首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiocaesium absorption and retention in reindeer (Rangifer tarandus) calves was compared in groups fed diets containing different proportions of lichen and concentrates, and different chemical forms of radiocaesium ((134)CsCl in solution or fallout from the Chernobyl accident). Daily intakes of fallout radiocaesium were 15-23 kBq, while daily intakes of (134)CsCl ranged from 70 kBq to 1,160 kBq. The half-life for radiocaesium in red blood cells (RBC) in animals fed with a pure lichen diet exceeded that in animals fed with a combined diet of lichen and concentrates by 40% (17.8+/-0.7 days vs. 12.7+/-0.4 days). Corresponding differences in the half-lives for urinary and faecal excretion were about 60% and 40%, respectively. Transfer coefficients (F(f)) to reindeer meat were estimated to be 0.25+/-0.01 days kg(-1) for fallout radiocaesium and 1.04+/-0.03 days kg(-1) for (134)CsCl, reflecting differences in both radiocaesium bioavailability and retention. The bioavailability of the Chernobyl radiocaesium in lichen in 1988 was estimated at ca. 35% compared to (134)CsCl.  相似文献   

2.
Dietary nitrogen was traced in rats adapted to a 50% protein diet and given a meal containing 1.50 g (15)N-labeled protein (HP-50 group). This group was compared with rats usually consuming a 14% protein diet and fed a meal containing either 0.42 g (AP-14 group) or 1.50 g (AP-50 group) of (15)N-labeled protein. In the HP group, the muscle nonprotein nitrogen pool was doubled when compared with the AP group. The main adaptation was the enhancement of dietary nitrogen transferred to urea (2.2 +/- 0.5 vs. 1.3 +/- 0.1 mmol N/100 g body wt in the HP-50 and AP-50 groups, respectively). All amino acids reaching the periphery except arginine and the branched-chain amino acids were depressed. Consequently, dietary nitrogen incorporation into muscle protein was paradoxically reduced in the HP-50 group, whereas more dietary nitrogen was accumulated in the free nitrogen pool. These results underline the important role played by splanchnic catabolism in adaptation to a high-protein diet, in contrast to muscle tissue. Digestive kinetics and splanchnic anabolism participate to a lesser extent in the regulation processes.  相似文献   

3.
Beagle dogs were exposed once or repeatedly to 0.75-microns-diameter monodisperse aerosols of 239PuO2 by pernasal inhalation. The dogs that were exposed once received alveolar depositions (+/- standard deviation) of 3.9 +/- 1.9 kBq/kg body mass and accumulated doses of 23 +/- 8 Gy to the lung before death at 5.4 +/- 1.7 years after exposure. Dogs exposed repeatedly received a total alveolar deposition of 5.3 +/- 0.9 kBq/kg body mass during 7 to 10 semiannual exposures and accumulated doses of 22 +/- 5 Gy to the lung before death at 4.9 +/- 0.7 years after first exposure. Clearance of the plutonium from the lung in the dogs exposed repeatedly was slower than in the dogs exposed once. All dogs in the repeated-exposure study and all but one dog in the single-exposure study died from radiation effects. Pulmonary fibrosis accounted for 72% of the radiation-related deaths in the single-exposure study and 87% in the repeated-exposure study. The remaining dogs died with pulmonary cancer. Based on total cumulative radiation dose, the times after exposure to death from radiation pneumonitis and pulmonary fibrosis were not significantly different for single and repeated exposures. Thus dose rate does not appear to be an important factor in predicting death from radiation pneumonitis or pulmonary fibrosis for dogs inhaling 239PuO2.  相似文献   

