首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Remarkable changes occur in the mammalian skeleton prior to, during and after the reproductive cycle. Skeletal changes occur with ovarian maturation and initiation of menses and estrus in adolescence, which may result in a greater accumulation of skeletal mineral in the female vs the male skeleton. There is also some evidence to suggest an excess skeletal mass in young female experimental animals. In early pregnancy, growth, modeling and perhaps suppressed remodeling promote the accumulation of calcium. Some changes may also occur with the transition from pituitary to placental control of the pregnancy. In later pregnancy, an increase in bone turnover appears to coincide with fetal skeletal mineralization. Rapid and important changes occur in the skeleton and mineral metabolism in the transition from pregnancy to lactation as the mammary gland rather than the uterus draws on the maternal calcium stores. Lactational demands are met at least partially by a temporary demineralization of the skeleton, which is associated with increased bone modeling and remodeling. Endochondral growth almost ceases during lactation, but envelope-specific bone modeling and remodeling are greatly increased. This is generally associated with a loss of skeletal mass and density, more apparent at sites with less of a mechanical role (e.g. central metaphysis regions and the endocortical envelope). The post-lactational period is profoundly anabolic with substantial increases in bone formation, but blunted resorption at almost all skeletal envelopes. Skeletal mass is increased during this period and it is associated with improved skeletal mechanical properties. There are several important observations. 1) The nulliparous animal appears to have an excess skeletal mass to perhaps compensate for maternal metabolic inefficiency of the first reproductive cycle. 2) Changes in growth, modeling and remodeling occur at different times and at different skeletal envelopes during the reproductive cycle. These site-specific, temporal changes appear to be adaptations that facilitate the use of skeletal mineral while preserving mechanical competence. 3) After the first reproductive cycle, modeling and remodeling optimize the existing skeletal mass into a structure that better accommodates the prevailing mechanical environment. 4) The post-lactational period is profoundly anabolic and may provide new strategies for preservation of skeletal mass when reproductive capacity ceases.  相似文献   

2.
There are substantial changes in skeletal and mineral metabolism during pregnancy and lactation. The purpose of this study was to determine the changes in intracortical bone remodeling and turnover during lactation in beagle dogs. A femur and rib were obtained from dogs near the end of lactation or soon after weaning and compared with nonlactating controls. Rib cortical bone had much higher bone turnover rates than did femoral diaphyseal cortical bone. The number of single-labeled osteons and the number of resorption spaces were significantly greater during lactation in both the rib and the femur. Additionally, the mineral apposition rate, basic multicellular unit activation frequency, and bone turnover rates were greater in the femoral cortical bone from the lactating dogs than from the controls. These data demonstrate that during lactation, intracortical bone remodeling increases, and this may provide a mechanism for the skeleton to be responsive to the calcium requirements of the mother. In addition, these data may help explain the transient decreases in cortical bone mineral density that are reported to occur during human lactation.  相似文献   

3.
Osteoporosis most commonly affects postmenopausal women. Although men are also affected, women over 65 are 6 times more likely to develop osteoporosis than men of the same age. This is largely due to accelerated bone remodeling after menopause; however, the peak bone mass attained during young adulthood also plays an important role in osteoporosis risk. Multiple studies have demonstrated sexual dimorphisms in peak bone mass, and additionally, the female skeleton is significantly altered during pregnancy/lactation. Although clinical studies suggest that a reproductive history does not increase the risk of developing postmenopausal osteoporosis, reproduction has been shown to induce long-lasting alterations in maternal bone structure and mechanics, and the effects of pregnancy and lactation on maternal peak bone quality are not well understood. This study compared the structural and mechanical properties of male, virgin female, and post-reproductive female rat bone at multiple skeletal sites and at three different ages. We found that virgin females had a larger quantity of trabecular bone with greater trabecular number and more plate-like morphology, and, relative to their body weight, had a greater cortical bone size and greater bone strength than males. Post-reproductive females had altered trabecular microarchitecture relative to virgins, which was highly similar to that of male rats, and showed similar cortical bone size and bone mechanics to virgin females. This suggests that, to compensate for future reproductive bone losses, females may start off with more trabecular bone than is mechanically necessary, which may explain the paradox that reproduction induces long-lasting changes in maternal bone without increasing postmenopausal fracture risk.  相似文献   

