首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Life sciences》1995,56(7):PL169-PL174
Although several studies have shown that vanadate evokes vasoconstriction whether it elevates cytosolic free calcium, [Ca2+]i, in vascular smooth muscle (VSM) cells has not been investigated. The present study shows that acute additions of low concentrations of vanadate (10–200) to cultured aortic smooth muscle cells (ASMC) produced a rapid and a concentrationdependent increase in [Ca2+]i with an EC50 (mean ± SEM) value of 42 ± 11 μM. Inclusion of vanadate (200 μM) led to a significant increase (p < 0.05) in the peak [Ca2+]i level to 190 ± 23 nM from a basal level of 102 ± 2 nM. At concentrations > 200 μM, vanadate caused quenching of fura-2 fluorescence. For example, addition of 1 mM vanadate led to an apparent decrease in fluorescence by about 50 % (due to a quenching effect), followed by a transient rise. H2O2, which is used in the preparation of peroxide forms of vanadate, pervanadate (PV), also produced a rise in [Ca2+]i. These data suggest that vanadate promotes vascular tone by elevating [Ca2+]i in ASMC. However, [Ca2+]i measurements made with higher concentrations of vanadate and PV, using the fura-2 method, must be interpreted with caution.  相似文献   

2.
Serotonin induced a transient elevation in the levels of cytosolic calcium in cultured rat vascular smooth muscle cells. Ketanserin, a selective antagonist of serotonin 2 receptors, dose-dependently inhibited the elevation of cytosolic calcium induced by serotonin, and ultimately unmasked a serotonin-induced decrease in the levels of cytosolic calcium. These observations show that serotonin has direct and dual effects, that is, it increases and decreases cytosolic free calcium concentrations in vascular smooth muscle cells, in culture. Knowledge of such events is important because serotonergic inhibitors may prove to be useful drugs for treating clinical hypertension and vasospastic disorders.  相似文献   

3.
The effects of prostaglandin (PG) F2 alpha and 9,11-epithio-11,12-methanothromboxane A2 (STA2), a stable analogue of thromboxane A2, on the cytosolic free calcium concentration ([Ca2+]i) in vascular smooth muscle cells were studied with a new fluorescent Ca2+ indicator fura 2. PGF2 alpha and STA2, which are strong vasoconstrictors, caused rapid phasic and subsequent tonic increases in [Ca2+]i. PGF2 alpha caused dose-dependent elevation of [Ca2+]i not only in control solution but also in the calcium-free solution. A first stimulation with PGF2 alpha caused dose-dependent decrease in the response of [Ca2+]i to a second stimulation with PGF2 alpha. Pretreatment with 13-Azaprostanoic acid, a receptor level antagonist of thromboxane A2 inhibited the increase of [Ca2+]i induced by STA2. These results suggest that PGF2 alpha induces calcium mobilization followed by smooth muscle contraction through its specific receptors.  相似文献   

