共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro phosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) converts it to a form that is independent of Ca2+. We demonstrate that significant Ca(2+)-independent CaM kinase activity is present in untreated hippocampal slices. Two manipulations that produce a long-lasting enhancement of neuronal activity in hippocampal slices, elevated extracellular Ca2+ or depolarization with high K+, generate additional Ca(2+)-independent activity. This increase is dependent on extracellular Ca2+ and is correlated with an increased phosphorylation of CaM kinase. In contrast, CaM kinase in posterior pituitary, a brain structure that is not thought to be involved in memory-related processes, is not modulated by depolarization. These results suggest that the Ca(2+)-independent form of CaM kinase may modulate neuronal activity in the hippocampus. 相似文献
2.
Protein kinase C (PKC) exhibits both negative and positive cross-talk with multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) in PC12 cells. PKC effects negative cross-talk by inhibiting the mobilization of intracellular Ca2+ stores and by inhibiting Ca2+ influx through voltage-sensitive Ca2+ channels. In the absence of cross-talk, Ca2+ influx induced by depolarization with 56 mM K+ stimulates CaM kinase and its autophosphorylation and converts up to 50% of the enzyme to a Ca(2+)-independent or autonomous species. Acute treatment with phorbol myristate acetate (PMA) elicits a parallel reduction in depolarization-induced Ca2+ influx and in generation of autonomous CaM kinase. Negative cross-talk also occurs during stimulation of the phosphatidylinositol signaling system with bradykinin, which activates both PKC and CaM kinase. The extent of CaM kinase activation is attenuated by the simultaneous activation of PKC; it is enhanced by prior down-regulation of PKC. PKC also exhibits positive cross-talk with CaM kinase. Submaximal activation of CaM kinase by ionomycin is potentiated by concurrent activation of PKC with PMA. Such PMA treatment is found to increase the level of cytosolic calmodulin. Enhanced activation of CaM kinase by PKC may result from PKC-mediated phosphorylation of calmodulin-binding proteins, such as neuromodulin and MARCKS, and the subsequent increase in the availability of previously bound calmodulin for activation of CaM kinase. 相似文献
3.
4.
Fujimoto T Yurimoto S Hatano N Nozaki N Sueyoshi N Kameshita I Mizutani A Mikoshiba K Kobayashi R Tokumitsu H 《Biochemistry》2008,47(13):4151-4159
To search for the downstream target protein kinases of Ca (2+)/calmodulin-dependent protein kinase kinase (CaMKK), we performed affinity chromatography purification of a rat brain extract using a GST-fused CaMKKalpha catalytic domain (residues 126-434) as the affinity ligand. Proteomic analysis was then carried out to identify the CaMKK-interacting protein kinases. In addition to identifying the catalytic subunit of 5'-AMP-activated protein kinase, we identified SAD-B as interacting. A phosphorylation assay and mass spectrometry analysis revealed that SAD-B was phosphorylated in vitro by CaMKK at Thr (189) in the activation loop. Phosphorylation of Thr (189) by CaMKKalpha induced SAD-B kinase activity by over 60-fold. In transfected COS-7 cells, kinase activity and Thr (189) phosphorylation of overexpressed SAD-B were significantly enhanced by coexpression of constitutively active CaMKKalpha (residues 1-434) in a manner similar to that observed with coexpression of LKB1, STRAD, and MO25. Taken together, these results indicate that CaMKKalpha is capable of activating SAD-B through phosphorylation of Thr (189) both in vitro and in vivo and demonstrate for the first time that CaMKK may be an alternative activating kinase for SAD-B. 相似文献
5.
Regulation of human CLC-3 channels by multifunctional Ca2+/calmodulin-dependent protein kinase 总被引:12,自引:0,他引:12
Huang P Liu J Di A Robinson NC Musch MW Kaetzel MA Nelson DJ 《The Journal of biological chemistry》2001,276(23):20093-20100
The multifunctional calcium/calmodulin-dependent protein kinase II, CaMKII, has been shown to regulate chloride movement and cellular function in both excitable and non-excitable cells. We show that the plasma membrane expression of a member of the ClC family of Cl(-) channels, human CLC-3 (hCLC-3), a 90-kDa protein, is regulated by CaMKII. We cloned the full-length hCLC-3 gene from the human colonic tumor cell line T84, previously shown to express a CaMKII-activated Cl(-) conductance (I(Cl,CaMKII)), and transfected this gene into the mammalian epithelial cell line tsA, which lacks endogenous expression of I(Cl,CaMKII). Biotinylation experiments demonstrated plasma membrane expression of hCLC-3 in the stably transfected cells. In whole cell patch clamp experiments, autonomously active CaMKII was introduced into tsA cells stably transfected with hCLC-3 via the patch pipette. Cells transfected with the hCLC-3 gene showed a 22-fold increase in current density over cells expressing the vector alone. Kinase-dependent current expression was abolished in the presence of the autocamtide-2-related inhibitory peptide, a specific inhibitor of CaMKII. A mutation of glycine 280 to glutamic acid in the conserved motif in the putative pore region of the channel changed anion selectivity from I(-) > Cl(-) to Cl(-) > I(-). These results indicate that hCLC-3 encodes a Cl(-) channel that is regulated by CaMKII-dependent phosphorylation. 相似文献
6.