4.
High-fat and high-sucrose diets increase the contribution of gluconeogenesis to glucose appearance (glc R(a)) under basal conditions. They also reduce insulin suppression of glc R(a) and insulin-stimulated muscle glycogen synthesis under euglycemic, hyperinsulinemic conditions. The purpose of the present study was to determine whether these impairments influence liver and muscle glycogen synthesis under hyperglycemic, hyperinsulinemic conditions. Male rats were fed a high-sucrose, high-fat, or low-fat, starch control diet for either 1 (n = 5-7/group) or 5 wk (n = 5-6/group). Studies involved two 90-min periods. During the first, a basal period (BP), [6-3H]glucose was infused. In the second, a hyperglycemic period (HP), [6-3H]glucose, [6-14C]glucose, and unlabeled glucose were infused. Plasma glucose (BP: 111.2 +/- 1.5 mg/dl; HP: 172.3 +/- 1.5 mg/dl), insulin (BP: 2.5 +/- 0.2 ng/ml; HP: 4.9 +/- 0.3 ng/ml), and glucagon (BP: 81.8 +/- 1.6 ng/l; HP: 74.0 +/- 1.3 ng/l) concentrations were not significantly different among diet groups or with respect to time on diet. There were no significant differences among groups in the glucose infusion rate (mg x kg(-1) x min(-1)) necessary to maintain arterial glucose concentrations at approximately 170 mg/dl (pooled average: 6.4 +/- 0.8 at 1 wk; 6.4 +/- 0.7 at 5 wk), percent suppression of glc R(a) (44.4 +/- 7.8% at 1 wk; 63.2 +/- 4.3% at 5 wk), tracer-estimated net liver glycogen synthesis (7.8 +/- 1.3 microg x g liver(-1) x min(-1) at 1 wk; 10.5 +/- 2.2 microg x g liver(-1) x min(-1) at 5 wk), indirect pathway glycogen synthesis (3.7 +/- 0.9 microg x g liver(-1) x min(-1) at 1 wk; 3.4 +/- 0.9 microg x g liver(-1) x min(-1) at 5 wk), or tracer-estimated net muscle glycogenesis (1.0 +/- 0.3 microg x g muscle(-1) x min(-1) at 1 wk; 1.6 +/- 0.3 microg x g muscle(-1) x min(-1) at 5 wk). These data suggest that hyperglycemia compensates for diet-induced insulin resistance in both liver and skeletal muscle.  相似文献   

5.
We evaluated the effect of a high-protein diet (HP) on pregnancy, lactational and rearing success in mice. At the time of mating, females were randomly assigned to isoenergetic diets with HP (40% w/w) or control protein levels (C; 20%). After parturition, half of the dams were fed the other diet throughout lactation resulting in four dietary groups: CC (C diet during gestation and lactation), CHP (C diet during gestation and HP diet during lactation), HPC (HP diet during gestation and C diet during lactation) and HPHP (HP diet during gestation and lactation). Maternal and offspring body mass was monitored. Measurements of maternal mammary gland (MG), kidney and abdominal fat pad masses, MG histology and MG mRNA abundance, as well as milk composition were taken at selected time points. HP diet decreased abdominal fat and increased kidney mass of lactating dams. Litter mass at birth was lower in HP than in C dams (14.8 v. 16.8 g). Dams fed an HP diet during lactation showed 5% less food intake (10.4 v. 10.9 g/day) and lower body and MG mass. On day 14 of lactation, the proportion of MG parenchyma was lower in dams fed an HP diet during gestation as compared to dams fed a C diet (64.8% v. 75.8%). Abundance of MG α-lactalbumin, β-casein, whey acidic protein, xanthine oxidoreductase mRNA at mid-lactation was decreased in all groups receiving an HP diet either during gestation and/or lactation. Milk lactose content was lower in dams fed an HP diet during lactation compared to dams fed a C diet (1.6% v. 2.0%). On days 14, 18 and 21 of lactation total litter mass was lower in litters of dams fed an HP diet during lactation, and the pups' relative kidney mass was greater than in litters suckled by dams receiving a C diet. These findings indicate that excess protein intake in reproducing mice has adverse effects on offspring early in their postnatal growth as a consequence of impaired lactational function.  相似文献   

