keratinocytes (HaCat cells). Here, we demonstrated for the first time that Kir 6.1, Kir 6.2 and SUR2 subunits of K(ATP) channels are functionally expressed in HaCaT cells and both non-selective K(ATP) channel opener pinacidil and mitoK(ATP) (mitochondrial K(ATP)) channel opener diazoxide attenuated UV-induced keratinocytes cell death. The protective effects were abolished by both non-selective K(ATP) channel blocker glibenclamide and selective mitoK(ATP) channel blocker 5-hydroxydecanoate (5-HD). Also, activation of K(ATP) channel with pinacidil or diazoxide resulted in suppressive effects on UV-induced MAPK activation and reactive oxygen species (ROS) production. Unexpectedly, we found that the level of intracellular ROS was slightly elevated in HaCaT cells when treated with pinacidil or diazoxide alone. Furthermore, UV-induced mitochondrial membrane potential loss, cytochrome c release and ultimately apoptotic cell death were also inhibited by preconditioning with pinacidil and diazoxide, and their effects were reversed by glibenclamide and 5-HD. Taken together, we contend that mitoK(ATP) is likely to contribute the protection against UV-induced keratinocytes cell damage. Our findings suggest that K(ATP) openers such as pinacidil and diazoxide may be utilized to prevent from UV-induced skin aging.  相似文献   

13.
The relative roles of mitochondrial (mito) ATP-sensitive K(+) (mitoK(ATP)) channels, protein kinase C (PKC), and adenosine kinase (AK) in adenosine-mediated protection were assessed in Langendorff-perfused mouse hearts subjected to 20-min ischemia and 45-min reperfusion. Control hearts recovered 72 +/- 3 mmHg of ventricular pressure (50% preischemia) and released 23 +/- 2 IU/g lactate dehydrogenase (LDH). Adenosine (50 microM) during ischemia-reperfusion improved recovery (149 +/- 8 mmHg) and reduced LDH efflux (5 +/- 1 IU/g). Treatment during ischemia alone was less effective. Treatment with 50 microM diazoxide (mitoK(ATP) opener) during ischemia and reperfusion enhanced recovery and was equally effective during ischemia alone. A(3) agonism [100 nM 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide], A(1) agonism (N(6)-cyclohexyladenosine), and AK inhibition (10 microM iodotubercidin) all reduced necrosis to the same extent as adenosine, but less effectively reduced contractile dysfunction. These responses were abolished by 100 microM 5-hydroxydecanoate (5-HD, mitoK(ATP) channel blocker) or 3 microM chelerythrine (PKC inhibitor). However, the protective effects of adenosine during ischemia-reperfusion were resistant to 5-HD and chelerythrine and only abolished when inhibitors were coinfused with iodotubercidin. Data indicate adenosine-mediated protection via A(1)/A(3) adenosine receptors is mitoK(ATP) channel and PKC dependent, with evidence for a downstream location of PKC. Adenosine provides additional and substantial protection via phosphorylation to 5'-AMP, primarily during reperfusion.  相似文献   

14.
The mitochondrial ATP-sensitive K+ channel (mitoK(ATP)) has been assigned multiple roles in cell physiology and in cardioprotection. Each of these roles must arise from basic consequences of mitoK(ATP) opening that should be observable at the level of the mitochondrion. MitoK(ATP) opening has been proposed to have three direct effects on mitochondrial physiology: an increase in steady-state matrix volume, respiratory stimulation (uncoupling), and matrix alkalinization. Here, we examine the evidence for these hypotheses through experiments on isolated rat heart mitochondria. Using perturbation techniques, we show that matrix volume is the consequence of a steady-state balance between K+ influx, caused either by mitoK(ATP) opening or valinomycin, and K+ efflux caused by the mitochondrial K+/H+ antiporter. We show that increasing K+ influx with valinomycin uncouples respiration like a classical uncoupler with the important difference that uncoupling via K+ cycling soon causes rupture of the outer mitochondrial membrane and release of cytochrome c. By loading the potassium binding fluorescent indicator into the matrix, we show directly that K+ influx is increased by diazoxide and inhibited by ATP and 5-HD. By loading the fluorescent probe BCECF into the matrix, we show directly that increasing K+ influx with either valinomycin or diazoxide causes matrix alkalinization. Finally, by comparing the effects of mitoK(ATP) openers and blockers with those of valinomycin, we show that four independent assays of mitoK(ATP) activity yield quantitatively identical results for mitoK(ATP)-mediated K+ transport. These results provide decisive support for the hypothesis that mitochondria contain an ATP-sensitive K+ channel and establish the physiological consequences of mitoK(ATP) opening for mitochondria.  相似文献   

