首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A class of integral membrane proteins, referred to as ‘tail-anchored proteins’, are inserted into phospholipid bilayers via a single segment of hydrophobic amino acids at the C-terminus, thereby displaying a large functional domain in the cytosol. This membrane attachment strategy allows eukaryotic cells to position a wide range of cytoplasmic activities close to the surface of an intracellular membrane. Tail-anchored proteins often, but not always, demonstrate a selective distribution to specific intracellular organelles. This membrane-specific distribution is required for the large number of targeting proteins that are tail-anchored, but may or may not be critical for the numerous tail-anchored pro-apoptotic and anti-apoptotic proteins of the Bcl-2 family. Recent work has begun to address the mechanism for targeting tail-anchored proteins to their resident membranes, but questions remain. What targeting signals determine each protein's intracellular location? Are there receptors for these signals and, if so, how do they function? What steps are required to integrate tail-anchored proteins into the phospholipid bilayers? In this Traffic Interchange, we summarise what is known about tail-anchored proteins, and outline the areas that are currently under study.  相似文献   

2.
PlsX is a central enzyme of phospholipid synthesis in bacteria, converting acyl‐ACP to acyl‐phosphate on the pathway to phosphatidic acid formation. PlsX has received attention because it plays a key role in the coordination of fatty acid and phospholipid synthesis. Recently, PlsX was also suggested to coordinate membrane synthesis with cell division in Bacillus subtilis. Here, we have re‐investigated the cell biology of PlsX and determined that the enzyme is uniformly distributed on the membrane of most cells, but occasionally appears as membrane foci as well. Foci and homogenous patterns seem freely interconvertible but the prevalence of the uniform staining suggests that PlsX does not need to localize to specific sites to function correctly. We also investigated the relationship between PlsX and the divisome. In contrast to previous observations, PlsX's foci showed no obvious periodicity of localization and did not colocalize with the divisome. Furthermore, depletion of PlsX did not affect cell division if phospholipid synthesis is maintained by an alternative enzyme. These results suggest that coordination between division and membrane synthesis may not require physical or functional interactions between the divisome and phospholipid synthesis enzymes.  相似文献   

3.
Declining viability and lipid degradation during pollen storage   总被引:1,自引:0,他引:1  
Declining viability of pollen during storage at 24° C in atmospheres of 40% relative humidity (RH) and 75% RH was studied, with special emphasis on lipid changes. Pollens of Papaver rhoeas and Narcissus poeticus, characterized by a high linolenic acid content, were compared with Typha latifolia pollen which has a low linolenic acid content. The rationale behind this was to answer the question of whether lipid peroxidation is involved in the rapid viability loss and reduced membrane integrity of, in particular, the unsaturated-lipid pollen types. Viability and membrane integrity degraded more rapidly at 75% RH than at 40% RH. All pollen species showed deesterification of acyl chains of lipids but no detectable peroxidation at both RH levels. Considerable amounts of lipid-soluble antioxidants were detected that did not degrade during storage. Free fatty acids and lysophospholipids were formed during storage, the effects of which on membranes are discussed. These degradation products were very prominent in the short-lived Papaver pollen. The loss of viability does coincide with phospholipid deesterification. A significant decrease of the phospholipid content occurred at 75% RH, but not at 40% RH. Based on compositional analyses of phospholipids and newly formed free fatty acids, it was concluded that the deesterification of acyl chains from the lipids occurred at random. We suggest that, due to the low water content of the pollen, free radicals rather than unspecific acyl hydrolases are involved in the deesterification process.  相似文献   

4.
The origin of the envelope lipids acquired by Rous sarcoma virus (RSV) and vesicular stomatitis virus (VSV) during budding from the plasma membrane of chicken embryo fibroblasts was examined. Several differences were observed between the lipid composition of RSV and the plasma membrane. When the phospholipid composition of the cells was modified by growing them in the presence of the choline analogues, N,N-dimethylethanolamine or l-2-amino-1-butanol, the phospholipid composition of the virus was subsequently altered but in a very different manner than the plasma membrane. In the plasma membrane, the increase in the analogue-containing phospholipid was at the expense of phosphatidylcholine and phosphatidylethanolamine while the amount of sphingomyelin remained constant. In RSV, however, there was a decrease in sphingomyelin and phosphatidylethanolamine while there was only a small change in the amount of phosphatidylcholine. Phospholipid polar head group modification did not significantly alter the fatty acid composition or the cholesterol content. Membranes of phagosomes isolated after the cells had ingested latex beads had essentially the same phospholipid composition as the plasma membrane. The phospholipid composition of VSV was different from RSV, but it also did not reflect the composition of the plasma membrane. The composition of the plasma membrane was intermediate between the viruses and the endoplasmic reticulum, but contamination of the plasma membrane fraction with the endoplasmic reticulum could not account for the observed differences. These results show that the viruses bud from localized lipid regions that do not reflect the average properties of the plasma membrane.  相似文献   

