首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The membrane penicillinase of Bacillus licheniformis 749/C is a phospholipoprotein which differs from the exoenzyme in that it has an additional sequence of 24 amino acid residues and a phosphatidylserine at the NH2 terminus. In exponential-phase cultures, the conversion of membrane penicillinase to exoenzyme occurs at neutral and alkaline pH. An enzyme that will cleave the membrane penicillinase to yield the exoenzyme is present (in small amounts) in exponential-phase cells and is released during their conversion to protoplasts. The enzyme is found in the filtrate of a stationary-phase culture of the uninduced penicillinase-inducible strain 749 and has been purified to apparent homogeneity from this source. The protease has an approximate molecular weight of 21,500 and requires Ca2+ ions for stabilization. It has a pH optimum of 7.0 to 9.5 for hydrolysis of casein and for the cleavage of membrane penicillinase. Both activities are inhibited by diisopropylfluorophosphate; hence, the enzyme is a serine protease. This enzyme may be entirely responsible for the formation of exopenicillinase by this organism, since the other neutral and alkaline proteases of strain 749 have little, if any, activity in releasing exopenicillinase. The enzyme has been termed penicillinase-releasing protease.  相似文献   

2.
Plasma membrane penicillinase from Bacillus licheniformis 749/C is hydrophobic in nature, although it is virtually identical to its riydrophilic exoenzyme counterpart in amino acid composition and sequence. Unlike the exoenzyme, however, the purified membrane enzyme retains [33P]phosphate and [3H]glycerol. By isoelectricfocusing the membrane enzyme is more acidic than the exoenzyme; it has a lower mobility in SDS gel electrophoresis, consistent with the presence of a very hydrophobic moiety. Unlike the exoenzyme, which binds no taurodeoxycholate, the membrane enzyme binds 10 molecules tightly and approximately 37 molecules in the presence of excess taurodeoxycholate (0.1% solution). The membrane enzyme is identical to the exoenzyme in its reaction with antibodies to exopenicillinase as determined by a radioimmune inhibition assay and immunodiffusion in agar. Heat stability studies indicate a slightly less stable conformation for the membrane enzyme, but this difference largely disappears in the presence of antibody to the exoenzyme. Conversion of membrane enzyme to exoenzyme has been achieved by brief treatment with trypsin, or by incubation of impure preparations at pH 9.0 in 25% potassium phosphate.Since the two forms of penicillinase are very similar in conformation, the hydrophobicity of the membrane form of the enzyme would seem to derive from combination with a hydrophobic moiety, probably phospholipid.  相似文献   

3.
In earlier studies of the membrane-bound penicillinase of Bacillus licheniformis 749/C, the enzyme present in the vesicles that were released during protoplast formation and the enzyme retained in the plasma membrane of protoplasts appeared to differ (i) in their behavior on gel permeation chromatography in the presence or absence of deoxycholate and (ii) in their tendency to convert to the hydrophilic exoenzyme (Sargent and Lampen, 1970). We have now shown that these vesicle preparations contain a soluble, heat-sensitive enzyme(s) that is released along with the vesicles during protoplast formation. The enzyme will convert the vesicle penicillinase to a form that resembles exopenicillinase, and this conversion can be inhibited by deoxycholate under certain circumstances. Sedimentation of such vesicle preparations at 100,000 X g produces vesicles which contain penicillinase that behaves as the plasma membrane enzyme obtained from protoplasts. Exopenicillinases released by growing cells at pH 6.5 and by washed cells or protoplasts at pH 9.0 have the same NH2-terminal residues (lysine and some glutamic acid); in addition, the various release systems show a parallel sensitivity to inhibition by deoxycholate, quinacrine, chloroquine, and o-phenanthroline. The formation of exopenicillinase (by cleavage of the membrane-bound enzyme) may well be dependent on the action of the releasing enzyme.  相似文献   

4.
The membrane penicillinase of Bacillus licheniformis is a glyceride-cysteine lipoprotein whose NH2 terminus is analogous to the major outer membrane lipoprotein of Escherichia coli. When E. coli cells producing B. licheniformis penicillinase were treated with the antibiotic, globomycin, a precursor of the penicillinase, pre-penicillinase, accumulated in the cell. It could be immunoprecipitated with anti-penicillinase antibodies; it contained palmitate; and one of its two cysteine residues was modified by glycerol. The action of globomycin, probably indirectly, also activates protease which acts differently on the pre-penicillinase than does the signal peptidase. The results strongly indicate that the pre-penicillinase is processed by the globomycin-sensitive signal peptidase in E. coli, and the modification of precursor by lipid precedes removal of the signal peptide as it does with the membrane lipoproteins of E. coli.  相似文献   