4.
Nutrition during pregnancy and lactation could exert a key role not only on maternal bone, but also could influence the skeletal development of the offspring. This study was performed in rats to assess the relationship between maternal dietary intake of prebiotic oligofructose-enriched inulin and its role in bone turnover during gestation and lactation, as well as its effect on offspring peak bone mass/architecture during early adulthood. Rat dams were fed either with standard rodent diet (CC group), calcium-fortified diet (Ca group), or prebiotic oligofructose-enriched inulin supplemented diet (Pre group), during the second half of gestation and lactation. Bone mineral density (BMD) and content (BMC), as well as micro-structure of dams and offspring at different stages were analysed. Dams in the Pre group had significantly higher trabecular thickness (Tb.Th), trabecular bone volume fraction (BV/TV) and smaller specific bone surface (BS/BV) of the tibia in comparison with CC dams. The Pre group offspring during early adulthood had an increase of the lumbar vertebra BMD when compared with offspring of CC and Ca groups. The Pre group offspring also showed significant increase versus CC in cancellous and cortical structural parameters of the lumbar vertebra 4 such as Tb.Th, cortical BMD and decreased BS/BV. The results indicate that oligofructose-enriched inulin supplementation can be considered as a plausible nutritional option for protecting against maternal bone loss during gestation and lactation preventing bone fragility and for optimizing peak bone mass and architecture of the offspring in order to increase bone strength.  相似文献   

5.
Alteration in biochemical markers of bone turnover and bone mineral density (BMD) of whole body and isolated femur and tibia in relation to age, estrous cycle, pregnancy and lactation and suitability of use of rat as model for studies on pathophysiology of bone and therapeutic measures for its management were investigated. Immature rats (1, 1.5 and 2 month of age; weighing, respectively, 39.3 ± 1.0, 67.8 ± 2.4 and 87.2 ± 5.2 g) exhibited high rate of bone turnover, as evidenced by high serum osteocalcin and alkaline phosphatase and urine calcium/creatinine ratio. However, their BMD (whole body or of isolated long bones) was below measurable levels. Marked increase in body weight at 3 months (185.5 ± 5.2 g) was associated with low serum osteocalcin and alkaline phosphatase and urine calcium/creatinine ratio. Biochemical markers and BMD attained at puberty at 3 months were maintained until 36 month of age. No significant change in serum calcium was observed with increasing age or on any of the biomarkers during estrous cycle, and BMD of femur and tibia isolated during proestrus and diestrus stages was almost similar. Onset of pregnancy was associated with significant increase in serum total alkaline phosphatase and osteocalcin levels, but serum calcium, urine calcium/creatinine ratio or BMD of whole body or isolated long bones were not significantly different from that at proestrus stage. No marked change, except increase in body weight (P < 0.05), was also evident in these parameters between days 5 and 19 of pregnancy, irrespective of number of implantations in the uterus. A significant decrease in BMD of isolated femur (neck and mid-shaft regions) was observed on days 5 and 21 of lactation as compared to that during pregnancy or diestrus/proestrus stages of estrous cycle; the decrease being almost similar in females lactating two or six young ones. BMD of isolated tibia (global and region proximal to tibio-fibular separation point), though generally lower than that during cycle and pregnancy, was statistically non-significant. However, clear evidence of occurrence of osteoporosis during lactation, with decrease in BMD of >2.5 × S.D. in isolated femur (global, neck and mid-shaft) as well as tibia (global) was observed only when BMD data was analysed on T-/Z-score basis. Serum biochemical markers of bone turnover, too, were significantly increased in comparison to cyclic rats. Findings demonstrate marked increase in body weight and bone turnover during first 3 months of age, direct correlation between peak bone mass and onset of puberty at 3 months of age and increase in bone resorption rate during lactation. Finding of the study while might suggests possible use of rat as useful model for studies on bone turnover rate during lactation and post-weaning periods and extrapolation of the result to the human situation, but not in relation to ageing.  相似文献   