4.
Three specific platelet-derived growth factor (PDGF) isoforms are thought to bind with differing affinities to two distinct PDGF receptors which undergo activation following dimerization. Recent evidence has been presented that marked differences exist between the ability of PDGF-AA versus PDGF-AB and PDGF-BB to stimulate alterations in second messengers in cultures of vascular smooth muscle cells (VSMC), a result which was thought to be due to low numbers of the A-type receptor in this cell type (Sachinidis, A., Locker, R., Vetter, W., Tatje, D., and Hoppe, J. (1990) J. Biol. Chem. 265, 10238-10243, 1990). In particular, PDGF-BB and PDGF-AB but not PDGF-AA could elicit alterations in cytosolic free calcium (Ca2+i). However, because these studies were performed on large cell populations using biochemical assays of PDGF activity, a minor PDGF-AA-Ca(2+)-responsive population of cells might go undetected. To test this possibility, VSMC were isolated from either thoracic or abdominal pig aorta, and alterations in Ca2+i were monitored using Multiparameter Digitized Video Microscopy following stimulation with PDGF isoforms alone, or either before or after exposure of VSMC to 5 mM EGTA. PDGF-AA-responsive cells were found to exist only in cultures of thoracic VSMC, caused oscillations in Ca2+i, represented 20% of the PDGF-BB-responsive cells, and were subsequently responsive to PDGF-BB. PDGF-BB elicited monophasic alterations in Ca2+i in both thoracic and abdominal VSMC. Prior addition of EGTA inhibited PDGF-AA but not PDGF-BB-induced alterations in Ca2+i. Addition of EGTA during PDGF-AA-induced Ca2+i oscillations inhibited subsequent oscillations in Ca2+i, while addition of EGTA at the peak of the PDGF-BB Ca2+ response resulted in a more rapid return of Ca2+i to prestimulation levels. These data suggest that regional differences in the distribution of PDGF-A- and B-type receptor exists in vivo, and that activation of the A- and B-type PDGF receptors results in distinct alterations in Ca2+i.  相似文献   

5.
《The Journal of cell biology》1993,120(6):1371-1380
Polymorphonuclear leukocytes (PMN) traverse an endothelial cell (EC) barrier by crawling between neighboring EC. Whether EC regulate the integrity of their intercellular adhesive and junctional contacts in response to chemotaxing PMN is unresolved. EC respond to the binding of soluble mediators such as histamine by increasing their cytosolic free calcium concentration ([Ca++]i) (Rotrosen, D., and J.I. Gallin. 1986. J. Cell Biol. 103:2379-2387) and undergoing shape changes (Majno, G., S. M. Shea, and M. Leventhal. 1969. J. Cell Biol. 42:617-672). Substances such as leukotriene C4 (LTC4) and thrombin, which increased the permeability of EC monolayers to ions, as measured by the electrical resistance of the monolayers, transiently increased EC [Ca++]i. To determine whether chemotaxing PMN cause similar changes in EC [Ca++]i, human umbilical vein endothelial cells (HUVEC) maintained as monolayers were loaded with fura-2. [Ca++]i was measured in single EC during PMN adhesion to and migration across these monolayers. PMN-EC adhesion and transendothelial PMN migration in response to formyl- methionyl-leucyl-phenylalanine (fMLP) as well as to interleukin 1 (IL- 1) treated EC induced a transient increase in EC [Ca++]i which temporally corresponded with the time course of PMN-EC interactions. When EC [Ca++]i was clamped at resting levels with a cell permeant calcium buffer, PMN migration across EC monolayers and PMN induced changes in EC monolayer permeability were inhibited. However, clamping of EC [Ca++]i did not inhibit PMN-EC adhesion. These studies provide evidence that EC respond to stimulated PMN by increasing their [Ca++]i and that this increase in [Ca++]i causes an increase in EC monolayer permeability. Such [Ca++]i increases are required for PMN transit across an EC barrier. We suggest EC [Ca++]i regulates transendothelial migration of PMN by participating in a signal cascade which stimulates EC to open their intercellular junctions to allow transendothelial passage of leukocytes.  相似文献   

6.
7.
8.
In many cells, inhibition of sarcoplasmic reticulum (SR) Ca2+-ATPase activity induces a steady-state increase in cytosolic calcium concentration ([Ca2+]i) that is sustained by calcium influx. The goal was to characterize the response to inhibition of SR Ca2+-ATPase activity in bovine airway smooth muscle cells. Cells were dispersed from bovine trachealis and loaded with fura 2-AM (0.5 microM) for imaging of single cells. Cyclopiazonic acid (CPA; 5 microM) inhibited refilling of both caffeine- and carbachol-sensitive calcium stores. In the presence of extracellular calcium, CPA caused a transient increase in [Ca2+]i from 166 +/- 11 to 671 +/- 100 nM, and then [Ca2+]i decreased to a sustained level (CPA plateau; 236 +/- 19 nM) significantly above basal. The CPA plateau spontaneously declined toward basal levels after 10 min and was attenuated by discharging intracellular calcium stores. When CPA was applied during sustained stimulation with caffeine or carbachol, decreases in [Ca2+]i were observed. We concluded that the CPA plateau depended on the presence of SR calcium and that SR Ca2+-ATPase activity contributed to sustained increases in [Ca2+]i during stimulation with caffeine and, to a lesser extent, carbachol.  相似文献   