5.
Upon phosphate starvation, plants retard shoot growth but promote root development presumably to enhance phosphate assimilation from the ground. Membrane lipid remodelling is a metabolic adaptation that replaces membrane phospholipids by non‐phosphorous galactolipids, thereby allowing plants to obtain scarce phosphate yet maintain the membrane structure. However, stoichiometry of this phospholipid‐to‐galactolipid conversion may not account for the massive demand of membrane lipids that enables active growth of roots under phosphate starvation, thereby suggesting the involvement of de novo phospholipid biosynthesis, which is not represented in the current model. We overexpressed an endoplasmic reticulum‐localized lysophosphatidic acid acyltransferase, LPAT2, a key enzyme that catalyses the last step of de novo phospholipid biosynthesis. Two independent LPAT2 overexpression lines showed no visible phenotype under normal conditions but showed increased root length under phosphate starvation, with no effect on phosphate starvation response including marker gene expression, root hair development and anthocyanin accumulation. Accompanying membrane glycerolipid profiling of LPAT2‐overexpressing plants revealed an increased content of major phospholipid classes and distinct responses to phosphate starvation between shoot and root. The findings propose a revised model of membrane lipid remodelling, in which de novo phospholipid biosynthesis mediated by LPAT2 contributes significantly to root development under phosphate starvation.  相似文献   

6.
Biological membranes contain many domains enriched in phospholipid lipids and there is not yet clear explanation about how these domains can control the activity of phospholipid metabolizing enzymes. Here we used the surface dilution kinetic theory to derive general equations describing how complex substrate distributions affect the activity of enzymes following either the phospholipid binding kinetic model (which assumes that the enzyme molecules directly bind the phospholipid substrate molecules), or the surface-binding kinetic model (which assumes that the enzyme molecules bind to the membrane before binding the phospholipid substrate). Our results strongly suggest that, if the enzyme follows the phospholipid binding kinetic model, any substrate redistribution would increase the enzyme activity over than observed for a homogeneous distribution of substrate. Besides, enzymes following the surface-binding model would be independent of the substrate distribution. Given that the distribution of substrate in a population of micelles (each of them a lipid domain) should follow a Poisson law, we demonstrate that the general equations give an excellent fit to experimental data of lipases acting on micelles, providing reasonable values for kinetic parameters—without invoking special effects such as cooperative phenomena. Our theory will allow a better understanding of the cellular-metabolism control in membranes, as well as a more simple analysis of the mechanisms of membrane acting enzymes.  相似文献   

7.
Changes in membrane lipid composition (membrane remodelling) have been associated with metabolic depression in some aestivating snails but has not been studied in aestivating frogs. This study examined the membrane phospholipid composition of two Australian aestivating frog species Cyclorana alboguttata and Cyclorana australis. The results showed no major membrane remodelling of tissue in either frog species, or in mitochondria of C. alboguttata due to aestivation. Mitochondrial membrane remodelling was not investigated in C. australis. Where investigated in C. alboguttata, total protein and phospholipid content, and citrate synthase (CS) and cytochrome c oxidase (CCO) activities in tissues and mitochondria mostly did not change with aestivation in liver. In skeletal muscle, however, CS and CCO activities, mitochondrial and tissue phospholipids, and mitochondrial protein decreased with aestivation. These decreases in muscle indicate that skeletal muscle mitochondrial content may decrease during aestivation. Na+K+ATPase activity of both frog species showed no effect of aestivation. In C. alboguttata different fat diets had a major effect on both tissue and mitochondrial phospholipid composition indicating an ability to remodel membrane composition that is not utilised in aestivation. Therefore, changes in lipid composition associated with some aestivating snails do not occur during aestivation in these Australian frogs.  相似文献   