Mechanism of autophosphorylation of the multifunctional Ca2+/calmodulin-dependent protein kinase 总被引:10,自引:0,他引:10
The multifunctional Ca2+/calmodulin-dependent protein kinase purified from rat brain cytosol undergoes a self-phosphorylation or autophosphorylation reaction. Our conclusion that this reaction is autocatalytic is based on the following lines of evidence: The autophosphorylation reaction and the protein kinase activity toward other substrates are absolutely dependent on the presence of both Ca2+ and calmodulin; autophosphorylation and phosvitin kinase activity show a similar time course and indistinguishable heat lability; the reaction is a consistent property of every preparation of rat brain kinase; the reaction is present in both crude and highly purified preparations of similar kinases or isozymes from rat lung, spleen, heart, bovine brain, and a neuronal tissue from Aplysia californica, a marine mollusk; phosphorylation of the kinase subunits is not mimicked by addition of cAMP, cGMP, Ca2+ plus diglyceride, or addition of the cAMP-dependent protein kinase, and is not blocked by the heat-stable inhibitor protein of the cAMP-dependent protein kinase; and the reaction is intramolecular. Autophosphorylation results in the stoichiometric incorporation of phosphate into both the 51,000- and 60,000-dalton subunits. 相似文献
7.
Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKPase) is a protein phosphatase which dephosphorylates autophosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) and deactivates the enzyme (Ishida, A., Kameshita, I. and Fujisawa, H. (1998) J. Biol. Chem. 273, 1904-1910). In this study, a phosphorylation-dephosphorylation relationship between CaMKII and CaMKPase was examined. CaMKPase was not significantly phosphorylated by CaMKII under the standard phosphorylation conditions but was phosphorylated in the presence of poly-L-lysine, which is a potent activator of CaMKPase. The maximal extent of the phosphorylation was about 1 mol of phosphate per mol of the enzyme and the phosphorylation resulted in an about 2-fold increase in the enzyme activity. Thus, the activity of CaMKPase appears to be regulated through phosphorylation by its target enzyme, CaMKII. 相似文献
8.
Multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) is a prominent mediator of neurotransmitters which elevate Ca2+. It coordinates cellular responses to external stimuli by phosphorylating proteins involved in neurotransmitter synthesis, neurotransmitter release, carbohydrate metabolism, ion flux and neuronal plasticity. Structure/function studies of CaM kinase have provided insights into how it decodes Ca2+ signals. The kinase is kept relatively inactive in its basal state by the presence of an autoinhibitory domain. Binding of Ca2+/calmodulin eliminates this inhibitory constraint and allows the kinase to phosphorylate its substrates, as well as itself. This autophosphorylation significantly slows dissociation of calmodulin, thereby trapping calmodulin even when Ca2+ levels are subthreshold. The kinase may respond particularly wel to multiple Ca2+ spikes since trapping may enable a spike frequency-dependent recruitment of calmodulin with each successive Ca2+ spike leading to increased activation of the kinase. Once calmodulin dissociates, CaM kinase remains partially active until it is dephosphorylated, providing for an additional period in which its response to brief Ca2+ transients is potentiated.Special issue dedicated to Dr. Paul Greengard. 相似文献
9.
