首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serum luteinizing hormone (LH) and cortisol concentrations were measured in ten fall calving, Angus cows averaging 38 +/- 8 days postpartum. Calves from five cows were weaned at the beginning of the study. Blood samples were collected at 20 min. intervals for 48 h after weaning and for 8 h on day 4 and day 6 postweaning. Mean serum LH concentrations increased (P<0.01) in weaned cows (W) from 0.55 +/- 0.01 ng/ml at time of calf removal to 1.3 +/- 0.04 ng/ml 48 h afterwards. Comparable LH concentrations for suckled cows (S) were 0.65 +/- 0.08 ng/ml and 0.62 +/- 0.03 ng/ml respectively. Average serum LH concentrations at 48 h after weaning were greater (P<0.01) for W cows than S cows and a treatment by time interaction occurred (P<0.01) with serum LH concentrations increasing (P<0.01) from time of calf removal to 48 h after calf removal in W cows. Frequency of LH peaks increased (P<0.01) in W cows and by 48 h after weaning was greater (P<0.01) in W cows than in S cows. Magnitude of LH peaks did not differ between the two groups. Serum cortisol concentrations were not different between W and S cows except for a transient elevation (P<0.01) in W cows from 7.6 +/- 0.9 ng/ml to 11.9 +/- 1.0 ng/ml 9 to 12 h after calf removal. Since serum LH concentrations were increased in W cows but not in S cows at 48 h and serum cortisol concentrations increased transiently in W cows we suggest that circulating cortisol levels may not be a physiological inhibitor of LH secretion in the suckled postpartum beef cow.  相似文献   

2.
Two experiments were conducted to determine the effect of days postpartum and exogenous gonadotropin releasing hormone (GnRH) on reproductive hormone and ovarian changes in postpartum suckled beef cows. In experiment 1, eight suckled cows were bled at .5 hour intervals for 4 hours on days 7, 14, 21 and 28 postpartum. Although mean concentrations of plasma luteinizing hormone (LH) were positively correlated with days postpartum, mean concentrations did not differ. The mean maximum change and the variance of plasma LH were low on days 7, 14, 21 and 28 postpartum. Although the number of cows with an ovarian follicle and follicular size increased with days postpartum, mean concentrations of estradiol-17beta did not change. The interval from parturition to the first detected ovarian follicle and the first postpartum estrus was 17.5 +/- 2.6 days and 36.0 +/- 2.2 days, respectively. An elevation in plasma progesterone was detected about one week prior to the first postpartum estrus in 6 of the eight cows in the absence of corpora lutea. In experiment 2, gonadotropin releasing hormone (GnRH) induced ovulation in 4 of the 8 cows treated on day 27, 28 or 29 postpartum whereas none of the 8 saline treated cows ovulated to treatment. The interval from parturition to first estrus and conception were similar for both groups (P >.10).  相似文献   

3.
In the first experiment, the effect of the stress of blood collection (via tail vessel puncture) on serum luteinizing hormone (LH) was evaluated in six nonsuckled first calf Brangus heifers. The animals were bled on days 22 and 31 postpartum at 15 minute intervals for a period of two hours. Blood was processed to yield serum and analyzed for LH via radioimmunoassay (RIA). There were no significant differences or fluctuations in serum LH levels between bleeding periods or between cows. Serum LH concentrations in nonsuckled cows were not affected by the stress of blood collection. In the second experiment, 24 first calf Brangus heifers were randomly assigned to one of four treatment groups. Treatment 1 cows were suckled once daily for approximately 30 min starting day 21 postpartum. Treatment 2 cows were suckled twice daily for approximately 30 min each time, starting 21 days postpartum. Treatment 3 cows were suckled once daily for approximately 30 min starting 30 days postpartum. Treatment 4 cows were suckled twice daily for approximately 30 min each time starting 30 days postpartum. Each cow was bled via tail vessel puncture on days one and nine following the start of each treatment. The blood sampling regime was similar to that used in Experiment 1 and consisted of four presuckling samples taken at 15 min intervals, one midsuckling sample (the calf was allowed to suckle for 15 min) and four postsuckling samples taken at 15 min intervals. Blood was collected, processed to yield serum and assayed for LH via RIA. Suckling intensity (SI) was found to have a significant effect on serum LH levels. The once daily suckled cows had higher (P<.01) mean serum LH levels than did the twice daily suckled cows (1.70 +/- .03 and 1.53 +/- .03 ng/ml, respectively). The LH concentrations decreased (P<.01) from the first to last bleeding time (BT). The mean serum LH levels for the presuckling, midsuckling and the first postsuckling samples were higher (P<.05) than the last postsuckling sample. The mean serum LH level for the first time period prior to suckling was higher (P<.05) than the last postsuckling sample. The mean serum LH level for the first time period prior to suckling was higher (P<.05) than the last two periods after suckling (1.73 +/- .08 ng/ml vs 1.51 +/- .06 and 1.41 +/- .06 ng/ml). Bleeding day (BD) and weaning day (WD) did not alter serum LH levels. The interactions found to be significant (P<.01) were SIxBD, SIxWD, BDxWD and BTxSIxBDxWD.  相似文献   