6.
Maternal skeletal mineral lost during lactation is rapidly restored after weaning. The purposes of this study were to determine when increases of bone formation occur after weaning, whether the expanding osteoblast population is derived from proliferating progenitors, and to relate these skeletal changes to known endocrine events at weaning. Female rats were allowed to complete one reproductive cycle. Half of these rats were mated a second time and allowed to lactate for 20 days. The other half served as an age-matched, normal estrus cycling comparison group. One day after weaning, the dams and their comparison group were given four injections of bromodeoxyuridine (BrdU) at 8-h intervals. Indices of bone formation and the kinetics of BrdU-labeled cells were measured in lumbar vertebral cancellous bone. At 2 days after weaning, cancellous bone formation rates were substantially greater than those in the nonmated rats. Indices of bone formation more than doubled from the second to seventh day after weaning. At 25 h after the first BrdU injection in the postweaned rats, considerable numbers of labeled cells were observed on or near the bone surface, with about 17% of the osteoblast population labeled. Labeled osteoblasts peaked at 20%-24% compared with 4% in the normal estrus cycling group. Immediately following weaning, there is a profound increase in the osteoblast population in maternal cancellous bone. Many, if not most of these newly formed osteoblasts were derived from proliferating progenitors. It is possible that the endocrine milieu of lactation expands or primes the osteoprogenitor pool for this rapid anabolic phase.  相似文献   

7.
1. The expressed and total (completely dephosphorylated) activities of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase were measured in microsomal fractions isolated from cold-clamped liver samples from female rats in various stages of the reproductive cycle. 2. There was little change in total HMG-CoA reductase activity during pregnancy and early lactation, but after 2 days post partum there was a marked increase in total activity. 3. The expressed/total activity ratio of HMG-CoA reductase showed a profound decrease during the last 2 days of pregnancy. The fraction of the enzyme in the active form increased progressively during the first 2 days of lactation. 4. The combined effect of these changes was that the expressed activity of HMG-CoA reductase changed in parallel with the known changes in the hepatic rate of cholesterogenesis during pregnancy and lactation in vivo.  相似文献   

8.
The purpose of the present study was to compare the effects of alendronate and alfacalcidol on cancellous and cortical bone mass and bone mechanical properties in ovariectomized rats. Twenty-six female Sprague-Dawley rats, 7 months of age, were randomized by the stratified weight method into four groups: the sham-operated control (Sham) group and the three ovariectomy (OVX) groups, namely, OVX + vehicle, OVX + alendronate (2.5 mg/kg, p.o., daily), and OVX + alfacalcidol (0.5 mug/kg, p.o., daily). At the end of the 8-week experimental period, bone histomorphometric analyses of cancellous bone at the proximal tibial metaphysis and cortical bone at the tibial diaphysis were performed, and the mechanical properties of the femoral distal metaphysis and femoral diaphysis were evaluated. OVX decreased cancellous bone volume per total tissue volume (BV/TV), and the maximum load of the femoral distal metaphysis, as a result of increases in serum osteocalcin (OC) levels, and also the number of osteoclasts (N.Oc), osteoclast surface (OcS) and bone formation rate (BFR) per bone surface (BS), and BFR/BV, without any effect on cortical area (Ct Ar), or maximum load of the femoral diaphysis. Alendronate prevented this decrease in cancellous BV/TV by suppressing increases in N.Oc/BS, OcS/BS, BFR/BS, and BFR/BV, without any apparent effect on Ct Ar, or maximum load of the femoral distal metaphysis and femoral diaphysis. On the other hand, alfacalcidol increased cancellous BV/TV, Ct Ar, and the maximum load of the femoral distal metaphysis and femoral diaphysis, by mildly decreasing trabecular BFR/BV, maintaining trabecular mineral apposition rate and osteoblast surface per BS, increasing periosteal and endocortical BFR/BS, and preventing an increase in endocortical eroded surface per BS. The present study clearly showed the differential skeletal effects of alendronate and alfacalcidol in ovariectomized rats. Alendronate prevented OVX-induced cancellous bone loss by suppressing bone turnover, while alfacalcidol improved cancellous and cortical bone mass and bone strength by suppressing bone resorption and maintaining or even increasing bone formation.  相似文献   