Initial autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) occurs at Thr286 (the "autonomy" site) and converts the kinase from a Ca(2+)-dependent to a partially Ca(2+)-independent or autonomous enzyme. After removal of Ca2+/calmodulin, the autonomous kinase undergoes a "burst" of inhibitory autophosphorylation at sites distinct from the autonomy site which may be masked in the presence of bound calmodulin. This burst of Ca(2+)-independent autophosphorylation blocks the ability of calmodulin to activate the kinase. We have used site-directed mutagenesis to replace putative inhibitory autophosphorylation sites within the calmodulin binding domain of recombinant alpha-CaM kinase with nonphosphorylatable alanines and examined the effects on autophosphorylation, kinase activity, and calmodulin binding. Although prominent Ca(2+)-independent autophosphorylation occurs within the calmodulin binding domain at Thr305, Thr306, and Ser314 in wild-type alpha-CaM kinase, the inhibitory effect on kinase activity and calmodulin binding is retained in mutants lacking any one of these three sites. However, when both Thr305 and Thr306 are converted to alanines the kinase does not display inhibition of either activity or calmodulin binding. Autophosphorylation at either Thr305 or Thr306 is therefore sufficient to block both binding and activation of the kinase by Ca2+/calmodulin. Thr306 is also slowly autophosphorylated in a basal reaction in the continuous absence of Ca2+/calmodulin. Autophosphorylation of Thr306 by the kinase in either its basal or autonomous state suggests that in the absence of bound calmodulin, the region of the autoregulatory domain surrounding Thr306, rather than the region near the autonomy site, lies nearest the peptide substrate binding site of the kinase. 相似文献
10.
Ca2+/calmodulin-dependent protein kinase enriched in cerebellar granule cells. Identification of a novel neuronal calmodulin-dependent protein kinase 总被引:10,自引:0,他引:10
Ca2+-sensitive protein kinases are thought to play a pivotal role in Ca2+-mediated neuronal communication. We describe here the cloning, purification, and characterization of a major Ca2+/calmodulin-dependent, brain-specific protein kinase which is particularly enriched in cerebellar granule cells. The enzyme is comprised of Mr 65,000 and 67,000 polypeptides which copurify to homogeneity and phosphorylate synapsin I. The protein kinase is coded for by two poly(A+) RNAs of 2.0 and 3.5 kilobases which probably derive from a single gene. Two cDNA inserts, one of 198 base pairs and one of 1225 base pairs, contain a total of 677 base pairs of the protein coding sequence which includes sequences homologous to other calmodulin-dependent protein kinases including part of the calmodulin-binding domain. The surprising presence of extended sequences which are enriched in glutamate residues may influence the subcellular distribution of this kinase. Immunohistochemical localization with an affinity-purified antibody reveals that whereas the enzyme is expressed in several neuronal subpopulations, it is exceptionally enriched in the granule cells of the cerebellum. The relevance of the biochemical, molecular, and histologic properties of this enzyme is discussed in the context of neuronal Ca2+ signaling. 相似文献
11.
The multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca2+-dependent phosphorylation of tyrosine hydroxylase 总被引:5,自引:0,他引:5
Stimulation of rat pheochromocytoma PC12 cells with ionophore A23187, carbachol, or high K+ medium, agents which increase intracellular Ca2+, results in the phosphorylation and activation of tyrosine hydroxylase (Nose, P., Griffith, L. C., and Schulman, H. (1985) J. Cell Biol. 101, 1182-1190). We have identified three major protein kinases in PC12 cells and investigated their roles in the Ca2+-dependent phosphorylation of tyrosine hydroxylase and other cytosolic proteins. A set of PC12 proteins were phosphorylated in response to both elevation of intracellular Ca2+ and to protein kinase C (Ca2+/phospholipid-dependent protein kinase) activators. In addition, distinct sets of proteins responded to either one or the other stimulus. The three major regulatory kinases, the multifunctional Ca2+/calmodulin-dependent protein kinase, the cAMP-dependent protein kinase, and protein kinase C all phosphorylate tyrosine hydroxylase in vitro. Neither the agents which increase Ca2+ nor the agents which directly activate kinase C (12-O-tetradecanoylphorbol-13-acetate or 1-oleyl-2-acetylglycerol) increase cAMP or activate the cAMP-dependent protein kinase, thereby excluding this pathway as a mediator of these stimuli. The role of protein kinase C was assessed by long term treatment of PC12 cells with 12-O-tetradecanoylphorbol-13-acetate, which causes its "desensitization." In cells pretreated in this manner, agents which increase Ca2+ influx continue to stimulate tyrosine hydroxylase phosphorylation maximally, while protein kinase C activators are completely ineffective. Comparison of tryptic peptide maps of tyrosine hydroxylase phosphorylated by the three protein kinases in vitro with phosphopeptide maps generated from tyrosine hydroxylase phosphorylated in vivo indicates that phosphorylation by the Ca2+/calmodulin-dependent kinase most closely mirrors the in vivo phosphorylation pattern. These results indicate that the multifunctional Ca2+/calmodulin-dependent protein kinase mediates phosphorylation of tyrosine hydroxylase by hormonal and electrical stimuli which elevate intracellular Ca2+ in PC12 cells. 相似文献
12.
