共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Central hemodynamic and heart rate variability (HRV) parameters were assessed in highly qualified athletes differing in the
types of their training programs at relative rest. During endurance (the endurance group, n = 27) and strength (the strength group, n = 17) trainings, the total peripheral resistance (TPR) was decreased by 15% (p = 0.003) in the endurance group and by 16% (p = 0.011) in the strength group, and the stroke volume increased by 31% (p < 0.0001) in the endurance group and by 19% (p = 0.024) in the strength group. In the strength group, the cardiac output (Q) was higher (p = 0.012) and the temporal and spectral parameters of HRV (RMSSD, pNN
50, and HF) were lower (p < 0.05) than those in the control group (n = 56). Some of these differences can be explained by an increased body mass index (p = 0.005) in the strength group. In the endurance group, the HRV parameters (RMSSD, pNN50, HF, VLF, and TP) were higher (p ≤ 0.02), and the mean blood pressure was lower (p < 0.003) than those in the control group, with no significant differences in the Q from the control group. Our findings suggest
that, in the strength-training athletes, resting hemodynamics were characterized by a greater Q level and a greater tension
of mechanisms regulating cardiac activity. In the endurance-training athletes, a low Q level was associated with a lower tension
of the mechanisms regulating cardiac activity (an increased vagal tone). 相似文献
4.
Hines T Abhyankar SS Veeh JM 《American journal of physiology. Heart and circulatory physiology》2005,288(1):H116-H120
Blood volume expands significantly during pregnancy, but afferent signals from cardiac receptors are reduced. In addition, during exogenous volume expansion, right atrial pressure (RAP) increases more for equivalent volumes in pregnant animals, implying reduced atrial compliance. To examine possible gestational alterations in atrial dimension during volume expansion, we compared the effects of volume expansion on RAP and right atrial dimension (RAD) in pregnant vs. virgin rats. Anesthetized animals were ventilated and catheterized for measurement of arterial pressure and RAP and for drug infusion. Through a parasternal incision, ultrasonic crystals were glued to the medial and lateral surfaces of the right atrium for measurement of RAD. Plasma volume and hematocrit were determined before experimentation. RAP, RAD, and arterial pressure were recorded at baseline and during progressive volume expansion (6% dextran, 60% of initial blood volume). Baseline RAP was similar in the two groups: 2.82 +/- 0.40 and 2.72 +/- 0.47 mmHg in pregnant and virgin rats, respectively. Basal RAD was significantly larger in pregnant than in virgin rats: 4.36 +/- 0.66 vs. 3.36 +/- 0.48 mm. Despite increased basal RAD in pregnant rats, the slope of the RAD-RAP relation during volume expansion was similar in the two groups. Results indicate that resting RAD is increased in pregnant rats and that the change in dimension during volume loads is similar to that in virgin rats. Thus, during pregnancy, the right atrium appears to accommodate the increased blood volume, and reduced afferent signaling most likely is due to mechanisms other than mechanical alterations of the atrium by expanded volume. 相似文献
5.
Jane A. Kent-Braun 《European journal of applied physiology and occupational physiology》1999,80(1):57-63
The purpose of this study was to estimate the relative contributions of central and peripheral factors to the development of human muscle fatigue. Nine healthy subjects [five male, four female; age = 30 (2) years, mean (SE)] sustained a maximum voluntary isometric contraction (MVC) of the ankle dorsiflexor muscles for 4 min. Fatigue was quantitated as the fall in MVC. Three measures of central activation and one measure of peripheral activation (compound muscle action potential, CMAP) were made using electromyography (EMG) and electrical stimulation. Measures of intramuscular metabolism were made using magnetic resonance spectroscopy. After exercise, MVC and electrically stimulated tetanic contraction (50 Hz, 500 ms) forces were 22.2 (3.7)% and 37.3 (7.1)% of pre-exercise values, respectively. The measures of central activation suggested some central fatigue during exercise: (1) the central activation ratio [MVC/(MVC + superimposed tetanic force)] fell from 0.94 (0.03) to 0.78 (0.09), (2) the MVC/tetanic force ratio fell from 2.3 (0.7) to 1.3 (0.7), and (3) the integral of the EMG (iEMG) signal decreased to 72.6 (9.1)% of the initial value, while the CMAP amplitude was unchanged. Intramuscular pH was associated by regression with the decline in MVC force (and therefore fatigue) and iEMG. The results indicate that central factors, which were not associated with altered peripheral excitability, contributed approximately 20% to the muscle fatigue developed, with the remainder being attributable to intramuscular (i.e., metabolic) factors. The association between pH and iEMG is consistent with proton concentration as a feedback mechanism for central motor drive during maximal effort. 相似文献
6.