4.
This study was conducted to determine proopiomelanocortin (POMC) mRNA levels in the preoptic and hypothalamic brain regions of postpartum anestrous cows. An additional objective was to determine if calf suckling influences POMC mRNA concentration in these regions. Twenty cows were randomly assigned to suckled and nonsuckled treatment groups and slaughtered between 30 and 36 days postpartum. Serum luteinizing hormone (LH) concentrations were determined from blood collected every 15 minutes for 8 hours, starting 20 hours prior to slaughter. POMC mRNA levels in brain tissues were determined by dot blots. Serum LH concentrations between nonsuckled and suckled cows were 1.3 +/- 0.2 and 0.9 +/- 0.1 ng.ml(-1) (mean +/- SEM; P = 0.19), respectively. The POMC gene is expressed in the hypothalamus of postpartum anestrus cows with POMC mRNA levels higher (P<0.05) in the hypothalamus than in the preoptic region. Hypothalamic POMC mRNA levels tended (P = 0.12) to be lower in nonsuckled (14.9 +/- 3.8 ADU) than in suckled cows (23.5 +/- 3.6 ADU). Covariate analysis indicated (P = 0.10) that as mean serum LH concentrations increased, hypothalamic POMC mRNA levels decreased.  相似文献   

5.
Ten primiparous crossbred cows were assigned to two dietary groups at calving. One group received 120% and the other group received 80% of the National Research Council (NRC) recommended allowance of dietary energy for primiparous cows. At 60 days postpartum, calves were removed from their dams. Blood samples were collected from the cows at 15-min intervals for 8 hr beginning at the time of calf removal and again 24 hr, 48 hr and 72 hr after calf removal. At 72 hr after calf removal, all cows were given 200 ug GnRH intravenously. At calf removal, serum LH concentrations were higher (P<0.01) for cows on 120% (0.9 +/- 0.03 ng/ml) compared to cows on 80% (0.5 +/- 0.03 ng/ml) of recommendations. Serum LH concentrations increased (1.6 +/- 0.1 ng/ml, P<0.01) by 24 hr in cows on the highenergy diet. In contrast, a similar increase was not observed in cows on the low-energy diet until 48 hr after calf removal (1.4 +/- 0.2 ng/ml, P<0.01). These contrasting patterns in serum LH concentrations resulted in a diet by time interaction (P<0.01). Serum LH concentrations increased in both dietary energy groups following GnRH injection, but the response was greater (P<0.01) in cows on the low-energy diet compared to the cows fed the high-energy diet. These results indicate that inadequate dietary energy delays the LH response to calf removal and increases the LH response to exogenous GnRH.  相似文献   