5.
The distribution of alkaline phosphatase and nuclease activity between cells and medium was examined in one strain of Bacillus licheniformis and four strains of B. subtilis. Over 95% of both activities was found in the medium of the B. licheniformis culture, but in the B. subtilis cultures the amount of enzyme activity found in the medium varied with the strain and the enzyme considered. B. licheniformis 749 and its penicillinase magnoconstitutive mutant 749/C were grown in continuous culture with phosphorous as the growth-limiting factor, and the kinetics of penicillinase formation and secretion were examined. Nutrient arrest halted secretion (usually after a lag of about 30 min) in both the inducible and constitutive strains. Chloramphenicol did not eliminate secretion, but under certain circumstances reduced its rate. In the inducible strain treated with a low level of inducer, the rate of secretion was more affected by the rate of synthesis than by the level of cell-bound enzyme. During induction, the onset of accretion of cell-bound penicillinase and secretion of the exoenzyme were nearly simultaneous. It seems unlikely that a long-lived, membrane- or cell-bound intermediate is mandatory in the secretion of the three enzymes by Bacillus species. In the case of penicillinase secretion, there are at least two different phases. When penicillinase synthesis is proceeding rapidly, the rate of secretion is five to six times greater at equivalent concentrations of membrane-bound penicillinase than it is when penicillinase synthesis is reduced. The data require that any membrane-bound intermediate in the formation of exoenzyme be much shorter-lived in cells with a high rate of synthesis than in cells with a low rate. Either there are two separate routes for the secretion of penicillinase or the characteristics of the process vary substantially between the early stages and the declining phase of induction.  相似文献   

6.
We have previously shown that Bacillus licheniformis prepenicillinase is modified and processed to form membrane-bound penicillinase in Escherichia coli which contains N-acylglyceride-cysteine27 at the NH2 terminus. In the present study, we have constructed, by in vitro site-directed mutagenesis, two mutant penicillinase genes in which the modification site (the 27th cysteine residue in prepenicillinase) is either converted into serine (penPSer27) or is deleted along with the preceding four residues (Ala23 to Cys27, delta penP2327). The modification, processing, and subcellular localization of these two mutant penicillinases in E. coli cells were studied. Our results indicate that the delta penP2327 deletion mutant prepenicillinase is largely metabolically inert and the unmodified and uncleaved form is associated with the membrane fraction; a small fraction (about 7-9%) appears to contain glyceride-modified prepenicillinase (presumably at the Cys-21 position) which is not cleaved. In contrast, the Cys-27 in equilibrium Ser-27 point mutant prepenicillinase is processed into two forms which contain Asn-29 and Ser-35 at their NH2 termini, respectively, and the bulk of the processed penicillinase appears to be located in the peri-plasm. These results are discussed in terms of the substrate specificities of signal peptidases in E. coli.  相似文献   

7.
Purification and characterization of RNase P from Clostridium sporogenes   总被引:1,自引:0,他引:1  
RNase P is a multi-subunit enzyme responsible for the accurate processing of the 5' terminus of all tRNAs. The RNA subunit from Clostridium sporogenes has been partially purified and characterized. The RNA is approximately 400 nucleotides long and makes a precise endonucleolytic cleavage at the mature 5' terminus of tRNA. The RNA requires moderate concentrations of Mg2+ (20 mM) and relatively high concentrations of NH4Cl (800 mM) for optimal activity. Mn2+ effectively substitutes for Mg2+ at 2 mM. Zn2+, Ni2+, Ca2+, and Co2+ are ineffective at stimulating activity. Monovalent ions are, in general, more effective the greater the ionic radius (NH+4 greater than Cs greater than Rb greater than K greater than Na). In contrast to the activity of Bacillus subtilis, C. sporogenes RNase P RNA is significant more active in (NH4)2SO4 than in NH4Cl.  相似文献   