《Journal of electromyography and kinesiology》2014,24(3):380-386
The aim of this study was to investigate the relation between variability in muscle activity and fatigue during a sustained low level contraction in the lumbar muscles. Twenty-five healthy participants (13 men 12 women) performed a 30 min sitting task with 5 degrees inclination of the trunk. Surface electromyographic (EMG) signals were recorded bilaterally from the lumbar muscles with 2 high density surface EMG grids of 9 × 14 electrodes. Median frequency (MDF) decrease, amplitude (RMS) increase and the rating of perceived exertion (RPE) were used as fatigue indices. Alternating activation and spatial and temporal variability were computed and relations with the fatigue indices were explored. During sitting, the mono- and bipolar RMS slightly increased while the MDF remained unchanged indicating no systematic muscle fatigue, although the average RPE increased from 6 to 13 on a scale ranging between 6 and 20. Higher frequency of alternating activation between the left and right side was associated with increased RPE (p = 0.03) and decreased MDF (p = 0.05). A tendency in the same direction was seen between increased spatial and temporal variation within the grids and increased RPE and decreased MDF. Present findings provide evidence for a relationship between variability in muscle activity and fatigue. 相似文献
7.
Tovote P Meyer M Beck-Sickinger AG von Hörsten S Ove Ogren S Spiess J Stiedl O 《Regulatory peptides》2004,120(1-3):205-214
Neuropeptide Y (NPY) is involved in the regulation of emotionality including fear and anxiety, which modulate autonomic control of cardiovascular function. We therefore investigated the central effects of porcine NPY, selective Y1, Y2 and Y5 receptor agonists and a Y1 receptor antagonist on heart rate (HR) and HR variability in freely moving mice using auditory fear conditioning. Intracerebroventricular (i.c.v.) injections were applied 15 min before the tone-dependent memory test. NPY dose-dependently induced bradycardia associated with decreased HR variability, and blunted the stress-induced tachycardic response. The selective Y1 receptor antagonist BIBO 3304 blocked the NPY- and Y1-receptor agonist-induced suppression of conditioned tachycardia without affecting basal HR. The tachycardia elicited by both conditioned and unconditioned stressor was effectively attenuated by the Y1 receptor agonist. These results suggest a specific contribution of Y1, but not Y2 and Y5 receptors, to modulation of emotional responses most likely unrelated to impairment or modulation of memory. The NPY-induced bradycardia is attributed to not yet characterized NPY receptor subtypes other than Y1, Y2 and Y5, or a complex receptor interaction. In conclusion, NPY mediates central inhibition of sympathetic outflow, potentially coupled with attenuation of parasympathetic tone, i.e., mechanisms that may be associated with the reported anxiolytic action. 相似文献
8.
Dedkov EI Zheng W Christensen LP Weiss RM Mahlberg-Gaudin F Tomanek RJ 《American journal of physiology. Heart and circulatory physiology》2007,293(1):H590-H598
We tested the hypothesis that chronically reducing the heart rate in infarcted middle-aged rats using ivabradine (IVA) would induce arteriolar growth and attenuate perivascular collagen and, thereby, improve maximal perfusion and coronary reserve in the surviving myocardium. Myocardial infarction (MI) was induced in 12-mo-old male Sprague-Dawley rats, which were then treated with either IVA (10.5 mg.kg(-1).day(-1); MI + IVA) or placebo (MI) via intraperitoneal osmotic pumps for 4 wk. Four weeks of IVA treatment limited the increase in left ventricular end-diastolic pressure and the decrease in ejection fraction but did not affect the size of the infarct, the magnitude of myocyte hypertrophy, or the degree of arteriolar and capillary growth. However, treatment reduced interstitial and periarteriolar collagen in the surviving myocardium of MI + IVA rats. The reduced periarteriolar collagen content was associated with improvement in maximal myocardial perfusion and coronary reserve. Although the rates of proliferation of periarteriolar fibroblasts were similar in the MI and MI + IVA groups, the expression levels of the AT(1) receptor and transforming growth factor (TGF)-beta(1) in the myocardium, as well as the plasma level of the ANG II peptide, were lower in treated rats 14 days after MI. Therefore, our data reveal that improved maximal myocardial perfusion and coronary reserve in MI + IVA rats are most likely the result of reduced periarteriolar collagen rather than enhanced arteriolar growth. 相似文献
9.
10.