9.
10.
11.
The objective of this study was to determine the effects and mechanisms of serum amyloid A (SAA) on coronary endothelial function. Porcine coronary arteries and human coronary arterial endothelial cells (HCAECs) were treated with SAA (0, 1, 10, or 25 microg/ml). Vasomotor reactivity was studied using a myograph tension system. SAA significantly reduced endothelium-dependent vasorelaxation of porcine coronary arteries in response to bradykinin in a concentration-dependent manner. SAA significantly decreased endothelial nitric oxide (NO) synthase (eNOS) mRNA and protein levels as well as NO bioavailability, whereas it increased ROS in both artery rings and HCAECs. In addition, the activities of internal antioxidant enzymes catalase and SOD were decreased in SAA-treated HCAECs. Bio-plex immunoassay analysis showed the activation of JNK, ERK2, and IkappaB-alpha after SAA treatment. Consequently, the antioxidants seleno-l-methionine and Mn(III) tetrakis-(4-benzoic acid)porphyrin and specific inhibitors for JNK and ERK1/2 effectively blocked the SAA-induced eNOS mRNA decrease and SAA-induced decrease in endothelium-dependent vasorelaxation in porcine coronary arteries. Thus, SAA at clinically relevant concentrations causes endothelial dysfunction in both porcine coronary arteries and HCAECs through molecular mechanisms involving eNOS downregulation, oxidative stress, and activation of JNK and ERK1/2 as well as NF-kappaB. These findings suggest that SAA may contribute to the progress of coronary artery disease.  相似文献   

12.
There is increasing interest in the roles played by potassium channels of smooth muscle in protecting against ischemic and anoxic insults. Hence, potassium-selective channels were studied in freshly dispersed porcine coronary artery smooth muscle cells using the inside-out variant of the patch-clamp technique. The most abundant potassium channel had a conductance of 148 pS in a 5.4/140 mM K+ gradient, at 0 mV, and was regulated by cytoplasmic ATP (0.05-3.0 mM), cytoplasmic Ca2+ (0.1-10 microM) and voltage. ATP and AMP-PNP (0.5 mM) reduced the probability of channel opening (Po) by 87 and 92%, respectively. This inhibition was partially reversed by the addition of 0.5 mM ADP. ADP on its own (2 mM) reduced Po by 46%. It appears, therefore, that this channel shares properties with both the ATP-sensitive and the calcium-regulated potassium channels, raising the possibility that it plays a central role in the regulation of coronary blood flow.  相似文献   

13.
Methods for the stepwise isolation of endothelial cells and smooth muscle cells from individual canine coronary arteries are described. Both cell types can be isolated in pure culture with high yields. Dogs are a common species used in the study of atherosclerosis and coronary artery disease. Capacity to isolate endothelial cells and smooth muscle cells from individual canine coronary arteries should prove useful in the study of coronary artery disease.  相似文献   

14.
Using a variety of synthetic analogs of porcine endothelin (pET), we have studied the effects of these analogs on receptor binding activity and cytosolic free Ca2+ concentrations ([Ca2+]i) in cultured rat vascular smooth muscle cells (VSMC). Removal of C-terminal Trp21 residue, truncated derivatives pET(1-15) and (16-21), substitution of disulfide bond, Cys(3-11) or Cys(1-15), by Cys (Acm), all resulted in a complete loss of receptor binding activity and [Ca2+]i response, while N-terminal elongation of Lys-Arg residues, but not oxidation of Met7 residue, decreased receptor binding activity and [Ca2+]i response. [Cys1-15,Cys3-11]pET was far more potent than [Cys1-11,Cys3-15]pET in receptor binding and [Ca2+]i response. These data indicate that the C-terminal Trp21 as well as the proper double cyclic structure formed by the intramolecular disulfide bonds of the pET molecule are essential for receptor binding and subsequent [Ca2+]i increase in rat VSMC.  相似文献   

