首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bystander effects in radiation-induced genomic instability   总被引:4,自引:0,他引:4  
Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine of 11 clones demonstrated a significantly higher than expected involvement of these interstitial telomere repeat-like sequences at the recombination junction between the human and hamster chromosomes. Since elevated levels of endogenous breaks were not detected in unstable clones we propose that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate the unstable phenotype. Specifically, we expand upon the hypothesis that radiation induces conditions and/or factors that stimulate the production of reactive oxygen species (ROS). These reactive intermediates then contribute to a chronic pro-oxidant environment that cycles over multiple generations, promoting chromosomal recombination and other phenotypes associated with genomic instability.  相似文献   

2.
Exposure to ionizing radiation can induce a heritable change in the unirradiated progeny of irradiated cells. This non-targeted effect of ionizing radiation manifests as genomic instability, and although there is some debate as to the role of genomic instability in the carcinogenic process, it is thought by some to be an early step in radiation carcinogenesis. Although the mechanism of induction of genomic instability is not clearly understood, evidence suggests that secreted factors from irradiated cells may be involved. We have previously identified another non-targeted effect of ionizing radiation, the death-inducing effect. Exposure of unirradiated GM10115 cells to medium from chromosomally unstable clones was generally found to be cytotoxic. However, occasionally cells will survive in medium from unstable clones and can be clonally expanded. The absolute yield of survivors is independent of the initial number of cells plated when cell densities reached 5,000 or more cells/dish. After cytogenetic analysis of the surviving colonies, we found chromosomal instability in three of 40 clones analyzed, while some clones exhibited increased micronucleus frequency and HPRT mutation frequency. These data suggest that our chromosomally unstable GM10115 cells secrete factors that are cytotoxic to the majority of stable, parental cells but are also capable of inducing a heritable change in some of the survivors that can manifest as delayed genomic instability. These results suggest a mechanism whereby instability can be perpetuated through the influences of potentially cytotoxic factors produced by genomically unstable clones.  相似文献   

3.
Radiation-induced genomic instability (RIGI) manifests in the progeny of cells surviving ionizing radiation (IR), and can be measured using such endpoints as delayed mutation, micronuclei formation, and chromosomal instability. The frequency of RIGI is relatively high, exceeding the gene mutation rate of IR by orders of magnitude, leading to conjecture that a gene mutation is not the cause of the phenotype. We have started to explore whether differential gene expression patterns are associated with the instability phenotype, in order to shed light on its initiation and perpetuation. Using GM10115 human-hamster hybrid-derived chromosomally stable and radiation-induced unstable clones, gene expression patterns were analyzed using microarray analysis. Two methods were used to find differentially expressed genes, and all candidate genes identified by these methods were under-expressed relative to the chromosomally stable reference sample. Among this set differentially expressed genes identified were two candidates with a relationship to the ubiquitin/proteasome pathway. While follow-up gene expression analyses have confirmed the under-expression of these two genes in some of our chromosomally unstable clones, preliminary functional studies have been unable to demonstrate a link to instability. It is anticipated that as we apply this technology to the study of radiation-induced genomic instability, clues to its onset will be revealed, ultimately contributing to a greater understanding of the mechanisms of radiation carcinogenesis.  相似文献   

4.
Radiation-induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear; however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation-induced genomic instability we have evaluated the mitochondrial subproteome and performed quantitative mass spectrometry analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and upregulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype, and evaluation of gene and microRNA expression suggests that epigenetics play a role in the phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under suboptimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability.  相似文献   