6.
Forty-one postpartum anestrous Hereford cows, maintained under range conditions, were used to determine the influence of gonadotropin releasing hormone (GnRH) or pregnant mare serum gonadotropin (PMSG) on ovarian function. Anestrous cows were identified by estrous detection with sterile bulls and concentrations of progesterone in plasma obtained weekly. At 45 +/- 2 days postpartum, cows were allotted to the following treatments: (1) control (saline), (2) 100 mug GnRH, (3) 200 mug GnRH, (4) 200 mug GnRH in carboxymethyl cellulose (CMC), (5) 500 IU PMSG, (6) 1,000 IU PMSG or (7) 2,000 IU PMSG. Cows were bled frequently the first day after treatment and then every other day until 85 days postpartum. The LH responses after 100 and 200 mug of GnRH were not significantly different and mixing 200 mug GnRH with CMC before injection did not significantly alter the LH response. During the first 20 days after treatment, neither GnRH nor 500 IU PMSG altered estradiol concentrations in plasma, but treatment of cows with 1,000 or 2,000 IU PMSG resulted in increased (P<0.01) concentrations of estradiol. The time postpartum required for concentrations of progesterone in plasma to exceed 1 ng/ml was reduced (P<0.05) by all treatments except 100 mug GnRH. These data indicate that GnRH causes LH release in anestrous range cows and that treatment with 1,000 or 2,000 IU PMSG initiates ovarian activity as evidenced by increased concentrations of estradiol in plasma.  相似文献   

7.
Two experiments were conducted to determine whether treatments with gonadotropin releasing hormone (GnRH) during the early postpartum period in suckled cows would induce ovulation and initiate regular estrous cycles. In Experiment I, 0, 100 or 200mug of GnRH was given to 22 suckled Angus x Holstein cows at three and again at five weeks postpartum. Serum luteinizing hormone (LH) responses did not differ between cows given 100 or 200mug of GnRH. Treatment with GnRH tended to increase the percentage of cows exhibiting estrus by 30 and 60 days postpartum, but reproductive performance during the breeding season did not differ among groups. In Experiment II, 70 suckled Hereford cows were given either no treatment or 200mug of GnRH at 7 weeks postpartum. Cows given GnRH received either no treatment prior to GnRH or were separated from their calves for 24 hr prior to GnRH treatment. Half of the cows that were separated from their calves also received progesterone via a progesterone intravaginal device (PRID) for 12 days prior to calf removal. Treatment with GnRH alone tended to increase the percentage of anestrous cows which ovulated by 8 days after treatment. Calf removal did not increase the ovulatory response to GnRH, but PRID treatment did. More estrous periods were detected in GnRH-treated cows than in control cows during 20 days after GnRH treatment.  相似文献   

8.
Twenty-two mature pluriparous beef cows were randomly assigned to one of six treatments in a 2 X 3 factorial experiment in order to study the role of suckling and ovarian factors on control of the tonic and episodic release of luteinizing hormone (LH). Twelve cows remained intact (INT) and 10 were ovariectomized (OVX) within 4 days following the day of parturition (Day 0). The suckling intensities were nonsuckled (0), suckled once daily for 30 min (1) and suckled ad libitum by two calves (2). Blood samples were collected at 15-min intervals for 6 h weekly, from Days 6 to 76 postpartum. The postpartum intervals to initiation of ovarian luteal function were 31 +/- 3, 41 +/- 4 and 67 +/- 1 days (means +/- SEM) for INT cows with 0, 1 and 2 suckling intensities, respectively. Mean LH concentrations and frequency of LH pulses increased as time of ovulation approached in INT cows. In OVX animals, both mean LH concentrations and frequency of LH pulses increased as time postovariectomy progressed. No differences were detected in mean LH concentrations or frequency of LH pulses between the two suckled OVX groups. Mean LH in the OVX-0 cows was greater on Days 13, 20 and 27 postpartum when compared to the respective days in suckled OVX cows. Frequency of LH pulses tended to be lower (P less than 0.10) in both suckled OVX groups when compared with OVX-0 cows from Day 6 to Day 55 postpartum. It is postulated that suckling and ovarian factors act together during the postpartum period to suppress LH levels and frequency of LH pulses in beef cows.  相似文献   