Kimura T Matsuura R Arimitsu T Yunoki T Yano T 《Journal of physiological anthropology》2010,29(6):205-210
The aim of this study was to determine whether the increase in blood volume in resting muscle during moderately prolonged exercise is related to heart rate (HR) upward drift. Eight healthy men completed both arm-cranking moderately prolonged exercise (APE) and leg-pedaling moderately prolonged exercise (LPE) for 30 min. Exercise intensity was 120 bpm of HR that was determined by ramp incremental exercise. During both APE and LPE, HR significantly increased from 3 to 30 min (from 108±9.3 to 119±12 bpm and from 112±8.9 to 122±11 bpm, respectively). However, there was no significant difference between HR in APE and that in LPE. Oxygen uptake was maintained throughout the two exercises. Skin blood flow, deep temperature, and total Hb (blood volume) in resting muscle continuously increased for 30 min of exercise during both APE and LPE. During both APE and LPE, there was a significant positive correlation between total Hb and deep temperature in all subjects. Moreover, there was a significant positive correlation between HR and total Hb (in seven out of eight subjects) during LPE. However, during APE, there was no positive correlation between HR and total Hb (r=0.391). These findings suggest that an increase of blood pooling in resting muscle could be proposed as one of the mechanisms underlying HR upward drift during moderately prolonged exercise. 相似文献
11.
Reduction in extracellular muscle volume increases heart rate and blood pressure response to isometric exercise 总被引:2,自引:0,他引:2
K. Baum D. Essfeld J. Stegemann 《European journal of applied physiology and occupational physiology》1990,60(3):217-221
To investigate the effect of local dehydration on heart rate and blood pressure during static exercise, six healthy male subjects performed exercise of the calf muscles with different extracellular volumes of the working muscles. Exercise consisted of 5 min of static calf muscle contractions at about 10% of maximal voluntary contraction. The body position during exercise was identical in all tests, i.e. supine with the knee joint 90 degrees flexed. During a 25-min pre-exercise period three different protocols were employed to manipulate the calf volume. In test A the subjects rested in the exercise position; in test B the body position was the same as in A but calf volumes were increased by venous congestion [cuffs inflated to 10.67 kPa (80 mmHg)]; in test C the calf volumes were decreased by lifting the calves about 40 cm above heart level with the subjects supine. To clamp the changed calf volumes in tests B and C, cuffs were inflated to 300 mmHg 5 min before the onset of exercise. This occlusion was maintained for 1 min after the termination of exercise. Compared to tests A and B, the reduced volume of test C led to significant increases in heart rate and blood pressure during exercise. Oxygen uptake did not exceed resting levels in tests B and C until the cuffs were deflated, indicating that only calf muscles contributed to the neurogenic peripheral drive. It is concluded that extracellular muscle volume plays a significant role in adjusting heart rate and blood pressure during static exercise. 相似文献
12.
The relationship between perceived aroma and the volatile concentration measured in-nose was investigated during eating of a model food. Sensory ranking and time-intensity analysis (TI) were used to measure perceived aroma, while in-nose volatile concentration was monitored by atmospheric pressure ionization mass spectrometry, which produced time release data. A gelatine-sucrose gel with a range of gelatine concentrations (2-8% w/w) and flavoured with furfuryl acetate was used as the model food. Sensory scaling showed decreased flavour intensities and TI showed a decrease in the flavour perceived over time, as the gelatine concentration increased. Studies in model systems and in people demonstrated that the different rates of release observed for different gelatine concentrations were not due to binding of volatile to protein in the gel, nor to mucous membranes, but were due to different rates of gel breakdown in-mouth. There were no significant differences in the maximum in-nose volatile concentrations for the different gelatine concentrations, so the amount of volatile present did not correlate well with the sensory analysis. However, the rates of volatile release were different for the different gels and showed a good correlation with sensory data. 相似文献
13.
14.
Lamberts RP Lemmink KA Durandt JJ Lambert MI 《Journal of strength and conditioning research / National Strength & Conditioning Association》2004,18(3):641-645
A change in heart rate at a controlled submaximal exercise intensity is used as a marker of training status. However, the standard error of measurement has not been studied systematically, and therefore a change in heart rate, which can be considered relevant, has not been determined. Forty-four subjects (26.5 +/- 5.4 years; mean +/- standard deviation) participated in a submaximal running test at the same time of day for 5 consecutive days. Heart rates were determined during each of the 4 exercise intensities (2 minutes each) of increasing intensity and during the 1-minute recovery period after each stage. The repeatability of the heart rate on a day-to-day basis during the stages and recovery periods were high (intraclass correlation coefficient: 95% confidence interval R = 0.94- 0.99). The lowest variation in heart rate occurred in the fourth stage ( approximately 90% maximum heart rate) with heart rate varying 5 +/- 2 b.min(-1) (95% confidence interval for coefficient of variation = 1.1-1.4%). In conclusion, the standard error of measurement of submaximal heart rate is 1.1-1.4%. This magnitude of measurement error needs to be considered when heart rate is used as a marker of training status. 相似文献
15.