5.
Radiation induced genomic instability is a well-studied phenomenon, the underlying mechanisms of which are poorly understood. Persistent oxidative stress, mitochondrial dysfunction, elevated cytokine levels and epigenetic changes are among the mechanisms invoked in the perpetuation of the phenotype. To determine whether epigenetic aberrations affect genomic instability we measured DNA methylation, mRNA and microRNA (miR) levels in well characterized chromosomally stable and unstable clonally expanded single cell survivors of irradiation. While no changes in DNA methylation were observed for the gene promoters evaluated, increased LINE-1 methylation was observed for two unstable clones (LS12 and CS9) and decreased Alu element methylation was observed for the other two unstable clones (115 and Fe5.0–8). These relationships also manifested for mRNA and miR expression. mRNA identified for the LS12 and CS9 clones were most similar to each other (261 mRNA), while the 115 and Fe5.0–8 clones were more similar to each other, and surprisingly also similar to the two stable clones, 114 and 118 (286 mRNA among these four clones). Pathway analysis showed enrichment for pathways involved in mitochondrial function and cellular redox, themes routinely invoked in genomic instability. The commonalities between the two subgroups of clones were also observed for miR. The number of miR for which anti-correlated mRNA were identified suggests that these miR exert functional effects in each clone. The results demonstrate significant genetic and epigenetic changes in unstable cells, but similar changes are almost as equally common in chromosomally stable cells. Possible conclusions might be that the chromosomally stable clones have some other form of instability, or that some of the observed changes represent a sort of radiation signature and that other changes are related to genomic instability. Irrespective, these findings again suggest that a spectrum of changes both drive genomic instability and permit unstable cells to persist and proliferate.  相似文献   

6.
Snyder AR  Morgan WF 《DNA Repair》2005,4(9):958-970
The relatively high frequency with which ionizing radiation induces genomic instability suggests that a gene mutation occurring after irradiation is an unlikely cause of the phenotype. To search for mechanism(s) of initiation and perpetuation of this instability phenotype, gene expression profiles of clones exhibiting delayed chromosomal instability were analyzed. Microarray analysis using two pools of isogenic radiation-induced chromosomally unstable clones compared to an irradiated but chromosomally stable clone uncovered a set of 68 differentially expressed genes using two methods of analysis. Unexpectedly, all 68 genes were under-expressed relative to the chromosomally stable reference clone. Further analysis of the candidates placed the differentially expressed genes into pathways implicating differential MAP kinase signaling, ubiquitin/proteasome function, DNA repair, cell cycle control, lipid signaling, nucleotide metabolism, and other potentially disrupted pathways. Validation studies using northern and western blotting, and functional assays concluded that although differences in some of these pathways exist, no single gene or molecular pathway was found to be differentially regulated in all of the chromosomally unstable clones tested. Inferred from these data is that there are multiple potential molecular pathways and/or events that maintain the unstable phenotype, and no single expression pattern is linked to instability in the unstable clones analyzed.  相似文献   

7.
Delayed reproductive cell death or lethal mutations in the survivors of irradiated cells is a well-characterized end point associated with radiation-induced genomic instability. Although the mechanism for this delayed lethality has not been identified, it is thought to be a means of eliminating cells that have sustained extensive damage, thus preventing tissue disruption after radiation exposure. In this study we have tested the hypothesis that delayed reproductive cell death in chromosomally unstable GM10115 clones is due to persistently increased levels of apoptosis. Evidence for differences in apoptosis in two representative genomically unstable clones after irradiation is presented. In addition, one of the unstable clones was found to have abnormal levels of apoptosis after radiation exposure. An understanding of apoptosis in genomically unstable clones may provide insight into the maintenance of genomic instability and the mechanism by which genomically unstable cells evade cell death, potentially contributing to carcinogenesis.  相似文献   

8.
Genomic instability is a highly pleiotropic phenotype, which may reflect a variety of underlying mechanisms. Destabilization has been shown in some cases to involve mutational alteration or inactivation of trans-acting cellular factors, for example, p53 or mismatch repair functions. However, aspects of instability are not well explained by mutational inactivation of trans-acting factors, and other epigenetic and cis-acting mechanisms have recently been proposed. The trans and cis models result in divergent predictions for the distribution of instability-associated genetic alterations within the genome, and for the inheritance of genomic instability among sibling sub-clones of unstable parents. These predictions have been tested in this study primarily by tracking the karyotypic distribution of chromosomal rearrangements in clones and sub-clones exhibiting radiation-induced genomic instability; inheritance of mutator phenotypes was also analyzed. The results indicate that genomic instability is unevenly transmitted to sibling sub-clones, that chromosomal rearrangements within unstable clones are non-randomly distributed throughout the karyotype, and that the majority of chromosomal rearrangements associated with instability affect trisomic chromosomal segments. Observations of instability in trisomic regions suggests that in addition to promoting further alterations in chromosomal number, aneuploidy can affect the recovery of structural rearrangements. In summary, these findings cannot be fully explained by invoking a homogeneously distributed factor acting in trans, but do provide support for previous suggestions that genomic instability may in part be driven by a cis-acting mechanism.  相似文献   