6.
High protein (HP) diet could serve as a good strategy against obesity, provoking the changes in energy metabolic pathways. However, those modifications differ during a dietary adaptation. To better understand the mechanisms involved in effect of high protein diet (HP) on limiting adiposity in rats we studied in parallel the gene expression of enzymes involved in protein and energy metabolism and the profiles of nutrients oxidation. Eighty male Wistar rats were fed a normal protein diet (NP, 14% of protein) for one week, then either maintained on NP diet or assigned to a HP diet (50% of protein) for 1, 3, 6 and 14 days. mRNA levels of genes involved in carbohydrate and lipid metabolism were measured in liver, adipose tissues, kidney and muscles by real time PCR. Energy expenditure (EE) and substrate oxidation were measured by indirect calorimetry. Liver glycogen and plasma glucose and hormones were assayed. In liver, HP feeding 1) decreased mRNA encoding glycolysis enzymes (GK, L-PK) and lipogenesis enzymes(ACC, FAS), 2) increased mRNA encoding gluconeogenesis enzymes (PEPCK), 3) first lowered, then restored mRNA encoding glycogen synthesis enzyme (GS), 4) did not change mRNA encoding β-oxidation enzymes (CPT1, ACOX1, βHAD). Few changes were seen in other organs. In parallel, indirect calorimetry confirmed that following HP feeding, glucose oxidation was reduced and fat oxidation was stable, except during the 1(st) day of adaptation where lipid oxidation was increased. Finally, this study showed that plasma insulin was lowered and hepatic glucose uptake was decreased. Taken together, these results demonstrate that following HP feeding, CHO utilization was increased above the increase in carbohydrate intake while lipogenesis was decreased thus giving a potential explanation for the fat lowering effect of HP diets.  相似文献   

7.
In order to assess the influence of dietary protein levels on the fluoride (F) bioavailability, 30 crossbred calves (6-8 months; approximately 104 kg BW) initially exposed to different dietary protein levels were allotted into six groups in a 3?×?2 factorial design. The factors included three different levels of protein viz. normal (100%; NP), low (75%; LP), and high (125%; HP) as per Kearl recommendations besides two levels of supplemental fluorine (as sodium fluoride) at 0 or 200 mg/kg diet. The animals were fed on the respective concentrate mixture and wheat straw for 210 days. A metabolism trial was conducted at 200 days post-feeding to study digestibility, plane of nutrition, and nutrient balances. The final body weight at the end of 210 days was lower (p?<?0.01) in animals fed 200 mg/kg F (164.2?±?8.92 kg) compared to those fed no F (200.7?±?8.05 kg). Calves on LP diets attained lower (p?<?0.05) average daily gain in comparison to NP or HP fed calves. The F-supplemented calves exhibited lower (p?<?0.01) voluntary feed intake than their non-supplemented control. The digestibility of proximate nutrients other than ether extract exhibited higher (p?<?0.01) values in F-fed calves attributable chiefly to reduced consumption of dry matter. The calves fed extra F retained lower mean daily nitrogen; calcium, and phosphorus compared to the calves fed no F. The mean daily intake, excretion, and retention of F were higher (p?<?0.01) in the F-supplemented calves. A significant (p?<?0.01) interaction between protein levels and F was evident in the urinary excretion of F; calves on LP diet exhibiting lower urinary excretion. Consequently, the bioavailability of F tended to be higher on LP than NP or HP diets. From the results, it is concluded that protein levels in the diet do not impart significant influence on susceptibility to fluorosis in crossbred calves. However, the bioavailability of F tended to increase on diets low in protein.  相似文献   