We have focused on activation mechanisms of calcium/calmodulin-dependent protein kinase (CaM) kinase I in the hippocampal neurons and compared them with that of CaM kinase IV. Increased activation of CaM kinase I occurred by stimulation with glutamate and depolarization in cultured rat hippocampal neurons. Similar to CaM kinases II and IV, CaM kinase I was essentially activated by stimulation with the NMDA receptor. Although both CaM kinases I and IV seem to be activated by CaM kinase kinase, the activation of CaM kinase I was persistent during stimulation with glutamate in contrast to a transient activation of CaM kinase IV. In addition, CaM kinase I was activated in a lower concentration of glutamate than that of CaM kinase IV. Depolarization-induced activation of CaM kinase I was also evident in the cultured neurons and was largely blocked by nifedipine. In the experiment with 32P-labeled cells, phosphorylation of CaM kinase I was stimulated by glutamate treatment and depolarization. The glutamate- and depolarization-induced phosphorylation was inhibited by the NMDA receptor antagonist and nifedipine, respectively. These results suggest that, although CaM kinases I and IV are activated by the NMDA receptor and depolarization stimulation, these kinase activities are differently regulated in the hippocampal neurons. 相似文献
13.
《FEBS letters》1987,219(1):249-253
Ca2+-dependent chromatography of soluble cytosolic proteins on calmodulin-Sepharose gave a fraction that exhibited Ca2+- and calmodulin-dependent phosphorylation of several polypeptides, including 60, 56 and 45 kDa species. At 0.2 μM beef calmodulin the phosphorylation was optimal at 3 μM free Ca2+, and at 80 μM free Ca2+ it was half-maximal at about 0.1 μM beef calmodulin. It is concluded that the fraction contains calmodulin-dependent protein kinase(s) which is (are) autophosphorylated or associated with substrates. 相似文献
14.
Tokumitsu H Muramatsu Ma Ikura M Kobayashi R 《The Journal of biological chemistry》2000,275(26):20090-20095
Ca(2+)/calmodulin-dependent protein kinase kinase (CaM-KK) is a novel member of the CaM kinase family, which specifically phosphorylates and activates CaM kinase I and IV. In this study, we characterized the CaM-binding peptide of alphaCaM-KK (residues 438-463), which suppressed the activity of constitutively active CaM-KK (84-434) in the absence of Ca(2+)/CaM but competitively with ATP. Truncation and site-directed mutagenesis of the CaM-binding region in CaM-KK reveal that Ile(441) is essential for autoinhibition of CaM-KK. Furthermore, CaM-KK chimera mutants containing the CaM-binding sequence of either myosin light chain kinases or CaM kinase II located C-terminal of Leu(440), exhibited enhanced Ca(2+)/CaM-independent activity (60% of total activity). Although the CaM-binding domains of myosin light chain kinases and CaM kinase II bind to the N- and C-terminal domains of CaM in the opposite orientation to CaM-KK (Osawa, M., Tokumitsu, H., Swindells, M. B., Kurihara, H., Orita, M., Shibanuma, T., Furuya, T., and Ikura, M. (1999) Nat. Struct. Biol. 6, 819-824), the chimeric CaM-KKs containing Ile(441) remained Ca(2+)/CaM-dependent. This result demonstrates that the orientation of the CaM binding is not critical for relief of CaM-KK autoinhibition. However, the requirement of Ile(441) for autoinhibition, which is located at the -3 position from the N-terminal anchoring residue (Trp(444)) to CaM, accounts for the opposite orientation of CaM binding of CaM-KK compared with other CaM kinases. 相似文献
15.
Phosphorylation of smooth myosin light chain kinase by smooth muscle Ca2+/calmodulin-dependent multifunctional protein kinase 总被引:2,自引:0,他引:2
Smooth muscle myosin light chain kinase (MLC kinase) was phosphorylated by smooth muscle calmodulin-dependent protein kinase II (CaM protein kinase II). When MLC kinase was free from calmodulin, two sites were phosphorylated. The phosphorylation at the one site was much faster than the other site; however, the phosphorylation at the first site was completely blocked by calmodulin binding to MLC kinase. Phosphorylation of MLC kinase by CaM protein kinase II increased the dissociation constant of MLC kinase for calmodulin about 10 times without changing the Vmax. The location of the phosphorylation sites was identified by isolating and sequencing the tryptic phosphopeptides of MLC kinase. The preferred site was identified as serine 512 and the second site as serine 525. These sites are the same as the sites phosphorylated by cAMP-dependent protein kinase. 相似文献
16.