9.
J Lotem  L Sachs 《The EMBO journal》1986,5(9):2163-2170
There are clones of myeloid leukemic cells which are different from normal myeloid cells in that they have become independent of hematopoietic growth factor for cell viability and growth. The ability of these clones to bind three types of hematopoietic growth factors (MGI-1GM = GM-CSF, IL-3 = multi-CSF and MGI-1M = M-CSF = CSF-1) was measured using the method of quantitative absorption at 1 degree C and low pH elution of cell-bound biological activity. Results of binding to normal myeloid and lymphoid cells were similar to those obtained by radioreceptor assays. The results indicate that the number of receptors on different clones of these leukemic cells varied from 0 to 1,300 per cell. The receptors have a high binding affinity. Receptors for different growth factors can be independently expressed in different clones. There was no relationship between expression of receptors for these growth factors and the phenotype of the leukemic cells regarding their ability to be induced to differentiate. The number of receptors on the leukemic cells was lower than on normal mature macrophages. Myeloid leukemic cells induced to differentiate by normal myeloid cell differentiation factor MGI-2 (= DF), or by low doses of actinomycin D or cytosine arabinoside, showed an up-regulation of the number of MGI-1GM and IL-3 receptors. Induction of differentiation of leukemic cells by MGI-2 also induced production and secretion of the growth factor MGI-1GM, and this induced MGI-1GM saturated the up-regulated MGI-1GM receptors. It is suggested that up-regulation of these receptors during differentiation is required for the functioning of differentiated cells.  相似文献   

10.
Radiation induced genomic instability can be described as the increased rate of genomic alterations occurring in the progeny of an irradiated cell. Its manifestations are the dynamic ongoing production of chromosomal rearrangements, mutations, gene amplifications, transformation, microsatellite instability, and/or cell killing. In this prospectus, we present the hypothesis that cellular exposure to ionizing radiation can result in the secretion of soluble factors by irradiated cells and/or their progeny, and that these factors can elicit responses in other cells thereby initiating and perpetuating ongoing genomic instability.  相似文献   

11.
Exposure to ionizing radiation can result in delayed effects that can be detected in the progeny of an irradiated cell multiple generations after the initial exposure. These effects are described under the rubric of radiation-induced genomic instability and encompass multiple genotoxic endpoints. We have developed a green fluorescence protein (GFP)-based assay and demonstrated that ionizing radiation induces genomic instability in human RKO-derived cells and in human hamster hybrid GM10115 cells, manifested as increased homologous recombination (HR). Up to 10% of cells cultured after irradiation produce mixed GFP(+/-) colonies indicative of delayed HR or, in the case of RKO-derived cells, mutation and deletion. Consistent with prior studies, delayed chromosomal instability correlated with delayed reproductive cell death. In contrast, cells displaying delayed HR showed no evidence of delayed reproductive cell death, and there was no correlation between delayed chromosomal instability and delayed HR, indicating that these forms of genome instability arise by distinct mechanisms. Because delayed hyperrecombination can be induced at doses of ionizing radiation that are not associated with significantly reduced cell viability, these data may have important implications for assessment of radiation risk and understanding the mechanisms of radiation carcinogenesis.  相似文献   