15.
Summary Vascular smooth muscle cell (VSMC) proliferation significantly contributes to atherosclerotic plaque formation and limits the success rate of percutaneous transluminal coronary angioplasty. We derived a population of porcine coronary artery SMCs to characterize VSMC proliferation and phenotype in preparation to study the molecular actions of VSMC mitogens and antiproliferative agents. Growth assays were designed to minimize the estrogen content in the culture medium, since this steroid hormone significantly influences VSMC growth and the expression of VSMC mitogens and their receptors. Culture conditions were identified such that this criterion was achieved while maintaining a significant VSMC growth rate. Cells cultured in serum-free medium, regardless of growth factor supplements, did not remain adherent to a plastic culture substrate, nor did they proliferate. Dextran-coated charcoal (DCC)-treated sera, including fetal bovine, calf, and porcine, supported VSMC adhesion, but not growth. Whole fetal bovine serum (FBS) produced the best proliferative response. A type-I collagen-coated culture surface significantly enhanced VSMC growth, but only in culture medium containing non-DCC-treated FBS. Flow cytometry analyses confirmed the mitogenic effects of this substrate. The VSMCs exhibited a morphological change on type-I collagen, but this was not accompanied by a change in VSMC phenotype. Our data indicate that culture of these porcine coronary artery SMCs in 2.5% FBS plus 10 ng platelet-derived growth factor-BB per ml in phenol red-free medium on type-I collagen may be the optimal conditions for studying the molecular aspects of VSMC mitogens and antiproliferative agents.  相似文献   

16.
Platelet-derived growth factor (PDGF) and angiotensin II (AII) are thought to mediate their biological effects in vascular smooth muscle cells (VSMCs) by causing alterations in cytosolic free calcium ([ Ca2+]i). In this study we examine the pathways by which PDGF and AII alter [Ca2+]i in VSMCs. Addition of PDGF resulted in a rapid, transient, concentration-dependent increase in [Ca2+]i; this rise in [Ca2+]i was blocked completely by preincubation of cells with ethylene glycol-bis (beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA) or CoCl2, by the voltage-sensitive Ca2+-channel antagonists verapamil or nifedipine, by 12-O-tetradecanoylphorbol-13-acetate (TPA), or by pertussis toxin. AII also caused an increase in [Ca2+]i; however, AII-stimulated alterations in [Ca2+]i displayed different kinetics compared with those caused by PDGF. Pretreatment of cells with 8-(diethylamine)-octyl-3,4,5-trimethyoxybenzoate hydrochloride (TMB-8), almost totally inhibited AII-induced increases in [Ca2+]i. EGTA or CoCl2 only slightly diminished AII-stimulated increases in [Ca2+]i. Nifedipine, verapamil, TPA, and pertussis toxin pretreatment were without effect on AII-induced increases in [Ca2+]i. PDGF and AII both stimulated increases in total inositol phosphate accumulation, although the one-half maximal concentration (ED50) for alterations in [Ca2+]i and phosphoinisitide hydrolysis differed by a factor of 10 for PDGF (3 X 10(-10) M for Ca2+ vs. 2.5 X 10(-9) M for phosphoinositide hydrolysis), but they were essentially identical for AII (7.5 X 10(-9) M for Ca2+ vs. 5.0 X 10(-9) M for phosphoinositide hydrolysis). PDGF stimulated mitogenesis (as measured by [3H]-thymidine incorporation into DNA) in VSMCs with an ED50 similar to that for PDGF-induced alterations in phosphoinositide hydrolysis. PDGF-stimulated mitogenesis was blocked by pretreatment of cells with voltage-sensitive Ca2+ channel blockers, TPA, or pertussis toxin. These results suggest that PDGF and AII cause alterations in [Ca2+]i in VSMCs by at least quantitatively distinct mechanisms. PDGF binding activates a pertussis-toxin-sensitive Ca2+ influx into cells via voltage-sensitive Ca2+ channels (blocked by EGTA, verapamil, and nifedipine), as well as stimulating phosphoinositide hydrolysis leading to release of Ca2+ from intracellular stores. AII-induced alterations in [Ca2+]i are mainly the result of phosphoinositide hydrolysis and consequent entry of Ca2+ into the cytoplasm from intracellular stores. Our data also suggest that changes in [Ca2+]i caused by PDGF are required for PDGF-stimulated mitogenesis.  相似文献   