9.
To gain information on possible hormonal correlates, the aggressive behavior of intact female hamsters towards males was observed at various times during the estrous cycle, pseudopregnancy, pregnancy, and lactation. For methodological information, estrous cycle females also were tested after varying periods of social isolation. It was found that pregnant and especially lactating hamsters were more aggressive than pseudopregnant or estrous cycling females. Comparisons of days within each reproductive condition showed that aggression tended to be higher on certain days: the day preceding behavioral estrus of the estrous cycle, Day 10 of pregnancy, and the first 5 days of lactation. Except for pseudopregnancy, sexual behavior unaccompanied by aggression occurred at some time during all reproductive conditions, and both sexual behavior and aggression were found to occur together on Day 10 of pregnancy and Day 1 of lactation. The changes in aggressive behavior associated with reproductive states were attributed to increased male interest, inhibition by ovarian hormones, and facilitation by prolactin. Increasing periods of social isolation also were found to be associated with increased aggression. It was suggested that this effect, too. might have been due to increased prolactin levels.  相似文献   

10.
Apparent age-related bone loss among adult female Gombe chimpanzees   总被引:1,自引:0,他引:1  
Apparent age-related bone loss among adult females was observed in a skeletal sample derived from the free-ranging Gombe chimpanzee population of Tanzania. Photon absorptiometric and computed tomographic bone scans indicated that, as in humans, bone was lost from the endosteal surface, but, in contrast to humans, more bone was lost from cortical sites than from cancellous sites. The etiology of this bone loss may be related to a number of factors, including hormonal changes, nutritional inadequacy, and decreased physical activity late in life coupled with the demands of pregnancy and lactation.  相似文献   

11.
Coprophagy in female mice was observed predominantly in the reproductive stage. Female mice exhibited coprophagy more frequently during pregnancy and ingested larger amounts of feces during pregnancy and lactation than when they were not pregnant. Feces were found to be rich in vitamin B12 and folic acid. However, there were no marked fluctuations in the levels of either vitamin in the feces during pregnancy or lactation as compared with levels when animals were not pregnant. Acceleration of coprophagy during pregnancy and lactation seemed to correlate with the increased nutritional requirements of females during the reproductive stage.  相似文献   

12.
Serum inhibin levels were measured by heterologous RIA during pregnancy, lactation, and the post-weaning estrous cycle in the rat and correlated with changes in serum FSH and LH and prolactin. Blood was serially collected by cardiac puncture under light ether anesthesia from adult Sprague-Dawley rats on alternate days throughout the experimental period. For the first 8 days of pregnancy, immunoreactive inhibin levels remained high, then gradually decreased to reach a nadir at Day 16, and subsequently rose steeply until parturition. The pattern of serum immunoreactive inhibin levels during early pregnancy does not support a corpus luteum source and the dramatic rise from Day 16 to Day 22 correlates with the recommencement of follicular development in the ovary. Inhibin levels decreased rapidly on the day after birth and were suppressed until Day 8 of lactation, slowly increasing thereafter to reach a plateau from Day 14 until weaning (Day 22.5 of lactation). These changes in inhibin levels positively correlated with LH and FSH and negatively with prolactin, and are consistent with an ovarian source for inhibin associated with the recommencement of follicular development resulting from the diminution of the suckling stimulus. Immediately after weaning, serum immunoreactive inhibin levels showed a 4-day cyclic pattern corresponding to the estrous cycle identified by vaginal smear. Inhibin levels peaked on the day of proestrus, reached a nadir on the day of estrus, and rose slowly during metestrus and diestrus to a new peak at proestrus. Serum FSH levels showed an inverse correlation to inhibin levels consistent with a feedback relationship with inhibin.  相似文献   