12.
In order to study the soluble factor(s) that play an important role for the differentiation of IgG2-secreting B cells, we examined whether membrane IgG2a (mIgG2a)-bearing BALB/c B-lymphoid tumor cells, A20, could be induced to secrete IgG2a after treatment with soluble factors. We detected a potent B-cell differentiation activity inducing the Ig secretion of A20 tumor cells (BCDF-A20) in supernatants of several soluble antigens as well as alloantigen-specific T-cell clones of various genetic backgrounds. Thus, this BCDF-A20 activity was working in an antigen-nonspecific and MHC-nonspecific manner and abundant in many T-cell clones. It was shown that neither interleukin 1, interleukin 2, interferon, T-cell replacing factor, B-cell maturation factor, nor B-cell stimulatory factor-1 alone had any significant effect on the induction of Ig secretion of A20 tumor cells. Using isotype-specific rabbit anti-mouse Ig developers, we showed that mIgG2a+ A20 tumor cells secreted IgG2a after the treatment with soluble factors. The peak of the response of A20 tumor cells to BCDF-A20 was obtained 3 days after the treatment with culture supernatants of T-cell clones. In this study, we have clearly shown that mIgG2a+ A20 tumor cells were able to secrete IgG2a after treatment with T-cell soluble factors.  相似文献   

13.
A panel of 55 alloreactive murine T-lymphocyte clones was screened for the production of granulocyte-macrophage colony stimulating factor (GM-CSF), multilineage CSF (multi-CSF), human-active eosinophil CSF (human-active EO-CSF), and interleukin 2 (IL-2) in response to stimulation with the lectin concanavalin A. Many clones were also characterized for cytolytic specificity and expression of the T-cell antigen receptor-associated surface markers Lyt-2 and L3T4, which reflect their specificity for Class I (H-2K, H-2D) or Class II (H-2l, Mls) histocompatibility antigens, respectively. Eighty percent of the clones secreted detectable quantities of at least one of the four factors measured. Of the factor-producing clones, all appeared to secrete GM-CSF and half also secreted multi-CSF. A subpopulation of multi-CSF producers also released human-active EO-CSF. More than half of the factor-producing clones secreted detectable IL-2; whereas the IL-2-producing clones included some that did not secrete multi-CSF, IL-2 production was always associated with concomitant synthesis of GM-CSF. Comparison of the range and quantities of factors secreted by Lyt-2+ and L3T4+ clones indicated that more L3T4+ clones produced measurable titers of the four factors; on average, this group also secreted 10- to 100-fold higher titers of both the hemopoietic regulators and IL-2 than Lyt-2+ clones. Cells of the L3T4+ phenotype would therefore be expected to account for the majority of CSF and IL-2 secretion by polyclonal populations of activated T lymphocytes.  相似文献   

14.
Functional heterogeneity among human inducer T cell clones   总被引:12,自引:0,他引:12  
Analysis of mouse CD4+ inducer T cells at the clonal level has established that a dichotomy among CD4+ T cell clones exists with regard to types of lymphokines secreted. Mouse T cell clones designated Th1 have been shown to secrete IL-2 and IFN-gamma, whereas T cell clones designated Th2 have been shown to produce IL-4 but not IL-2 or IFN-gamma. To determine if such a dichotomy in the helper inducer T cell subset occurred in man, we examined a panel of human CD4+ helper/inducer T cell clones for patterns of lymphokine secretion and for functional activity. We identified human T cell clones which secrete IL-4 but not IL-2 or IFN-gamma, and which appeared to correspond to murine Th2 clones. In marked contrast to murine IL-2 secreting Th1 clones which do not produce IL-4 or IFN-gamma, we observed that some human T cell clones secrete IL-2, and IFN-gamma as well as IL-4. Southern blot analysis indicated that these multi-lymphokine-secreting clones represented the progeny of a single T cell. IL-4 secretion did not always correlated with enhanced ability to induce Ig synthesis. Although one T cell clone which secreted IL-2, IL-4, and IFN-gamma could efficiently induce Ig synthesis, another expressed potent cytolytic and growth inhibitory activity for B cells, and was ineffective or inhibitory in inducing Ig synthesis. These results indicate that although the equivalent of murine Th2 type cells appears to be present in man, the simple division of T cells into a Th1 and Th2 dichotomy may not hold true for human T cells.  相似文献   