15.
After cardiac ischemia, long-chain fatty acids, such as palmitate, increase in plasma and heart. Palmitate has previously been shown to cause apoptosis in cardiac myocytes. Cultured neonatal rat cardiac myocytes were studied to assess mitochondrial alterations during apoptosis. Phosphatidylserine translocation and caspase 3-like activity confirmed the apoptotic action of palmitate. Cytosolic cytochrome c was detected at 8 h and plateaued at 12 h. The mitochondrial membrane potential (DeltaPsi) in tetramethylrhodamine ethyl ester-loaded cardiac myocytes decreased significantly in individual mitochondria by 8 h. This loss was heterogeneous, with a few energized mitochondria per myocyte remaining at 24 h. Total ATP levels remained high at 16 h. The DeltaPsi loss was delayed by cyclosporin A, a mitochondrial permeability transition inhibitor. Mitochondrial swelling accompanied changes in DeltaPsi. Carnitine palmitoyltransferase I activity fell at 16 h; this decline was accompanied by ceramide increases that paralleled decreased complex III activity. We conclude that carnitine palmitoyltransferase I inhibition, ceramide accumulation, and complex III inhibition are downstream events in cardiac apoptosis mediated by palmitate and occur independent of events leading to caspase 3-like activation.  相似文献   

16.
Diazoxide opening of the mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel protects the heart against ischemia-reperfusion injury by unknown mechanisms. We investigated the mechanisms by which mitoK(ATP) channel opening may act as an end effector of cardioprotection in the perfused rat heart model, in permeabilized fibers, and in rat heart mitochondria. We show that diazoxide pretreatment preserves the normal low outer membrane permeability to nucleotides and cytochrome c and that these beneficial effects are abolished by the mitoK(ATP) channel inhibitor 5-hydroxydecanoate. We hypothesize that an open mitoK(ATP) channel during ischemia maintains the tight structure of the intermembrane space that is required to preserve the normal low outer membrane permeability to ADP and ATP. This hypothesis is supported by findings in mitochondria showing that small decreases in intermembrane space volume, induced by either osmotic swelling or diazoxide, increased the half-saturation constant for ADP stimulation of respiration and sharply reduced ATP hydrolysis. These effects are proposed to lead to preservation of adenine nucleotides during ischemia and efficient energy transfer upon reperfusion.  相似文献   

17.
We showed recently that mitochondrial ATP-dependent K(+) channel (mitoK(ATP)) opening is required for the inotropic response to ouabain. Because mitoK(ATP) opening is also required for most forms of cardioprotection, we investigated whether exposure to ouabain was cardioprotective. We also began to map the signaling pathways linking ouabain binding to Na(+)-K(+)-ATPase with the opening of mitoK(ATP). In Langendorff-perfused rat hearts, 10-80 microM ouabain given before the onset of ischemia resulted in cardioprotection against ischemia-reperfusion injury, as documented by an improved recovery of contractile function and a reduction of infarct size. In skinned cardiac fibers, a ouabain-induced protection of mitochondrial outer membrane integrity, adenine nucleotide compartmentation, and energy transfer efficiency was evidenced by a decreased release of cytochrome c and preserved half-saturation constant of respiration for ADP and adenine nucleotide translocase-mitochondrial creatine kinase coupling, respectively. Ouabain-induced positive inotropy was dose dependent over the range studied, whereas ouabain-induced cardioprotection was maximal at the lowest dose tested. Compared with bradykinin (BK)-induced preconditioning, ouabain was equally efficient. However, the two ligands clearly diverge in the intracellular steps leading to mitoK(ATP) opening from their respective receptors. Thus BK-induced cardioprotection was blocked by inhibitors of cGMP-dependent protein kinase (PKG) or guanylyl cyclase (GC), whereas ouabain-induced protection was not blocked by either agent. Interestingly, however, ouabain-induced inotropy appears to require PKG and GC. Thus 5-hydroxydecanoate (a selective mitoK(ATP) inhibitor), N-(2-mercaptopropionyl)glycine (MPG; a reactive oxygen species scavenger), ODQ (a GC inhibitor), PP2 (a src kinase inhibitor), and KT-5823 (a PKG inhibitor) abolished preconditioning by BK and blocked the inotropic response to ouabain. However, only PP2, 5-HD, and MPG blocked ouabain-induced cardioprotection.  相似文献   