9.
The response of serum luteinizing hormone (LH) to morphine, naloxone and gonadotropin-releasing hormone (GnRH) in ovariectomized, suckled (n=4) and nonsuckled (n=3) cows was investigated. Six months after ovariectomy and calf removal, the cows were challenged with 1mg, i.v. naloxone/kg body weight and 1 mg i.v. morphine/kg body weight in a crossover design; blood was collected at 15-minute intervals for 7 hours over a 3-day period. To evaluate LH secretion and pituitary responsiveness, 5 mug of GnRH were administered at Hour 6 on Day 1. On Days 2 and 3, naloxone or morphine was administered at Hour 3, followed by GnRH (5 mug/animal) at Hour 6. Mean preinjection LH concentrations (3.6 +/- 0.2 and 4.7 +/- 0.2 ng/ml), LH pulse frequency (0.6 +/- 0.1 and 0.8 +/- 0.1 pulses/hour) and LH pulse amplitude (2.9 +/- 0.5 and 2.9 +/- 0.6 ng/ml) were similar for suckled and nonsuckled cows, respectively. Morphine decreased (P < 0.01) mean serum LH concentrations (pretreatment 4.2 +/- 0.2 vs post-treatment 2.2 +/- 0.2 ng/ml) in both suckled and nonsuckled cows; however, mean serum LH concentrations remained unchanged after naloxone. Nonsuckled cows had a greater (P < 0.001) LH response to GnRH than did suckled cows (area of response curve: 1004 +/- 92 vs 434 +/- 75 arbitrary units). We suggest that opioid receptors are functionally linked to the GnRH secretory system in suckled and nonsuckled cows that had been ovariectomized for a long period of time. However, gonadotropin secretion appears not to be regulated by opioid mechanisms, and suckling inhibits pituitary responsiveness to GnRH in this model.  相似文献   

10.
In Experiment 1, blood samples were collected on days 1, 4, 7, 10, 13, 16, 19, 22, and 25 postpartum from the jugular veins of 10 suckled beef cows to determine 13, 14-dihydro-15-keto prostaglandin F(2)alpha (PGFM) concentrations during the early postpartum period. PGFM concentrations on days 1 and 4 were 207.8 +/- 33.9 and 283.6 +/- 45.6 pg/ml and then declined linearly (r = -0.71; P < 0.05) to 44.1 +/- 5.7 and 44.0 +/- 5.3 pg/ml on days 22 and 25 postpartum. Two groups of postpartum (25.3 +/- 0.5 and 37.7 +/- 1.1 days) suckled beef cows (10 cows/group) were used in the second experiment. Five cows of each group received intrauterine infusions of indomethacin for 5.5 days while the other five cows of each group served as controls. All cows had calves removed at the time of the last indomethacin infusion and were subcutaneously administered oxytocin six hours later. During the infusion period, PGFM concentrations decreased (P < 0.01) across time for both groups of indomethacin-treated cows. Concentrations of PGFM increased (P < 0.05) after oxytocin treatment for both groups of control and indomethacin-treated cows, but concentrations were higher for the control cows than for the indomethacin-treated cows.  相似文献   

11.
Plasma LH concentrations were monitored in 6 Hereford X Friesian suckled cows at about 80 days post partum, before and during a 14-day period of continuous s.c. infusion of GnRH (20 micrograms/h). Blood samples were collected at 10-min intervals on Days -2, -1, 1, 2, 3, 4, 7, 10, 13 and 14 (Day 1 = start of infusion). Plasma LH concentrations rose from mean pretreatment levels of 1.3 +/- 0.20 ng/ml to a maximum of 17.1 +/- 3.09 ng/ml within the first 8 h of GnRH infusion, but returned to pretreatment levels by Day 2 or 3. In 4/6 animals, the initial increase was of a magnitude characteristic of the preovulatory LH surge. In all animals, an i.v. injection of 10 micrograms GnRH, given before the start and again on the 14th day of continuous infusion, induced an increase in LH concentrations but the increase to the second injection was significantly (P less than 0.01) less (mean max. conc. 6.4 +/- 0.76 and 2.3 +/- 0.19 ng/ml). Mean LH concentrations (1.0 +/- 0.08, 1.1 +/- 0.08 and 0.9 +/- 0.06 ng/ml) and LH episode frequencies (3.3,4.3 and 3.2 episodes/6 h) did not differ significantly on Days -2,7 and 13. However, the mean amplitude of LH episodes was significantly lower (P less than 0.05) on Day 13 (1.3 +/- 0.10 ng/ml) than on Day -2 (1.8 +/- 0.16 ng/ml). Therefore, although the elevation in plasma LH concentrations that occurs in response to continuous administration of GnRH is short-lived and LH levels return to pre-infusion values within 48 h of the start of infusion, these results show that the pituitary is still capable of responding to exogenous GnRH, although the LH response to an i.v. bolus injection of GnRH is reduced. In addition, this change in pituitary sensitivity is not fully reflected in endogenous patterns of episodic LH secretion.  相似文献   