Woods A Dickerson K Heath R Hong SP Momcilovic M Johnstone SR Carlson M Carling D 《Cell metabolism》2005,2(1):21-33
AMP-activated protein kinase (AMPK) is the downstream component of a kinase cascade that plays a pivotal role in energy homeostasis. Activation of AMPK requires phosphorylation of threonine 172 (T172) within the T loop region of the catalytic alpha subunit. Recently, LKB1 was shown to activate AMPK. Here we show that AMPK is also activated by Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK). Overexpression of CaMKKbeta in mammalian cells increases AMPK activity, whereas pharmacological inhibition of CaMKK, or downregulation of CaMKKbeta using RNA interference, almost completely abolishes AMPK activation. CaMKKbeta isolated from rat brain or expressed in E. coli phosphorylates and activates AMPK in vitro. In yeast, CaMKKbeta expression rescues a mutant strain lacking the three kinases upstream of Snf1, the yeast homolog of AMPK. These results demonstrate that AMPK is regulated by at least two upstream kinases and suggest that AMPK may play a role in Ca(2+)-mediated signal transduction pathways. 相似文献
17.
18.
T Kitani A Ishida S Okuno M Takeuchi I Kameshita H Fujisawa 《Journal of biochemistry》1999,125(6):1022-1028
Calmodulin-dependent protein kinase (CaM-kinase) phosphatase dephosphorylates and concomitantly deactivates CaM-kinase II activated upon autophosphorylation, and CaM-kinases IV and I activated upon phosphorylation by CaM-kinase kinase [Ishida, I., Okuno, S., Kitani, T., Kameshita, I., and Fujisawa, H. (1998) Biochem. Biophys. Res. Commun. 253, 159-163], suggesting that CaM-kinase phosphatase plays important roles in the function of Ca2+ in the cell, because the three multifunctional CaM-kinases (CaM-kinases I, II, and IV) are thought to be the key enzymes in the Ca2+-signaling system. In the present study, cDNA for CaM-kinase phosphatase was cloned from a rat brain cDNA library. The coded protein consisted of 450 amino acids with a molecular weight of 49, 165. Western blot analysis showed the ubiquitous tissue distribution of CaM-kinase phosphatase. Immunocytochemical analysis revealed that CaM-kinase phosphatase is evenly distributed outside the nucleus in a cell. 相似文献
19.
Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation 总被引:15,自引:0,他引:15
Autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase converts it from a Ca2(+)-dependent to a Ca2(+)-independent or autonomous kinase, a process that may underlie some long-term enhancement of transient Ca2+ signals. We demonstrate that the neuronal alpha subunit clone expressed in COS-7 cells (alpha-CaM kinase) is sufficient to encode the regulatory phenomena characteristic of the multisubunit kinase isolated from brain. Activity of alpha-CaM kinase is highly dependent on Ca2+/calmodulin. It is converted by autophosphorylation to an enzyme capable of Ca2(+)-independent (autonomous) substrate phosphorylation and autophosphorylation. Using site-directed mutagenesis, we separately eliminate five putative autophosphorylation sites within the regulatory domain and directly examine their individual roles. Ca2+/calmodulin-dependent kinase activity is fully retained by each mutant, but Thr286 is unique among the sites in being indispensable for generation of an autonomous kinase. 相似文献
20.
Regulation of Ca2+/calmodulin-dependent protein kinase II by Ca2+/calmodulin-independent autophosphorylation 总被引:8,自引:0,他引:8
R Lickteig S Shenolikar L Denner P T Kelly 《The Journal of biological chemistry》1988,263(35):19232-19239
The autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaM-KII) results in the generation of kinase activity that is largely Ca2+/CaM-independent. We report that continued Ca2+/CaM-independent autophosphorylation of CaM-KII results in the generation of distinct phosphopeptides as identified by high performance liquid chromatography and enzymatic properties that are different than those observed for Ca2+/CaM-dependent autophosphorylation. These Ca2+/CaM-independent properties include (a) increased catalytic activity, (b) higher substrate affinity for the phosphorylation of synapsin I, and (c) decreased CaM-binding to both CaM-KII subunits as analyzed by gel overlays. Our results indicate that the autophosphorylation of only one subunit per holoenzyme is required to generate the Ca2+/CaM-independent CaM-KII. We suggest a two-step process by which autophosphorylation regulates CaM-KII. Step I requires Ca2+/CaM and underlies initial kinase activation. Step II involves continued autophosphorylation of the Ca2+/CaM-independent kinase and results in increased affinity for its substrate synapsin I and decreased affinity for calmodulin. These results indicate a complex mechanism through which autophosphorylation of CaM-KII may regulate its activity in response to transient fluctuations in intracellular calcium. 相似文献