13.
Prologned spaceflight results in bone loss in astronauts, but there is considerable individual variation. The goal of this rat study was to determine whether gender influences bone loss during simulated weightlessness. Six-month-old Fisher 344 rats were hindlimb unweighted for 2 wk, after which the proximal tibiae were evaluated by histomorphometry. There were gender differences in tibia length, bone area, cancellous bone architecture, and bone formation. Compared with female rats, male rats had an 11.6% longer tibiae, a 27.8% greater cortical bone area, and a 37.6% greater trabecular separation. Conversely, female rats had greater cortical (316%) and cancellous (145%) bone formation rates, 28.6% more cancellous bone, and 30% greater trabecular number. Hindlimb unweighting resulted in large reductions in periosteal bone formation and mineral apposition rate in both genders. Unweighting also caused cancellous bone loss in both genders; trabecular number was decreased, and trabecular separation was increased. There was, however, no change in trabecular thickness in either gender. These architectural changes in cancellous bone were associated with decreases in bone formation and steady-state mRNA levels for bone matrix proteins and cancellous bone resorption. In conclusion, there are major gender-related differences in bone mass and turnover; however, the bone loss in hindlimb unweighted adult male and female rats appears to be due to similar mechanisms.  相似文献   

14.
The skeleton accommodates changes in mechanical environments by increasing bone mass under increased loads and decreasing bone mass under disuse. However, little is known about the adaptive changes in micromechanical behavior of cancellous and cortical tissues resulting from loading or disuse. To address this issue, in vivo tibial loading and hindlimb unloading experiments were conducted on 16-week-old female C57BL/6J mice. Changes in bone mass and tissue-level strains in the metaphyseal cancellous and midshaft cortical bone of the tibiae, resulting from loading or unloading, were determined using microCT and finite element (FE) analysis, respectively. We found that loading- and unloading-induced changes in bone mass were more pronounced in the cancellous than cortical bone. Simulated FE-loading showed that a greater proportion of elements experienced relatively lower longitudinal strains following load-induced bone adaptation, while the opposite was true in the disuse model. While the magnitudes of maximum or minimum principal strains in the metaphyseal cancellous and midshaft cortical bone were not affected by loading, strains oriented with the long axis were reduced in the load-adapted tibia suggesting that loading-induced micromechanical benefits were aligned primarily in the loading direction. Regression analyses demonstrated that bone mass was a good predictor of bone tissue strains for the cortical bone but not for the cancellous bone, which has complex microarchitecture and spatially-variant strain environments. In summary, loading-induced micromechanical benefits for cancellous and cortical tissues are received primarily in the direction of force application and cancellous bone mass may not be related to the micromechanics of cancellous bone.  相似文献   