12.
Five primiparous, 3-year-old Hereford cows suckled ad libitum , were cannulated via the jugular vein and stanchioned for 2-day sampling periods, every 14 days starting 14 days after the mean calving date. On the second day of each period, calves were removed to a pen away from the cows, for 9 hours. Blood was sampled 5 min before calves were returned to their dams, as soon as possible after initiation of suckling (IOS), and at 15-min intervals for 45 min, thereafter. Cortisol, progesterone and luteinizing hormone (LH) concentrations in the serum were quantitated by radioimmunoassay. Mean serum cortisol concentrations were 7.3 +/- .7, 9.4 +/- .7, 12.1 +/- .9, 7.5 +/- .5 and 5.7 +/- .4 ng/ml (mean +/- S.E.) at -5, 0, 15, 30 and 45 min after IOS, respectively, for all cows across all periods. Cortisol concentrations, during and after suckling, tended (P<.06) to differ among sampling periods, during the postpartum interval. Serum progesterone concentrations were .28 +/- .02, .28 +/- .02, .32 +/- .05 and .24 +/- .03 ng/ml at 0, 15, 30 and 45 min after IOS, respectively, for all cows across all period, indicating that suckling had no effect on serum progesterone, and were similar at all sampling periods during the postpartum interval. Serum LH concentrations were .81 +/- .07, .77 +/- .06, .71 +/- .04, and .72 +/- .04 ng/ml at 0, 15, 30 and 45 min after IOS, respectively. During the postpartum interval, serum LH concentrations were greater (P<.01) at 71 and 85 days postpartum than at any other time.  相似文献   

13.
The objective of the present study was to determine whether treatment of postpartum multiparous and primiparous anestrous beef cows with an intravaginal progesterone-releasing insert (CIDR) and PGF(2alpha), with and without the addition of GnRH or estradiol cypionate (ECP) at the time of CIDR insertion, is effective in stimulating onset of estrous cycles. Postpartum lactating Angus primiparous (n=47, 2 years of age, 495+/-6 kg) and multiparous (n=76, >or=3 years of age, 553+/-9 kg) cows were assigned by calving date to four blocks spaced 21-day apart. Cows were assigned sequentially by calving date to four treatment groups: (1) PGF(2alpha) (n=30), (2) CIDR-PGF(2alpha) (n=30), (3) GnRH-CIDR-PGF(2alpha) (n=33), and (4) ECP-CIDR-PGF(2alpha) (n=27). Intravaginal CIDR inserts were in place from days -7 to 0. A single 100 microg injection of GnRH or 2 mg ECP were administered on day -7, and 25mg PGF(2alpha) was administered on day 0. Day 0 averaged 38+/-1 day postpartum. Blood samples were collected on days -19, -9, 0, 5, 9, 12, 16, 19, 23, 26, and 30 for determination of plasma progesterone concentrations. Pre-treatment luteal activity (progesterone>or=1 ng/ml) was detected in 19% of primiparous and 8% of multiparous cows. Progesterone concentrations on day 0 were greater (P<0.001) in primiparous (3.2+/-0.3 ng/ml) than multiparous (2.0+/-0.2 ng/ml) cows. Following CIDR withdrawal, progesterone concentrations from days 5 to 30 were used to categorize response profiles as either: (1) treatment-induced onset of estrous cycles, (2) continued anestrus, or (3) spontaneous ovulation and subsequent formation of a CL. Incidence of treatment-induced onset of estrous cycles, which was defined as progesterone concentrations >or=1 ng/ml in three or more consecutive samples from days 9 to 19, was influenced by treatment and parity. Percentages of cows initiating estrous cycles were greater (P<0.001) in the three CIDR-treated groups than in the PGF(2alpha) group (55 and 8%, respectively). Percentages of cows initiating estrous cycles in the CIDR-PGF(2alpha), GnRH-CIDR-PGF(2alpha), and ECP-CIDR-PGF(2alpha) groups were 55, 58, and 52%, respectively. Incidence of treatment-induced estrous cycles in the three CIDR-treated groups of cows was greater (P=0.008) in primiparous (76%) than multiparous (43%) cows. Treatment of postpartum anestrous primiparous and multiparous beef cows with CIDR-PGF(2alpha) approximately 40-day postpartum provides an approach to increase the percentage of cows that have reinitiated estrous cycles by the start of the breeding season.  相似文献   