8.
This study evaluated the effects of feeding pigs low protein (LP) diets for different lengths of time after weaning on indices of protein fermentation, the incidence of postweaning diarrhoea (PWD), growth performance, and total-tract apparent digestibility. Sixty weaner pigs weighing 6.1 +/- 0.13 kg (mean +/- SEM) were used in a completely randomised design having five treatments: (i) a high protein diet (HP, 243 g/kg CP) fed for 14 d after weaning (HP14); (ii) a low protein diet (LP, 173 g CP/kg) fed for 5 d after weaning (LP5); (iii) LP diet fed for 7 d after weaning (LP7); (iv) LP diet fed for 10 d after weaning (LP10), and (v) LP diet fed for 14 d after weaning (LP14). All diets were supplemented with lysine, methionine, tryptophan and threonine, with all LP diets additionally fortified with crystalline isoleucine and valine to conform to a proposed ideal amino acid (AA) pattern. A second-stage diet (215 g CP/kg) was fed to pigs at the conclusion of each treatment. None of the diets contained antimicrobial compounds. Feeding a LP diet, regardless of duration of feeding, decreased plasma urea nitrogen (p < 0.001) and faecal ammonia-nitrogen (p < 0.001) contents. Feeding a LP diet, irrespective of feeding duration, decreased the incidence of PWD at day 8 after weaning (p = 0.044), and pigs fed diets LP7, LP010 and LP14 had firmer faeces (p = 0.030, p = 0.047 and p = 0.007, respectively) between days 10 and 12 after weaning. Treatments LP5, LP7, LP10 and LP14 did not reduce (p > 0.05) growth performance up to 106 days after weaning compared to pigs fed the HP diet. Total-tract apparent digestibility of dry matter, energy and crude protein were similar (p > 0.05) between treatments. Our data suggest that feeding a LP diet, supplemented with AA to conform to an ideal AA pattern, for 7-10 days after weaning can reduce PWD in pigs fed antibiotic-free diets without compromising production.  相似文献   

9.
To assess the role of beta-adrenergic stimulation in cardiovascular conditioning we examined the effects of a beta-adrenergic blocker, propranolol, in mongrel dogs during an 8-wk treadmill-training program. Seven dogs were trained without a drug (NP), six were trained on propranolol 10 mg.kg-1.day-1 (P), and five served as caged controls (C). Effective beta-adrenergic blockade was documented by a decrease in peak exercise heart rate of 54 +/- 11 (SE) beats/min (P less than 0.05) and a one-log magnitude of increase in the isoproterenol-heart rate dose-response curve. Testing was performed before drug treatment or training and again after training without the drug for 5 days. Submaximal exercise heart rate decreased similarly in both NP and P (-26 +/- 4 NP vs. -25 +/- 9 beats/min P, P less than 0.05 for both) but peak heart rate decreased only with NP (-33 +/- 9 beats/min, P less than 0.05). Treadmill exercise time increased similarly in both groups: 3.4 +/- 0.6 min in NP and 3.0 +/- 0.2 min in P (both P less than 0.05). Blood volume also increased after training in both groups: 605 +/- 250 ml (26%) in NP and 377 +/- 140 ml (17%) in P (both P less than 0.05). Submaximal exercise arterial lactates were reduced similarly in both groups but peak exercise lactate was reduced more in NP (-1.4 +/- 0.3 NP vs -0.3 +/- 0.12 mmol/l P, P less than 0.05). Lactate threshold increased in both groups but the increase was greater in NP (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
High protein (HP) diets are often used as a means to reduce obesity, but their long-term effects remain unclear. In vitro studies suggest the involvement of a subset of oxylipins in the tissue response to HP diets. To examine the role of these bioactive lipids in vivo, normal adult male Sprague Dawley rats were provided isocaloric diets with LP (low protein, 8% protein by weight), NP (normal protein, 14%) or HP (50%) diets for 2 weeks, and targeted lipidomic analysis of oxylipins in kidney (cortex and medulla), liver and serum was performed by HPLC-MS/MS. The main group of oxylipins affected by the HP diet was the oxylipins derived from linoleic acid (LA), many of which were elevated in kidney (particularly the medulla) and liver, but reduced in serum of rats provided the HP compared to NP or LP diets. A smaller proportion of other n-6 fatty acid derived oxylipins were lower in kidney and higher in liver, and none were affected in serum, by HP feeding. Few n-3 oxylipins were affected by protein level. In liver only, the oxylipin product to substrate ratios of the soluble epoxide hydrolase enzyme were higher in LP fed rats. Differences between cortex and medulla oxylipins suggest relatively higher cortex activity of 5- and 8-lipoxygenase and cytochrome P450 hydroxylase, and higher medulla cyclooxygenase and 12- and 15-lipoxygenase activity. Further studies are needed to elucidate the physiological effects of the changes in these novel oxylipins in response to short-term dietary HP.  相似文献   