A decrease in maximal exercise heart rate (HR(max)) is a key contributor to reductions in aerobic exercise capacity with aging. However, the mechanisms involved are incompletely understood. We sought to gain insight into the respective roles of intrinsic heart rate (HR(int)) and chronotropic beta-adrenergic responsiveness in the reductions in HR(max) with aging in healthy adults. HR(max) (Balke treadmill protocol to exhaustion), HR(int) (HR during acute ganglionic blockade with intravenous trimethaphan), and chronotropic beta-adrenergic responsiveness (increase in HR with incremental intravenous infusion of isoproterenol during ganglionic blockade) were determined in 15 older (65 +/- 5 yr) and 15 young (25 +/- 4 yr) healthy men. In the older men, HR(max) was lower (162 +/- 9 vs. 191 +/- 11 beats/min, P < 0.0001) and was associated with a lower HR(int) (58 +/- 7 vs. 83 +/- 9 beats/min, P < 0.0001) and chronotropic beta-adrenergic responsiveness (0.094 +/- 0.036 vs. 0.154 +/- 0.045 DeltaHR/[isoproterenol]: P < 0.0001). Both HR(int) (r = 0.87, P < 0.0001) and chronotropic beta-adrenergic responsiveness (r = 0.61, P < 0.0001) were positively related to HR(max). Accounting for the effects of HR(int) and chronotropic beta-adrenergic responsiveness reduced the age-related difference in HR(max) by 83%, rendering it statistically nonsignificant (P = 0.2). Maximal oxygen consumption was lower in the older men (34.9 +/- 8.1 vs. 48.6 +/- 6.7 ml x kg(-1) x min(-1), P < 0.0001) and was positively related to HR(max) (r = 0.62, P < 0.0001), HR(int) (r = 0.51, P = 0.002), and chronotropic beta-adrenergic responsiveness (r = 0.47, P = 0.005). Our findings indicate that, together, reductions in HR(int) and chronotropic responsiveness to beta-adrenergic stimulation largely explain decreases in HR(max) with aging, with the reduction in HR(int) playing by far the greatest role. 相似文献
16.
17.
Duan SZ Christe M Milstone DS Mortensen RM 《Biochemical and biophysical research communications》2007,357(1):139-143
Muscarinic receptor-mediated cardiac parasympathetic activity is essential for regulating heart rate and heart rate variability (HRV). It has not been clear which G(i)/G(o) protein is responsible for these effects. We addressed this question using knockout mice that lack G protein alpha(i2), alpha(i3), or alpha(o) specifically. Unlike previously reported, our alpha(o)-null mice had significantly more survivors with normal life span. Isolated hearts from alpha(o)-null mice demonstrated much less sensitivity to the negative chronotropic effects of the muscarinic agonist carbachol to lower heart rate at baseline and a more profound effect under the stimulation of the beta-adrenergic agonist isoproterenol. In the presence of parasympathetic activation indirectly produced by methoxamine, an alpha(1)-adrenergic agonist, alpha(o)-null mice showed markedly decreased HRV compared with wild-type control mice. These differences in heart rate and HRV were not observed in alpha(i2)-null or alpha(i3)-null mice. Our findings establish an essential role for alpha(o) G protein in the anti-adrenergic effect of carbachol on heart rate regulation. 相似文献
18.
19.
20.
Rankinen T Sung YJ Sarzynski MA Rice TK Rao DC Bouchard C 《Journal of applied physiology (Bethesda, Md. : 1985)》2012,112(5):892-897
Endurance training-induced changes in hemodynamic traits are heritable. However, few genes associated with heart rate training responses have been identified. The purpose of our study was to perform a genome-wide association study to uncover DNA sequence variants associated with submaximal exercise heart rate training responses in the HERITAGE Family Study. Heart rate was measured during steady-state exercise at 50 W (HR50) on 2 separate days before and after a 20-wk endurance training program in 483 white subjects from 99 families. Illumina HumanCNV370-Quad v3.0 BeadChips were genotyped using the Illumina BeadStation 500GX platform. After quality control procedures, 320,000 single-nucleotide polymorphisms (SNPs) were available for the genome-wide association study analyses, which were performed using the MERLIN software package (single-SNP analyses and conditional heritability tests) and standard regression models (multivariate analyses). The strongest associations for HR50 training response adjusted for age, sex, body mass index, and baseline HR50 were detected with SNPs at the YWHAQ locus on chromosome 2p25 (P = 8.1 × 10(-7)), the RBPMS locus on chromosome 8p12 (P = 3.8 × 10(-6)), and the CREB1 locus on chromosome 2q34 (P = 1.6 × 10(-5)). In addition, 37 other SNPs showed P values <9.9 × 10(-5). After removal of redundant SNPs, the 10 most significant SNPs explained 35.9% of the ΔHR50 variance in a multivariate regression model. Conditional heritability tests showed that nine of these SNPs (all intragenic) accounted for 100% of the ΔHR50 heritability. Our results indicate that SNPs in nine genes related to cardiomyocyte and neuronal functions, as well as cardiac memory formation, fully account for the heritability of the submaximal heart rate training response. 相似文献