14.
Eighteen anestrous crossbred suckled beef cows were assigned to one of three treatment groups. Treatments were as follows: Group 1 cows (n = 3) were untreated and served as controls, Groups 2 cows (n = 6) were intramuscularly administered 250 mug GnRH, and Group 3 cows (n = 9) were subcutaneously administered a progestin ear implant for eight days prior to the administration of 250 mug GnRH. The GnRH was given to cows in Group 3 24 h after the time of progestin implant removal. Cows were 21 to 31 days postpartum at the time of GnRH treatment. The percent of cows that ovulated after the time of GnRH treatment was 0%, 83% and 100% for Groups 1, 2 and 3, respectively. For the cows that ovulated, more (P < 0.05) cows in Group 2 (80%) had abnormal luteal phases than in Group 3 (33%). The GnRH-induced LH release and peak LH concentrations were greater (P < 0.01) in the cows in Group 3 (214.3 +/- 37.1 ng/ml) than in the cows in Group 2 (142.7 +/- 19.0 ng/ml). The LH concentrations of the control cows remained very low throughout the sampling period. Although prostaglandin metabolite (PGFM) concentrations were not significantly (P > 0.10) different among groups, mean concentrations were higher and more variable for cows in Groups 1 (39.2 +/- 5.2 pg/ml) and 2 (39.4 + 6.1 pg/ml) than for cows in Group 3 (25.1 + 1.4 pg/ml).  相似文献   

15.
Twenty suckled CharloixxHereford beef cows (5 cows/group) were assigned at random to receive 100 microg GnRH (IM) at either 2 to 3, 7 to 8, 15 to 16, or 31 to 32 days postpartum, Groups 1 through 4, respectively. Blood samples for hormone determinations were collected at time 0 (pre-GnRH), every half hr for 3 hr, and at 4.0 hr and 6.0 hr post-GnRH. Mean plasma LH, estradiol-17beta, or progesterone concentrations were not different among groups prior to GnRH. Plasma LH increased (P<.05) following GnRH in Groups 2, 3 and 4, but not in Group 1. Peak GnRH induced LH release was greater (P<.05) in Groups 3 and 4 than in Groups 1 or 2. Correlation coefficients between days postpartum and peak LH release (r=.72), and estradiol-17beta concentrations and time of LH peak (r=-.42) were significant (P<.05). These data indicate that LH release in response to GnRH, in suckled beef cows is not fully restored until 15 to 16 days postpartum.  相似文献   

16.
Cycling standardbred mares were infused with saline or 20 micrograms gonadotropin-releasing hormone (GnRH) in a pulsatile pattern (one 5-sec pulse/h, 2 h or 4 h) beginning on Day 16 of the estrous cycle. Although serum concentrations of luteinizing hormone (LH) increased significantly earlier in all three GnRH-treated groups (within one day of the initiation of infusion) compared to saline-infused controls, there were no differences in peak periovulatory LH concentrations among treatments (overall mean +/- SEM, 8.98 +/- 0.55 ng/ml). The number of days from the start of treatment to ovulation was significantly less in mares infused with 20 micrograms GnRH/h (mean +/- SEM, 2.9 +/- 0.6 days after the initiation of treatment, or 18.9 days from the previous ovulation; N = 7) compared to mares treated with saline (5.9 +/- 0.3 days, or 21.9 days from previous ovulation; N = 7) or 20 micrograms GnRH per 4 h (5.4 +/- 0.9 days or 21.4 days from previous ovulation; N = 5). Although mares infused with 20 micrograms GnRH/2 h ovulated after 4.3 +/- 0.7 days of treatment (Day 20.3; N = 7), this was not significantly different from either the control or 20 micrograms GnRH/h treatment groups. Neither the duration of the resulting luteal phase nor the length of the estrous cycle was different between any of the treatment groups (combined means, 14.7 +/- 0.2 days and 21.3 +/- 0.4 days, respectively). We conclude that pulsatile infusion of GnRH is effective in advancing the time of ovulation in cycling mares, but that the frequency of pulse infusion is a critical variable.  相似文献   