15.
Human atopen-specific types 1 and 2 T helper cell clones.   总被引:11,自引:0,他引:11  
Eight representative T lymphocyte clones (TLC) randomly selected from previously described panels of CD4+ housedust mite Dermatophagoides pteronyssinus (Dp)-specific TLC from atopic and nonatopic donors were studied in more detail in a comparative investigation. The TLC from the atopic donors closely resembled murine type 2 Th (Th2) cells by secreting substantial IL-4, IL-5, IL-6, TNF-alpha, and granulocyte-macrophage (GM)-CSF, minimal IFN-gamma, and relatively little IL-2. In contrast, the nonatopic's TLC resembled murine type 1 Th (TH1) cells by secreting substantial IFN-gamma, IL-2, TNF-alpha, and GM-CSF, no IL-4, and little IL-5. A difference with murine Th1 cells was their additional secretion of IL-6. These cytokine profiles were consistent upon stimulation via different activation pathways including stimulation with specific Dp Ag, mitogenic lectins, and antibodies to CD2, CD3, or CD28. The observed differences in IL-2 secretion, however, were most evident upon stimulation with anti-CD28. If TLC cells were cultured with highly purified B cells and stimulated with anti-CD3 in the absence of exogenous IL-4, IgE synthesis was induced only in cultures with the atopics' Th2 clones, which could be completely abrogated by anti-IL-4. The mere presence of exogenous rIL-4, however, did not result in IgE synthesis, nor did unstimulated TLC cells alone. But if unstimulated TLC cells (that proved not to secrete detectable amounts of cytokines) were added together with rIL-4, again IgE synthesis was induced only in cultures with the atopics' Th2 clones, suggesting the involvement of an additional, as yet unidentified accessory helper function of the atopics' Th2 clones for IgE induction. Unstimulated Th2 clones showed a significantly higher expression of CD28 than the Th1 clones, but three days after stimulation, CD28 expression was elevated to comparable levels on both subsets. When added to B cells at this time point, together with rIL-4 and anti-IFN-gamma, still only the atopics' Th2 clones supported IgE synthesis, arguing against a role for CD28 in this accessory helper function. Whereas the atopics' Th2 clones were excellent helper cells for IgE induction, a unique property of the nonatopic's Th1 clones was their cytolytic activity toward autologous APC which could be induced by specific Dp Ag and by anti-CD3. The present data provide clear evidence for the existence of Th1 and Th2 cells in man.  相似文献   

16.
To investigate the critical target, dose response and dose-rate response for the induction of chromosomal instability by ionizing radiation, bromodeoxyuridine (BrdU)-substituted and unsubstituted GM10115 cells were exposed to a range of doses (0.1-10 Gy) and different dose rates (0.092-17.45 Gy min(-1)). The status of chromosomal stability was determined by fluorescence in situ hybridization approximately 20 generations after irradiation in clonal populations derived from single progenitor cells surviving acute exposure. Overall, nearly 700 individual clones representing over 140,000 metaphases were analyzed. In cells unsubstituted with BrdU, a dose response was found, where the probability of observing delayed chromosomal instability in any given clone was 3% per gray of X rays. For cells substituted with 25-66% BrdU, however, a dose response was observed only at low doses (<1.0 Gy); at higher doses (>1.0 Gy), the incidence of chromosomal instability leveled off. There was an increase in the frequency and complexity of chromosomal instability per unit dose compared to cells unsubstituted with BrdU. The frequency of chromosomal instability appeared to saturate around approximately 30%, an effect which occurred at much lower doses in the presence of BrdU. Changing the gamma-ray dose rate by a factor of 190 (0.092 to 17.45 Gy min(-1)) produced no significant differences in the frequency of chromosomal instability. The enhancement of chromosomal instability promoted by the presence of the BrdU argues that DNA comprises at least one of the critical targets important for the induction of this end point of genomic instability.  相似文献   