18.
We tested the hypothesis whether calcium preconditioning (CPC) reduces reoxygenation injury by inhibiting mitochondrial permeability transition (MPT). Cultured myocytes were preconditioned by a brief exposure to 1.5 mM calcium (CPC) and subjected to 3 h of anoxia followed by 2 h of reoxygenation (A-R). Myocytes were also treated with 0.2 microM/l cyclosporin A (CsA), an inhibitor of MPT, before A-R. A significant increase of viable cells and reduced lactate dehydrogenase release was observed both in CPC- and CsA-treated myocytes compared with the A-R group. Cytochrome c release was predominantly observed in the cytoplasm of myocytes in the A-R group in contrast with CPC- or CsA-treated groups, where it was restricted only to mitochondria. Similarly, the cell death by apoptosis was also markedly attenuated in these groups. Electron-dense Ca(2+) deposits in mitochondria were also less frequent. Atractyloside (20 microM/l), an adenine nucleotide translocase inhibitor, caused changes similar to those in the A-R group, suggesting a role of MPT in A-R injury. Protection by inhibition of MPT by CsA and CPC suggests that MPT plays an important role in reoxygenation/reperfusion injury. The data further suggest that preconditioning inhibits MPT by inhibiting Ca(2+) accumulation by mitochondria.  相似文献   

19.
Bax, a pro-apoptotic member of the Bcl-2 family, is a cytosolic protein that inserts into mitochondrial membranes upon induction of cell death. Using the green fluorescent protein fused to Bax (GFP-Bax) to quantitate mitochondrial binding in living cells we have investigated the cause of Bax association with mitochondria and the time course relative to endogenous and induced changes in mitochondrial membrane potential (DeltaPsi(m)). We have found that staurosporine (STS) induces a loss in DeltaPsi(m) before GFP-Bax translocation can be measured. The onset of the DeltaPsi(m) loss is followed by a rapid and complete collapse of DeltaPsi(m) which is followed by Bax association with mitochondria. The mitochondria uncoupler FCCP, in the presence of the F(1)-F(0) ATPase inhibitor oligomycin, can trigger Bax translocation to mitochondria suggesting that when ATP levels are maintained a collapse of DeltaPsi(m) induces Bax translocation. Neither FCCP nor oligomycin alone alters Bax location. Bax association with mitochondria is also triggered by inhibitors of the electron transport chain, antimycin and rotenone, compounds that collapse DeltaPsi(m) without inducing rapid ATP hydrolysis that typically occurs with uncouplers such as FCCP. Taken together, our results suggest that alterations in mitochondrial energization associated with apoptosis can initiate Bax docking to mitochondria.  相似文献   

20.
Zhu LP  Yu XD  Ling S  Brown RA  Kuo TH 《Cell calcium》2000,28(2):107-117
Using distinct models of apoptosis and necrosis, we have investigated the effect of mitochondrial Ca(2+)(Ca(m)) homeostasis in the regulation of cell death in neuroblastoma cells as well as cardiac myocytes. The steady state level of Ca(m)was determined as the FCCP-releasable Ca(2+). Culturing cells with low concentration of extracellular Ca(2+)(Ca(o)) or with EGTA triggered an early reduction in both the Ca(m)store and the membrane potential (DeltaPsi(m)). This was followed by the detection of cytochrome c release, caspase activation, and apoptosis. Inhibitors of the mitochondrial permeability transition pore such as cyclosporin A and Bcl-2 blocked the release of Ca(m)and inhibited apoptosis. In contrast, mitochondrial Ca(2+)overload resulted in necrotic cell death. Culturing cells in the presence of excess Ca(o)led to increased Ca(m)load together with a decrease of DeltaPsi(m)that reached maximum at 1 h, with necrosis occurring at 2 h. While the decline of Ca(m)and DeltaPsi(m)was a coupled reaction for apoptosis, this relationship was uncoupled during necrosis. Clonazepam, a relatively specific inhibitor of the mitochondrial Na/Ca exchanger, was able to protect the cells from necrosis by reducing Ca(m)overload. Importantly, combination of clonazepam and cyclosporin showed a cooperative effect in further reducing the Ca(m)overload and abolished cell death. The data imply the participation of Ca(m)homeostasis in the regulation of apoptosis and necrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号