11.
17alpha-Methyltestosterone-4-(14)C was fed to two dogs in an experiment to determine tissue localization and metabolic disposition of this hypocholesterolemic steroid. No accumulation of the drug was found in any tissue, although a small amount of radioactivity was detected in the liver and the ileal mucosa of one animal. Most of the administered radio-activity was excreted in urine and feces. The urinary metabolites consisted largely of highly polar compounds which appeared resistant to glucuronidase treatment or solvolysis procedures. Analysis of the fecal metabolites showed the presence of unchanged methyltestosterone, of four isomeric methylandrostanediols, and of labeled unidentified polar compounds. Of the four identified methylandrostane-diols, the predominating fecal diols were 17alpha-methyl-5alpha-androstane-3beta,17beta-diol (45-62%) and 17alpha-methyl-5-androstane-3alpha,17-diol (12-28%); 17alpha-methyl-5alpha-androstane-3alpha,-17-diol and the 5beta:3beta isomer were found in very small amounts only.  相似文献   

12.
Macronutrient composition of diets can influence body-weight development and energy balance. We studied the short-term effects of high-protein (HP) and/or high-fat (HF) diets on energy expenditure (EE) and uncoupling protein (UCP1-3) gene expression. Adult male rats were fed ad libitum with diets containing different protein-fat ratios: adequate protein-normal fat (AP-NF): 20% casein, 5% fat; adequate protein-high fat (AP-HF): 20% casein, 17% fat; high protein-normal fat (HP-NF): 60% casein, 5% fat; high protein-high fat (HP-HF): 60% casein, 17% fat. Wheat starch was used for adjustment of energy content. After 4 days, overnight EE and oxygen consumption, as measured by indirect calorimetry, were higher and body-weight gain was lower in rats fed with HP diets as compared with rats fed diets with adequate protein content (P<.05). Exchanging carbohydrates by protein increased fat oxidation in HF diet fed groups. The UCP1 mRNA expression in brown adipose tissue was not significantly different in HP diet fed groups as compared with AP diet fed groups. Expression of different homologues of UCPs positively correlated with nighttime oxygen consumption and EE. Moreover, dietary protein and fat distinctly influenced liver UCP2 and skeletal muscle UCP3 mRNA expressions. These findings demonstrated that a 4-day ad libitum high dietary protein exposure influences energy balance in rats. A function of UCPs in energy balance and dissipating food energy was suggested. Future experiments are focused on the regulation of UCP gene expression by dietary protein, which could be important for body-weight management.  相似文献   

13.
Modest maternal dietary protein restriction in the rat leads to hypertension in adult male offspring. The purpose of this study was to determine whether female rats are resistant to developing the increased blood pressure seen in male rats after maternal protein restriction. Pregnant rats were fed a normal protein (19%, NP) or low-protein (8.5%, LP) diet throughout gestation. Renal renin protein and ANG II levels were reduced by 50-65% in male LP compared with NP pups, but were not suppressed in female LP compared with female NP. Mean arterial pressure in conscious, chronically instrumented adult female offspring (22 wk) was not different in LP (LP: 120 +/- 3 mmHg vs. NP: 121 +/- 2 mmHg), and glomerular filtration rate was also not different in LP vs. NP. The number of glomeruli per kidney was similar in adult LP and NP female offspring (LP: 26,050 +/- 2,071 vs. NP: 26,248 +/- 1,292, NP), and individual glomerular volume was also not different (LP: 0.92 +/- 0.11 10(6) microm(3), LP vs. NP: 1.07 +/- 0.11 10(6) microm(3)); the total volume of all glomeruli per kidney was also not significantly different. Thus female rats are relatively resistant to the programming for adult hypertension by perinatal protein restriction that we have described in males. This resistance may be due to the fact that modest maternal protein restriction does not reduce the number of glomeruli with which females are endowed as it does in males. The intrarenal renin-angiotensin system during development may play a key role in this protective effect of female gender.  相似文献   