17.
Exposure to ionizing radiation may induce a heritable genomic instability phenotype that results in a persisting and enhanced genetic and functional change among the progeny of irradiated cells. Since radiation-induced bystander effects have been demonstrated with a variety of biological end points under both in vitro and in vivo conditions, this raises the question whether cytoplasmic irradiation or the radiation-induced bystander effect can also lead to delayed genomic instability. In the present study, we used the Radiological Research Accelerator Facility charged-particle microbeam for precise nuclear or cytoplasmic irradiation. The progeny of irradiated and the bystander human hamster hybrid (A(L)) cells were analyzed using multicolor banding (mBAND) to examine persistent chromosomal changes. Our results showed that the numbers of metaphase cells involving changes of human chromosome 11 (including rearrangement, deletion and duplication) were significantly higher than that of the control in the progeny of both nuclear and cytoplasmic targeted cells. These chromosomal changes could also be detected among the progeny of bystander cells. mBAND analyses of clonal isolates from nuclear and cytoplasm irradiations as well as the bystander cell group showed that chromosomal unstable clones were generated. Analyses of clonal stability after long-term culture indicated no significant change in the number of unstable clones for the duration of culture in each irradiated group. These results suggest that genomic instability that is manifested after ionizing radiation exposure is not dependent on direct damage to the cell nucleus.  相似文献   

18.
Human tetanus toxoid specific T-cell lines and clones capable of producing IL-2 were established. IL-2 production occurred only when the antigen-specific T cells were cultured with both tetanus toxoid antigen and an autologous, irradiated adherent cell population. The T-cell lines and clones remained strictly dependent on exogenous IL-2 for proliferation at all other times. Phenotypic characterization with monoclonal antibodies recognizing T-cell subsets revealed that the antigen-specific lines and clones bore predominantly OKT3 and OKT4 markers with essentially no OKT8 positive cells present. T-cell clones which were demonstrated to secrete IL-2 activity could also partially deplete media of IL-2 if cultured in the absence of soluble antigen and irradiated adherent cells.  相似文献   

19.
Summary A screening technique was developed for the identification of clones of hepatoma cells that secrete albumin. The technique employs the overlay of a 1% agarose solution containing antiserum to albumin onto clones of hepatoma cells. A distinct immunoprecipitation complex is formed in the immuno-overlay that corresponds directly to the position of each secreting clone. Clones deficient in albumin secretion do not form an immunoprecipitate. Thus comparison of the immuno-overlay and the cell colonies results in identification of variant clones as well as those capable of secretion. Biochemical characterization of the region of agarose overlay from secreting and nonsecreting clones demonstrates the specificity of the method and its potential for selection of colonies that are secreting other hepatic or cellular proteins. This study was supported by Grant GM 22372 from the Public Health Service. G. J. D. is a recipient of an Established Investigatorship from the American Heart Association.  相似文献   

20.
We investigated whether secretion of multiple cytokines by CD8+ T cells is associated with improved protection against tumor challenge. We show that antitumor immunity induced by immunization with dendritic cells and a MHC class I-binding tumor peptide are dependent on secretion of IFN-gamma but not IL-4 or IL-5 by host cells. To further address the role of IL-4 and IL-5 in antitumor immunity, tumor-specific TCR-transgenic CD8+ T cells were activated in vitro to generate cytotoxic T (Tc) 1 cells that secrete high IFN-gamma and no IL-4 or IL-5 or Tc2 cells that secrete IL-4, IL-5, and some IFN-gamma. Both cell types killed target cells in vitro. Tc1 and Tc2 cells were adoptively transferred into syngeneic hosts, and their ability to protect against tumor challenge was compared. Tc1 cells were able to significantly delay tumor growth, whereas Tc2 cells or Tc2 cells from IFN-gamma(-/-) donors had no effect. This was due to neither the inability of Tc2 cells to survive in vivo or to migrate to the tumor site nor their inability to secrete IL-4 and/or IL-5 in the presence of limiting amounts of anti-CD3. However, IFN-gamma secretion by Tc2 cells was triggered inefficiently by restimulation with Ag compared with anti-CD3. We conclude that the ability to secrete "type 2" cytokines, and cytotoxic ability, have a limited role in antitumor immune responses mediated by CD8+ T cells, whereas the capacity to secrete high amounts of IFN-gamma remains the most critical antitumor effector mechanism in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号