8.
The smaller isoform of the GABA synthesizing enzyme glutamic acid decarboxylase, GAD65, is synthesized as a soluble protein that undergoes post-translational modification(s) in the NH2-terminal region to become anchored to the membrane of small synaptic-like microvesicles in pancreatic beta cells, and synaptic vesicles in GABA-ergic neurons. A soluble hydrophilic form, a soluble hydrophobic form, and a hydrophobic firmly membrane-anchored form have been detected in beta cells. A reversible and hydroxylamine sensitive palmitoylation has been shown to distinguish the firmly membrane-anchored form from the soluble yet hydrophobic form, suggesting that palmitoylation of cysteines in the NH2-terminal region is involved in membrane anchoring. In this study we use site-directed mutagenesis to identify the first two cysteines in the NH2-terminal region, Cys 30 and Cys 45, as the sites of palmitoylation of the GAD65 molecule. Mutation of Cys 30 and Cys 45 to Ala results in a loss of palmitoylation but does not significantly alter membrane association of GAD65 in COS-7 cells. Deletion of the first 23 amino acids at the NH2 terminus of the GAD65 30/45A mutant also does not affect the hydrophobicity and membrane anchoring of the GAD65 protein. However, deletion of an additional eight amino acids at the NH2 terminus results in a protein which is hydrophilic and cytosolic. The results suggest that amino acids 24-31 are required for hydrophobic modification and/or targeting of GAD65 to membrane compartments, whereas palmitoylation of Cys 30 and Cys 45 may rather serve to orient or fold the protein at synaptic vesicle membranes.  相似文献   

9.
《The Journal of cell biology》1993,121(6):1221-1232
Expression of chimeras, composed of portions of two different glucose transporter isoforms (GLUT-1 and GLUT-4), in CHO cells had indicated that the cytoplasmic NH2 terminus of GLUT-4 contains important targeting information that mediates intracellular sequestration of this isoform (Piper, R. C., C. Tai, J. W. Slot, C. S. Hahn, C. M. Rice, H. Huang, D. E. James. 1992. J. Cell Biol. 117:729-743). In the present studies, the amino acid constituents of the GLUT-4 NH2-terminal targeting domain have been identified. GLUT-4 constructs containing NH2- terminal deletions or alanine substitutions within the NH2 terminus were expressed in CHO cells using a Sindbis virus expression system. Deletion of eight amino acids from the GLUT-4 NH2 terminus or substituting alanine for phenylalanine at position 5 in GLUT-4 resulted in a marked accumulation of the transporter at the plasma membrane. Mutations at other amino acids surrounding Phe5 also caused increased cell surface expression of GLUT-4 but not to the same extent as the Phe5 mutation. GLUT-4 was also localized to clathrin lattices and this colocalization was abolished when either the first 13 amino acids were deleted or when Phe5 was changed to alanine. To ascertain whether the targeting information within the GLUT-4 NH2-terminal targeting domain could function independently of the glucose transporter structure this domain was inserted into the cytoplasmic tail of the H1 subunit of the asialoglycoprotein receptor. H1 with the GLUT-4 NH2 terminus was predominantly localized to an intracellular compartment similar to GLUT- 4 and was sequestered more from the cell surface than was the wild-type H1 protein. It is concluded that the NH2 terminus of GLUT-4 contains a phenylalanine-based targeting motif that mediates intracellular sequestration at least in part by facilitating interaction of the transporter with endocytic machinery located at the cell surface.  相似文献   

10.
1. The penicillinase (beta-lactamase) from Escherichia coli strain TEM has been purified and its activity against a range of penicillin and cephalosporin derivatives measured. 2. The enzyme shows little resemblance to penicillinases from Bacillus cereus, Bacillus licheniformis and Staphylococcus aureus. 3. The molecular weight of the enzyme is 16700+/-5%, which is about half the value obtained for other penicillinases. 4. The enzyme is most similar in properties to a crude preparation of a penicillinase from Klebsiella (Aerobacter) aerogenes, but clearly different from crude enzyme preparations from other strains of E. coli. 5. Since penicillinase synthesis in E. coli strain TEM is mediated by an R-factor known to infect many other species of Enterobacteriaceae, the appearance of similar enzymes in other Gramnegative species is not surprising.  相似文献   

11.
The beta-lactamases of Bacillus cereus have attracted interest because they are secreted efficiently, because multiple enzymes are frequently present, and because their regulation has unusual features. beta-Lactamase I of strain 5/B is produced constitutively at a high level, and the exoenzyme appears to be several thousand daltons larger than the corresponding product of strain 569/H. We have cloned the gene for 5/B beta-lactamase I in Escherichia coli and B. subtilis and have sequenced the structural portion and the regulatory regions. The 5/B enzyme is produced at a low level in E. coli RR1(pRWY200) and remains cellbound. In B. subtilis it is formed in large amounts, and over 90% of it is released into the medium. There is a large degree of homology between the promoter and leader peptide regions of the 5/B and 569/H genes; both utilize UUG as the translation initiation codon (P. S. F. Mézes, R. W. Blacher, and J. O. Lampen, (J. Biol. Chem. 260:1218-1223, 1985). Although there are significant differences in the peptide segment where processing would be expected to occur, the NH2 terminus of the major 5/B product from B. subtilis BD170(pRWY215) is His-44, which is the same as the NH2 terminus of the major 569/H product from B. subtilis BD170(pRWM5).  相似文献   