14.
Studies have shown that dietary fat saturation affects guinea pig plasma low density lipoprotein (LDL) levels by altering both LDL receptor-mediated catabolism and flux rates of LDL (Fernandez et al. 1992. J. Lipid Res. 33: 97-109). The present studies investigated whether saturated fatty acids of varying chain lengths have differential effects on LDL metabolism. Guinea pigs were fed 15% (w/w, 35% calories) fat diets containing either palm kernel oil (PK), 52% lauric acid/18% myristic acid; palm oil (PO), 43% palmitic acid/4% stearic acid; or beef tallow (BT), 23% palmitic acid/14% stearic acid. Plasma LDL cholesterol levels were significantly higher for animals fed the PK diet (P < 0.001) with values of 83 +/- 19 (n = 12), 53 +/- 8 (n = 12) and 44 +/- 16 (n = 10) mg/dl for PK, PO, and BT diets, respectively. The relative percentage composition of LDL was modified by fat type; however, LDL diameters and peak densities were not different between diets, indicating no effect of saturated fatty acid composition on LDL size. ApoB/E receptor-mediated LDL fractional catabolic rates (FCR) were significantly lower in animals fed the PK diet (P < 0.01) and LDL apoB flux rates were reduced (P < 0.01) in animals fed the BT diet. A correlation was found between plasma LDL levels and receptor-mediated LDL catabolism (r = -0.66, P < 0.01). A higher apoB/E receptor number (Bmax), determined by in vitro LDL binding to guinea pig hepatic membranes, was observed for animals fed BT versus PK or PO diets and Bmax values were significantly correlated with plasma LDL levels (r = -0.776, P < 0.001). These results indicate that saturated fatty acids of varying chain length have differential effects on hepatic apoB/E receptor expression and on LDL apoB flux rates which in part account for differences in plasma LDL cholesterol levels of guinea pigs fed these saturated fats.  相似文献   

15.
We investigated the effects of dietary phosphorus (P) intake on the bone mineralization and calcium (Ca) absorption in adult female rats. Fifteen 16-wk-old female Wistar rats were divided into three groups, and respectively fed a low-P diet containing 0.15% P (LP), a control diet containing 0.5% P (C), and a high-P diet containing 1.5% P (HP) for 42 d. The apparent Ca absorption was significantly increased with decreasing dietary P level. The serum parathyroid hormone concentration was significantly lower in the LP group than in the C and HP groups. The serum osteocalcin concentration and urinary excretion of deoxypyridinoline were significantly higher in the HP groups than in the LP and C groups. The bone mineral density of the fifth lumbar vertebra was significantly increased with decreasing dietary P level. These results indicate that the low-P diet increased Ca absorption, this being effective for bone mineralization in adult female rats.  相似文献   