15.
The molecular and cellular mechanism of estrogen action in skeletal tissue remains unclear. The purpose of this study was to understand the role of estrogen receptor-beta, (ERbeta) on cortical and cancellous bone during growth and aging by comparing the bone phenotype of 6- and 13-month-old female mice with or without ERbeta. Groups of 11-14 wild-type (WT) controls and ERbeta knockout (BERKO) female mice were necropsied at 6 and 13 months of age. At both ages, BERKO mice did not differ significantly from WT controls in uterine weight and uterine epithelial thickness, indicating that ERbeta does not regulate the growth of uterine tissue. Femoral length increased significantly by 5.5% at 6 months of age in BERKO mice compared with WT controls. At 6 months of age, peripheral quantitative computerized tomography (pQCT) analysis of the distal femoral metaphysis (DFM) and femoral shafts showed that BERKO mice had significantly higher cortical bone content and periosteal circumference as compared with WT controls at both sites. In contrast to the findings in cortical bone, at 6 months of age, there was no difference between BERKO and WT mice in trabecular density, trabecular bone volume (TBV), or formation and resorption indices at the DFM. In 13-month-old WT mice, TBV (-41%), trabecular density (-27%) and cortical thickness decreased significantly. while marrow cavity and endocortical circumference increased significantly compared with 6-month-old WT mice. These age-related decreases in cancellous and endocortical bone did not occur in BERKO mice. At 13 months of age, BERKO mice had significantly higher total, trabecular and cortical bone, while having significantly lower bone resorption, bone formation and bone turnover in DFM compared with WT mice. These results indicate that deleting ERbeta protected against age-related bone loss in both the cancellous and endocortical compartments by decreasing bone resorption and bone turnover in aged female mice. These data demonstrate that in female mice, ERbeta plays a role in inhibiting periosteal bone formation, longitudinal and radial bone growth during the growth period, while it plays a role in stimulating bone resorption, bone turnover and bone loss on cancellous and endocortical bone surfaces during the aging process.  相似文献   

16.
Strain-induced adaption of bone has been well-studied in an axial loading model of the mouse tibia. However, most outcomes of these studies are restricted to changes in bone architecture and do not explore the mechanical implications of those changes. Herein, we studied both the mechanical and morphological adaptions of bone to three strain levels using a targeted tibial loading mouse model. We hypothesized that loading would increase bone architecture and improve cortical mechanical properties in a dose-dependent fashion. The right tibiae of female C57BL/6 mice (8 week old) were compressively loaded for 2 weeks to a maximum compressive force of 8.8N, 10.6N, or 12.4N (generating periosteal strains on the anteromedial region of the mid-diaphysis of 1700 με, 2050 με, or 2400 με as determined by a strain calibration), while the left limb served as an non-loaded control. Following loading, ex vivo analyses of bone architecture and cortical mechanical integrity were assessed by micro-computed tomography and 4-point bending. Results indicated that loading improved bone architecture in a dose-dependent manner and improved mechanical outcomes at 2050 με. Loading to 2050 με resulted in a strong and compelling formation response in both cortical and cancellous regions. In addition, both structural and tissue level strength and energy dissipation were positively impacted in the diaphysis. Loading to the highest strain level also resulted in rapid and robust formation of bone in both cortical and cancellous regions. However, these improvements came at the cost of a woven bone response in half of the animals. Loading to the lowest strain level had little effect on bone architecture and failed to impact structural- or tissue-level mechanical properties. Potential systemic effects were identified for trabecular bone volume fraction, and in the pre-yield region of the force-displacement and stress-strain curves. Future studies will focus on a moderate load level which was largely beneficial in terms of cortical/cancellous structure and cortical mechanical function.  相似文献   

17.
The mechanism of liver enlargement during pregnancy was investigated in the C57BL/6J strain of mice. The C57BL/6J female exhibited a two-fold increase in liver mass during pregnancy. After the completion of lactation the size of the liver was reduced. Liver growth was accomplished with no increase in hepatocyte number and without an increase in total liver DNA content. During the early stages of liver expansion in pregnant females, DNA synthesis could be turned on by partial hepatectomy. However, during the last few days of gestation DNA synthesis and liver growth in response to partial hepatectomy were inhibited. During lactation this inhibition of growth was maintained, but inhibition of DNA synthesis was partially lifted. DNA synthesis and liver growth in response to partial hepatectomy were normal after the termination of lactation. Because of the limited scope of this investigation the full implications of these findings are not yet certain.  相似文献   