17.
Twenty-seven fall calving Brangus cows were randomly allotted to one of four treatment groups: nonsuckled monensin (NSM), suckled monensin (SM), nonsuckled control (NSC), and suckled control (SC). Cows were group fed 1.82 kg/hd/day concentrate and Coastal bermuda grass hay adlibitum. Monensin cows received 200 mg monensin/hd/day in the concentrate. At 0800 hr on day 21 postcalving, the calves were separated from the cows. Suckled monensin and SC cows were allowed to suckle their calves for 30 min at 6-hr intervals. Nonsuckled monensin and NSC cows were not suckled. Calves were given free access to the cows after 1400 hr on day 22 postpartum. At 0800 hr on day 22 postpartum, a blood sample was collected. A 100 μg GnRH challenge was administered IM at 0801 hr. Blood samples were collected at 15-min intervals for 6 hr postinjection. Changes in body weight and body condition from day 21 postpartum to the day of first estrus were not different (P>0.10) by dietary treatment. Monensin cows consumed 10.7% less hay than did the control cows. Serum luteinizing hormone (LH) following GnRH was greater (P<0.005) in suckled than nonsuckled cows. Control cows released more (P<0.005) LH in response to GnRH than did the monensin cows. The postpartum interval (to first estrus) for the monensin cows (92.4±14.7 days) was shorter (P<0.025) than the controls (138.5±9.5 days). A greater proportion (P<0.005) of the monensin cows (8 of 14) exhibited estrus by 90 days postpartum compared to the control cows (0 of 13). Monensin and suckling appear to exert independent and agonistic influences on pituitary function in the postpartum beef cow.  相似文献   

18.
At calving forty-eight Holstein and Guernsey cows were assigned according to age and breed to one of six postpartum periods (1 or 2, 3 or 4, 5 or 6, 7 or 8, 12 or 13 and 18 or 19 days postpartum). Thirty-six of the cows (6 cows per postpartum period) received a single intramuscular injection of 100 μg GnRH. The other twelve cows (2 cows per postpartum period) served as controls and received a single intramuscular injection of the carrier vehicle for GnRH.Four of 36 cows administered GnRH and three of the 12 control cows ovulated by the day following treatment. Four of the cows were 12 or 13 days postpartum (1 control and 3 GnRH treated) and three were 18 or 19 days postpartum (2 controls and 1 GnRH treated). Six of the seven cows that ovulated the day following treatment had a follicle > 1.0 cm the day prior to treatment. Follicular growth was detected in the earlier postpartum periods but ovulation the following day was not detected for either control or GnRH treated cows. Following estrus or silent estrus, plasma progesterone concentrations increased to about 4 ng/ml on day 13. However, in cows ovulating the day following GnRH treatment, plasma progesterone declined from about 3 ng/ml on day 9 to approximately 1 ng/ml on day 13 postestrus. In addition, LH in plasma was higher (P < .01) ? through 13 days following estrus or silent estrus in cows ovulating the day after GnRH treatment in comparison to cows during the first or subsequent postpartum estrous cycles.In summary, in addition to days postpartum other factors including follicular development and maturity are probably involved in GnRH induced ovulation.  相似文献   