12.
John Imsande 《Genetics》1973,75(1):1-17
5-methyltryptophan (5MT) induces penicillinase synthesis in Staphylococcus aureus. The analog is incorporated into protein by both wild-type and tryptophan-starved cells. Since normal penicillinase repressor appears to contain tryptophan even though penicillinase itself does not, it is concluded that 5MT induces penicillinase synthesis by becoming incorporated into the penicillinase repressor and thereby inactivating the repressor. Thus biochemical data support the existence of a penicillinase repressor and indicate that penicillinase synthesis is regulated by negative control and not by positive control.-In the absence of exogenous tryptophan, staphylococcal penicillinase induction can be inhibited by 7-azatryptophan (7azaT). Because 7azaT is incorporated into protein by tryptophan-starved cells, it is concluded that 7azaT blocks penicillinase induction by inactivating a penicillinase regulatory protein into which the analog has been incorporated. Incorporation of 7azaT does not appear to inactivate the operator binding site or the effector binding site on the penicillinase repressor. Therefore, it appears that 7azaT blocks penicillinase induction by inactivating the penicillinase antirepressor, a protein required for inactivation of the penicillinase repressor and, hence, required for penicillinase induction.  相似文献   

13.
14.
Functional expression of recombinant wild-type phosphatase 2A catalytic subunit has been unsuccessful in the past. A nine-amino-acid peptide sequence (YP-YDVPDYA) derived from the influenza hemagglutinin protein was used to modify the NH2 and/or COOH terminus of the phosphatase 2A catalytic subunit. Addition of the nine-amino-acid sequence at the NH2 terminus allowed recombinant phosphatase 2A expression as a predominantly cytosolic phosphatase 2A enzyme. The 12CA5 monoclonal antibody that recognizes the nine-amino-acid hemagglutinin peptide sequence was used to immunoprecipitate the epitope-tagged phosphatase 2A catalytic subunit. Assay of the immunoprecipitated epitope-tagged phosphatase 2A demonstrated an okadaic acid-sensitive dephosphorylation of [32P] histone H1 and [32P]myelin basic protein similar to that measured with the wild-type enzyme. Functional phosphatase activity could be demonstrated for the NH2-terminal modified phosphatase 2A catalytic subunit following transient expression in COS cells or stable expression in Rat1a cells. In contrast, the COOH-terminal-modified phosphatase 2A catalytic subunit was very poorly expressed. The NH2-, COOH-modified subunit, having the nine-amino-acid hemagglutinin peptide sequence encoded at both termini of the polypeptide, was also expressed as a functional phosphatase 2A enzyme. Thus, NH2-terminal modification of the phosphatase 2A catalytic subunit results in a functional plasmid-expressed enzyme. The unique nine-amino-acid epitope-tag sequence also provides a method to easily resolve the recombinant phosphatase 2A from the endogenous wild-type gene product and related phosphatases expressed in cells.  相似文献   

15.
Extracts of Bacillus licheniformis 749/C in an in vitro protein synthesis system produced the hydrophobic penicillinase containing covalently-bound phospholipid. The hydrophilic penicillinase (exoenzyme) and the hydrophobic enzyme without the phospholipid were scarcely detectable.  相似文献   

16.
Substrate-specific inactivation of staphylococcal penicillinase   总被引:5,自引:4,他引:1       下载免费PDF全文
1. The rate of hydrolysis of methicillin, cloxacillin and quinacillin by staphylococcal extracellular penicillinase decreases progressively with time. 2. The inactivation is prevented but not reversed by benzylpenicillin. 3. The rate of inactivation produced by quinacillin is minimal when the rate of hydrolysis is at a maximum. 4. Under certain conditions, partially inactivated enzyme can be reactivated. 5. Combination of the enzyme with antiserum, while permitting hydrolysis, prevents inactivation. 6. No evidence for a stable enzyme-substrate complex has been found.  相似文献   