16.
The natural survival, relative to properly chosen controls, of 26 beagle dogs injected once intravenously with an average of 0.58 +/- 0.04 kBq 239Pu/kg, 23 dogs injected with 2.31 +/- 0.43 kBq 226Ra/kg, 13 dogs injected with 1.84 +/- 0.26 kBq 228Ra/kg, 12 dogs injected with 0.56 +/- 0.030 kBq 228Th/kg, and 12 dogs injected with 21.13 +/- 1.74 kBq 90Sr/kg was evaluated statistically. The amounts of these radionuclides are related directly to the estimated maximum permissible body burdens for humans suggested in ICRP II (1959). They constitute a level of exposure that initially was assumed to cause no deleterious effects in dogs. This study had two objectives: (1) identification of homogeneous control groups against which to evaluate the survival of the irradiated groups and (2) comparison of the survival characteristics and estimation of mortality or hazard rate ratios for control dogs vs dogs injected with the baseline dosages given above. It was shown, by goodness-of-fit plots, that the Cox proportional hazards model was an appropriate method of analysis. Therefore, covariates that possibly could influence survival were tested for significance. Only the effects of grand mal seizure, which is caused in epileptic dogs by an external stimulus and can be fatal if untreated, were significant (P less than 0.0001). Consequently, in the final model, death from grand mal seizure was considered as accidental. After censoring the dogs dying from grand mal seizure, it was established that the data for the control groups from previous and contemporary experiments could be pooled. The change in hazard rates relative to controls resulting from exposure to the baseline radionuclide level was modest, 1.6 times for 239Pu (P = 0.033), 1.0(4) for 226Ra (P = 0.86), 1.9 for 228Ra (P = 0.035), 2.5 for 228Th (P less than 0.001), and 0.52 for 90Sr (P = 0.041). Bone tumor induction was clearly elevated in dogs injected with 239Pu and 228Th. When the effect of these bone tumors on survival was removed by censoring, the dogs injected with 239Pu were indistinguishable from the controls. In contrast, the effects of bone tumor on group survival of the 228Ra and 228Th dogs were not significant. Thus, no additional life-shortening effects beyond those attributable to bone tumor were suggested by these data for 239Pu, but other, as yet unspecified, confounders are suggested for 228Ra and 228Th.  相似文献   

17.
We had previously observed that drastic increases in protein consumption greatly modified hepatic protein anabolism in rats, but the confounding effects of other macronutrient changes or a moderate protein increase to generate the same modifications have not yet been established. This study examined the metabolic and hormonal responses of rats subjected to 14-day isoenergetic diets containing normal, intermediate, or high-protein levels (NP: 14% of energy, IP: 33%, HP: 50%) and different carbohydrate (CHO) to fat ratios within each protein level. Fasted or fed rats (n = 104) were killed after the injection of a flooding dose of (13)C-valine. The hepatic protein content increased in line with the dietary protein level (P < 0.05). The hepatic fractional synthesis rates (FSR) of protein were significantly influenced by both the protein level and the nutritional state (fasted vs. fed) (P < 0.0001) but not by the CHO level, reaching on average 110%/day, 92%/day, and 83%/day in rats fed the NP, IP, and HP diets, respectively. The FSR of plasma albumin and muscle did not differ between diets, while feeding tended to increase muscle FSR. Proteolysis, especially the proteasome-dependent system, was down-regulated in the fed state in the liver when protein content increased. Insulin decreased with the CHO level in the diet. Our results reveal that excess dietary protein lowers hepatic constitutive, but not exported, protein synthesis rates, independently of the other macronutrients, and related changes in insulin levels. This response was observed at the moderate levels of protein intake (33%) that are plausible in a context of human consumption.  相似文献   

18.
Urinary and fecal estrogen excretion were studied in male rats fed a non-fiber wheat starch diet (dietary fiber less than 1%; NF group; n = 4), a low-fiber wheat flour diet (dietary fiber 2%; LF group; n = 4) or a high-fiber wheat bran diet (dietary fiber 11.6%; HF group; n = 3). Short-term effects of the experimental diet on estrogen excretion were studied after i.v. injection of 5 microCi (0.185 MBq) of [14C]estradiol-17 beta (E2) into the tail vein of the rats fed the diets for 2 days. After 3 weeks on the experimental diets, the long-term effects were studied after injection of 5 microCi of [14C]E2 and 10 microCi of [3H]estrone-3-glucuronide (E1-gluc). The diet was found to affect estrogen excretion. The short-term effect indicated that rats fed the HF diet excreted a relatively large amount of labeled compounds in the feces during the first day after injection, while rats fed the NF or the LF diets excreted about half that amount over the same period. On the other hand, urinary excretion of labeled compounds was significantly higher in the NF and LF rats. The long-term effect resulted in steeper slopes (P less than 0.05) of the fecal excretion profiles of rats fed the HF diet as compared with rats fed the NF and LF diets, indicating an accelerated fecal excretion of labeled compounds in the HF rats. The kinetic profiles of 14C and 3H radioactivity in blood plasma indicated a fast decrease (t1/2 of less than 2 min) for both [14C]E2 and [3H]E1-gluc. It was concluded that, owing to the short-term effect of wheat bran intake, during the first 24 h after i.v. administration relatively large amounts of radioactively labeled compounds are excreted in feces of rats fed the HF diet. In contrast, excretion is lower in urine of these rats. When the microflora is adapted to the experimental diet the wheat bran diet still results in an accelerated fecal excretion of labeled compounds, which might be attributed to an interruption of the enterohepatic circulation of estrogens. This might result in lowered plasma and/or tissue estrogen levels and hence a decreased exposure of estrogen-sensitive tissue to estrogens, which might decrease risk on mammary (breast) cancer development.  相似文献   