17.
18.
Epoxyeicosatrienoic acids (EETs) are readily incorporated into phospholipids of smooth muscle cells (SMC) and endothelial cells (EC). Incorporation of EETs into intact porcine coronary arteries potentiates EC-dependent relaxation, but not vasorelaxation induced by agents that act solely on SMC. To explore the potential mechanisms responsible for this difference, porcine coronary artery SMC and EC preloaded with [3H]14,15-EET were treated with calcium ionophore A23187. Although the amount of EET incorporated into EC and SMC was similar, A23187 stimulated a five-fold increase in release of radioactivity from EC, but only a 21% increase in release from SMC. Thin layer chromatography (TLC) examination of cell lipids demonstrated that > 70% of the incorporated radioactivity was present in phosphatidylcholine (PC) in both SMC and BC. After treatment of EC PC with PLA2, TLC analysis indicated that approximately equal to 75% of radioactivity was present as free EET, and 25% of radioactivity was present as lyso-PC. Therefore, most of the 14,15-EET was esterified into the sn-2 position of PC in EC. However, in SMC, approximately equal to 70% of radioactivity was present as lyso-PC after PLA2 treatment, indicating that the EET was predominately esterified into the sn-1 position. In contrast, all of the 14,15-EET was esterified into the sn-2 position of PI in both EC and SMC. These results suggest that the preferential incorporation of 14,15-EET into the sn-1 position of PC in SMC may help to explain the greater retention of the compound in SMC, while incorporation into the sn-2 position of PC in EC may facilitate agonist-induced 14,15-EET release and potentiation of EC-dependent porcine coronary artery relaxation.  相似文献   

19.
Endothelin (ET), a newly identified vasoconstrictor peptide produced by endothelial cells, depends on extracellular calcium for its action [(1988) Nature 332, 411-415]. It is not yet known whether the increase in calcium influx induced by ET results from a direct effect on the Ca2+ channels or is secondary to a reduction in membrane potential. To address this question, we studied the effects of ET on single-channel calcium currents of freshly dissociated porcine coronary artery smooth muscle cells using the cell-attached mode of the patch-clamp technique. We show that ET increases Ca2+-channel activity with no effect on channel open time or conductance. The ability of bath-applied ET to increase single-channel calcium currents in the cell-attached mode is evidence that the peptide acts via a second messenger system.  相似文献   

20.
Using an intracellularly trapped dye, quin 2, the effects of histamine on cytosolic free calcium concentrations in rat aortic vascular smooth muscle cells in primary culture were recorded, microfluorometrically. When the cells were exposed to histamine, both in the presence and the absence of extracellular Ca2+, there was a rapid, transient and dose-dependent elevation of cytosolic Ca2+ concentrations, with a similar time course. This elevation of cytosolic Ca2+ was dose-dependently inhibited by mepyramine, but not by cimetidine. Thus, histamine activates H1- but not H2- receptors to mediate a release of Ca2+ from the store sites, and there is a rapid and transient elevation of cytosolic Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号