18.
Studies of bone from summer-active little brown bats, Myotis lucifugus lucifugus, have demonstrated sex differences in the renewal of skeletal mineral reserves following spring-arousal from hibernation. Patterns of bone remodeling in both sexes of bats indicate that new bone formation does not occur during hibernation: All new bone formation occurs during the summer-active season. Results show that a short period of time elapses after hibernation before the initial demands of a large fetus and rapidly growing neonate are expressed on maternal skeletal reserves. Bone loss in summer-active females was associated with pregnancy and lactation, whereas summer-active males did not show evidence of bone loss but, instead, uninterrupted bone accretion throughout the summer-active season. Osteoclasts and bone-forming osteoblasts, absent during the hibernation period, reappeared on bone surfaces following spring-arousal from hibernation. There was no apparent increase in osteoclast numbers or activity during lactation but resorption cavities were found in deep cortical lamellae distant from bone surfaces. The increase in bone resorption in lactating bats appeared to be by osteocytic osteolysis, suggesting that it might be a significant mechanism of bone/calcium regulation in this hibernating mammal throughout the year.  相似文献   

19.
Karim L  Vashishth D 《PloS one》2012,7(4):e35047
Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution of microarchitecture and microdamage on bone fragility. Human trabecular bone cores from 23 donors were subjected to compression tests. Mechanically tested cores as well as an additional 19 cores were stained with lead-uranyl acetate and imaged to determine microarchitecture and measure microdamage. Post-yield mechanical properties were measured and damaged trabeculae were extracted from a subset of specimens and characterized for the morphology of induced microdamage. Tested specimens and extracted trabeculae were quantified for enzymatic and non-enzymatic crosslink content using a colorimetric assay and Ultra-high Performance Liquid Chromatography (UPLC). Results show that an increase in enzymatic crosslinks was beneficial for bone where they were associated with increased toughness and decreased microdamage. Conversely, bone with increased NEG required less strain to reach failure and were less tough. NEG heterogeneously modified trabecular microarchitecture where high amounts of NEG crosslinks were found in trabecular rods and with the mechanically deleterious form of microdamage (linear microcracks). The extent of NEG in tibial cancellous bone was the dominant predictor of bone fragility and was associated with changes in microarchitecture and microdamage.  相似文献   

20.
Castration of male rats leads to increased bone turnover and osteopenia. This study was conducted to examine the effects of the aminobisphosphonate alendronate on castration-induced bone changes. Bisphosphonates are drugs that inhibit bone turnover by decreasing the resorption. Since they suppress bone remodeling, they may also prevent the repair of microdamage and decrease bone strength. Although the mechanical properties of bones are directly related to the determination of fracture risk, bisphosphonate effects on the related variables have scarcely been investigated. Twenty-four male Wistar rats at two months of age were castrated or sham-operated to evaluate the effects of long-term administration (six months) of sodium alendronate at a dose of 1 mg/kg/day. The bones were tested mechanically by a three-point bending test in a Mini Bionix (MTS) testing system. High bone remodeling seen in castrated rats expressed by increased TrACP and B-ALP was suppressed by alendronate administration. Bone from castrated rats was characterized by a reduction in bone density as well as ash, calcium and phosphate content. Castration significantly altered mechanical properties of bone and femoral cortical thickness. When castrated rats were treated with high dose of alendronate, the changes in bone density resulting from castration were entirely prevented, and mechanical analysis revealed preserved mechanical strength of femur and cortical thickness. We conclude that castration induces cortical bone loss associated with high bone turnover in the male rat, and this bone loss can be prevented by alendronate through the inhibition of osteoclastic activity, while preserving the mechanical properties of bone. These results document the efficacy of alendronate, even at high doses, in preventing bone loss, loss of bone mechanical strength, and the rise in biochemical bone turnover indicators due to castration in rats, and raises the possibility that a alendronate could be equally effective in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号