17.
Cultures of the inducible penicillinase-producing strain 749 of Bacillus licheniformis, induced with small amounts of benzylpenicillin, synthesized penicillinase at a high rate for a short period, after which the rate of synthesis slowly declined. During the period of active synthesis, the rate of secretion, as a fraction of the level of cell-bound penicillinase (which is originally high), gradually decreased to a constant level. Chloramphenicol, at a concentration (40 mug/ml) which completely inhibited synthesis of penicillinase, partially inhibited secretion if added during the period of active synthesis. During the phase of reduced synthesis, chloramphenicol was without effect on secretion. Penicillinase secretion, by actively growing cultures of the constitutive penicillinase-producing mutant 749/C, was inhibited by 75% immediately after addition of chloramphenicol. The secretion of part of the penicillinase released during active growth is probably dependent on synthesis of penicillinase, but part of the secreted penicillinase can be released in the absence of synthesis. Protoplasts were obtained from which periplasmic penicillinase has been removed, and these protoplasts were capable of substantial growth and penicillinase synthesis without lysis. At pH 7.5, there was no net incorporation of penicillinase into the cell membrane; the enzyme released was almost entirely of the exo form and was roughly equivalent to the amount of new enzyme formed. At pH 6.0, there was some incorporation of penicillinase into the plasma membrane, and approximately half of the extracellular penicillinase was in the exo form; the remainder perhaps represented membrane fragments. In the presence of chloramphenicol, a small amount of penicillinase was released at pH 7.5 as the exo form; at pH 6.0, practically none was released. We suggest that, with the removal from protoplasts of the periplasmic penicillinase-containing particles, a restriction on secretion has been lifted.  相似文献   

18.
The NH2-terminal blocking group of the membrane-binding domain of NADH-cytochrome b5 reductase has been deduced as myristic (n-tetradecanoyl) acid. This fatty acid was identified by gas chromatography of the digest of the NH2-terminal tetrapeptide of cytochrome b5 reductase. Fast atom bombardment and direct chemical ionization mass spectroscopy of the underivatized NH2-terminal tetrapeptide confirmed the presence of myristic acid, identified its linkage to the NH2 terminus and established CH3(CH2)12-CO-Gly-Ala-Gln-Leu as the NH2-terminal sequence. In addition, the complete amino acid sequence of the membrane-binding domain of cytochrome b5 reductase is also reported. The finding of a myristic acyl chain on the NH2-terminal segment, comprised of hydrophobic amino acid residues, implies that the function of the myristate group may be other than simply to anchor the reductase to the microsomal membrane. This post-translational modification, presumably in the endoplasmic reticulum, may selectively stabilize a particular membrane structure and orientation that optimally facilitates electron transport on the cytosolic surface of this membrane organelle.  相似文献   

19.
R G Paterson  R A Lamb 《Cell》1987,48(3):441-452
The hydrophobic NH2 terminus of F1 (FRED) of the simian virus 5 fusion (F) protein is implicated in mediating cell fusion, but in the inactive F0 precursor the FRED is translocated across membranes. Hybrid proteins containing the FRED as a potential membrane anchorage domain and a mutant of F0 lacking the preceding five-arginine cleavage/activation site were used to study the effect of position on the FRED. The experiments indicate that the SV5 F protein has evolved an exquisite control system for biological activity: the FRED is close to the threshold of hydrophobicity required to function as a membrane anchor. The FRED is not sufficiently hydrophobic to halt translocation when in an internal position, but on cleavage/activation the threshold of hydrophobicity is effectively lowered, and the FRED, now the NH2 terminus of F1, is able to interact stably with membranes.  相似文献   

20.
Ammonium transport across plant plasma membranes is facilitated by AMT/Rh-type ammonium transporters (AMTs), which also have homologs in most organisms. In the roots of the plant Arabidopsis (Arabidopsis thaliana), AMTs have been identified that function directly in the high-affinity NH4+ acquisition from soil. Here, we show that AtAMT1;2 has a distinct role, as it is located in the plasma membrane of the root endodermis. AtAMT1;2 functions as a comparatively low-affinity NH4+ transporter. Mutations at the highly conserved carboxyl terminus (C terminus) of AMTs, including one that mimics phosphorylation at a putative phosphorylation site, impair NH4+ transport activity. Coexpressing these mutants along with wild-type AtAMT1;2 substantially reduced the activity of the wild-type transporter. A molecular model of AtAMT1;2 provides a plausible explanation for the dominant inhibition, as the C terminus of one monomer directly contacts the neighboring subunit. It is suggested that part of the cytoplasmic C terminus of a single monomer can gate the AMT trimer. This regulatory mechanism for rapid and efficient inactivation of NH4+ transporters may apply to several AMT members to prevent excess influx of cytotoxic ammonium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号