19.

Objective:

This study assessed the effectiveness of a prescribed weight‐loss diet with 0.8 versus 1.4 g protein·kg?1 day?1 on changes in weight, body composition, indices of metabolic syndrome, and resting energy expenditure (REE) in overweight and obese men.

Design and Methods:

Men were randomized to groups that consumed diets containing 750 kcal day?1 less than daily energy needs for weight maintenance with either normal protein (NP, n = 21) or higher protein (HP, n = 22) content for 12 weeks. The macronutrient distributions of the NP and HP diets were 25:60:15, and 25:50:25 percent energy from fat, carbohydrate, and protein, respectively. Assessments were made pre and post intervention. The subjects were retrospectively subgrouped into overweight and obese groups.

Results and Conclusion:

Both diet groups lost comparable body weight and fat. The HP group lost less lean body mass than the NP group (?1.9 ± 0.3 vs. ?3.0 ± 0.4 kg). The effects of protein and BMI status on lean body mass loss were additive. The reductions in total cholesterol, HDL‐C, triacylglycerol, glucose, and insulin, along with LDL‐C, total cholesterol‐to‐HDL‐C ratio, and HOMA‐IR, were not statistically different between NP and HP. Likewise, macronutrient distributions of the diet did not affect the reductions in REE, and blood pressure. In conclusion, energy restriction effectively improves multiple clinical indicators of cardiovascular health and glucose control, and consumption of a higher‐protein diet and accomplishing weight loss when overweight versus obese help men preserve lean body mass over a short period of time.
  相似文献   

20.
We studied bred and unbred female reindeer (Rangifer tarandus tarandus) during 12 wk of winter when ambient temperatures were low and nitrogen (N) demand for fetal growth is highest in pregnant females. Animals were fed a complete pelleted diet ad lib. that contained 2.54% N in dry matter that was 80% +/- 2% (X +/- SD) digestible. Female reindeer lost 64% +/- 14% of body fat but gained 34% +/- 11% of lean mass from 10 wk prepartum to parturition. These changes were equivalent to average balances of -14.14 +/- 2.35 MJ d(-1) and 10 +/- 3 g N d(-1). Blood cells, serum, and urine declined in (15)N/(14)N in late winter as body protein was gained from the diet. Blood cells of newborn calves were more enriched in (15)N and (13)C than that of their mothers, indicating the deposition of fetal protein from maternal stores. To quantify pathways of N flow in reindeer, N balance was measured by confining animals to cages for 10 d at 4 wk from parturition. N balance was inversely related to (15)N/(14)N in urea-N but not related to (15)N/(14)N of blood cells, creatinine, and feces. The proportion of urea-N derived from body protein increased above 0.46 as N balance fell below -200 mg N kg(-0.75) d(-1). Proportions of urea-N from body protein were -0.01 +/- 0.21 in pregnant females before and after caging and were consistent with average body protein gain in winter. Storage of protein allows reindeer and caribou to tolerate diets that are low in N without impairing fetal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号