19.
This study investigated the effects of calf removal (CR) and gonadotrophin releasing hormone (GnRH) administration on the duration of the postpartum anoestrous period in suckled beef cows. Experiment 1 involved 20 multiparous suckled cows that were assigned to each of two treatments on Day 61 postpartum: (i) unlimited access to their calves (C; n=10) and (ii) calf removal for a period of 96 h (CR96, n=10). Experiment 2 involved 24 multiparous cows that were assigned to each of two treatments on Day 63 postpartum: (i) CR96 (n=12); and (ii) CR96 plus 250 microg of GnRH administered on the day before calf return (CR96+GnRH, n=12). Experiment 3 was a 3x2 factorial experiment, involving 48 multiparous cows assigned to the experiment on Day 58 postpartum. The factors were C, CR96 and calf removal for 144 h (CR144), and 0 or 250 microg GnRH administered on the day prior calf return. In Experiment 1, the number of cows that ovulated within 12 days of calf removal was higher (P<0.05) in CR96 group (3/9) compared to the C group (0/10). In Experiment 2, all 12 cows in the CR96+GnRH group ovulated. In contrast only 4/12 cows in the CR96 group ovulated in response to calf removal. The diameter of the ovulatory follicle tended (P=0.06) to be smaller in CR96+GnRH cows (9.8 +/- 0.3 mm) than in CR96 cows (11.3 +/- 0.9 mm). The maximum diameter attained by the corpus luteum (CL) also tended (P=0.08) to be smaller for cows in the CR96+GnRH than for cows in the CR96 group (12.1 +/- 2.4 mm versus 16.7 +/- 7.5 mm, respectively). Plasma progesterone concentrations 12 days after calf removal tended (P=0.06) to be lower in CR96+GnRH cows than in CR96 cows (0.66 +/- 0.1 ng/ml versus 2.00 +/- 1.1 ng/ml, respectively). Few cows in the CR96+GnRH group regained normal cyclical activity and the interval from onset of calf removal to conception was longer (P<0.05) compared to cows in the CR group (52.2 +/- 5.7 days versus 20.0 +/- 6.6 days). In Experiment 3, 5/8 cows on the CR144 group and all 8 cows in the CR144+GnRH group ovulated. However, the interval from CR to conception was similar for all treatments. Temporary (96-144 h) calf removal, particularly in combination with GnRH treatment, can induce a high proportion of beef cows to ovulate, but the restoration of oestrous cycles may not be achieved.  相似文献   

20.
Pituitary and ovarian responses to subcutaneous infusion of GnRH were investigated in acyclic, lactating Mule ewes during the breeding season. Thirty postpartum ewes were split into 3 equal groups; Group G received GnRH (250 ng/h) for 96 h; Group P + G was primed with progestagen for 10 d then received GnRH (250 ng/h) for 96 h; and Group P received progestagen priming and saline vehicle only. The infusions were delivered via osmotic minipumps inserted 26.6 +/- 0.45 d post partum (Day 0 of the study). Blood samples were collected for LH analysis every 15 min from 12 h before until 8 h after minipump insertion, then every 2 h for a further 112 h. Daily blood samples were collected for progesterone analysis on Days 1 to 10 following minipump insertion, then every third day for a further 25 d. In addition, the reproductive tract was examined by laparoscopy on Day -5 and Day +7 and estrous behavior was monitored between Day -4 and Day +7. Progestagen priming suppressed (P < 0.05) plasma LH levels (0.27 +/- 0.03 vs 0.46 +/- 0.06 ng/ml) during the preinfusion period, but the GnRH-induced LH release was similar for Group G and Group P + G. The LH surge began significantly (P < 0.05) earlier (32.0 +/- 3.0 vs 56.3 +/- 4.1 h) and was of greater magnitude (32.15 +/- 3.56 vs 18.84 +/- 4.13 ng/ml) in the unprimed than the primed ewes. None of the ewes infused with saline produced a preovulatory LH surge. The GnRH infusion induced ovulation in 10/10 unprimed and 7/9 progestagen-primed ewes, with no significant difference in ovulation rate (1.78 +/- 0.15 and 1.33 +/- 0.21, respectively). Ovulation was followed by normal luteal function in 4/10 Group-G ewes, while the remaining 6 ewes had short luteal phases. In contrast, each of the 7 Group-P + G ewes that ovulated secreted progesterone for at least 10 d, although elevated plasma progesterone levels were maintained in 3/7 unmated ewes for >35 d. Throughout the study only 2 ewes (both from Group P + G) displayed estrus. These data demonstrate that although a low dose, continuous infusion of GnRH can increase tonic LH concentrations sufficient to promote a preovulatory LH surge and induce ovulation, behavioral estrus and normal luteal function do not consistently follow ovulation in the progestagen-primed, postpartum ewe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号