8.
M K Cathcart  L A Culp 《Biochemistry》1979,18(7):1167-1176
The phospholipid composition of cell-substratum adhesion sites, obtained after EGTA-mediated detachment of cells from the tissue-culture substratum, was determined for [32P]orthophosphate radiolabeled Balb/c 3T3, SV40-transformed (SVT2), and concanavalin A selected revertant variant cell lines. All of the major phospholipid classes were found in the substrate-attached material, but there was an enrichment for specific phospholipid species in this adhesive material as compared to whole-cell and surface-enriched membranes. The phospholipid composition was remarkable similar for the whole-cell and surface-enriched membrane fractions from the three cell lines. However, pronounced differences in the phospholipid composition of the adhesion sites were observed as a result of viral transformation--SVT2 sites were clearly enriched in phosphatidylethanolamine and depleted in phosphatidylcholine when compared to 3T3 sites. This alteration in adhesion site phospholipids of transformed cells reverted to 3T3-like values in the adhesive material of revertant cells. The composition of adhesive material of newly attaching cells was also examined to differentiate compositional differences between "footpad" adhesion sites and "footprints", adhesive material pinched off from the posterior of cells as they move across the substratum. Pulse and pulse-chase analyses of the [32P]phospholipids revealed some differences in synthesis and turnover rates in the three cell lines; in addition, altered rates of deposition of newly synthesized material into adhesion sites of transformed cells were observed. These data afford further evidence that the cell-substratum adhesion sites are highly specialized areas of the cell surface enriched in components which are intricately involved in the adhesive process. The transformation-dependent changes in adhesion site phospholipids may help to determine the basis for the altered adhesive properties of transformed cells.  相似文献   

9.
Context: Nanocarrier-based strategies to achieve delivery of bioactives specifically to the mitochondria are being increasingly explored due to the importance of mitochondria in critical cellular processes.

Objective: To test the ability of liposomes modified with newly synthesized triphenylphosphonium (TPP)–phospholipid conjugates and to test their use in overcoming the cytotoxicity of stearyl triphenylphosphonium (STPP)-modified liposomes when used for delivery of therapeutic molecules to the mitochondria.

Methods: TPP–phospholipid conjugates with the dioleoyl, dimyristoyl or dipalmitoyl lipid moieties were synthesized and liposomes were prepared with these conjugates in a 1?mol% ratio. The subcellular distribution of the liposomes was tested by confocal microscopy. Furthermore, the liposomes were tested for their effect on cell viability using a MTS assay, on cell membrane integrity using a lactate dehydrogenase assay and on mitochondrial membrane integrity using a modified JC-1 assay.

Results: The liposomes modified with the new TPP–phospholipid conjugates exhibited similar mitochondriotropism as STPP-liposomes but they were more biocompatible as compared to the STPP liposomes. While the STPP-liposomes had a destabilizing effect on cell and mitochondrial membranes, the liposomes modified with the TPP–phospholipid conjugates did not demonstrate any such effect on biomembranes.

Conclusions: Using phospholipid anchors in the synthesis of TPP–lipid conjugates can provide liposomes that exhibit the same mitochondrial targeting ability as STPP but with much higher biocompatibility.  相似文献   

10.
Deteriosomes, a new class of microvesicles, have been isolated from rat liver tissue. These microvesicles are similar to those isolated previously from plant tissue [Yao et al., Proc Natl Acad Sci USA 88:2269–2273, 1991] in that they are nonsedimentable and enriched in membrane catabolites, particularly products of phospholipid degradation. Liver deteriosomes range in size from 0.05 μm to 0.11 μm in radius. They are also much more permeable than microsomal membrane vesicles indicating that the deteriosome bilayer is perturbed. The data are consistent with the proposal that deteriosomes are formed from membranes by microvesiculation and that they represent an intermediate stage of membrane deterioration. Furthermore, liver deteriosomes were found to contain phospholipase A2 activity. This suggests that they not only serve as a means of moving destabilizing macromolecular catabolites out of membranes into the cytosol but also possess enzymatic activity. The fact that the specific activity of phospholipase A2 is higher in deteriosomes than in deteriosome-free cytosol suggests that some of the enzymatic activity traditionally assumed to be cytosolic may in fact be associated with deteriosomes.  相似文献   

11.
It is now well established that dietary lipids are incorporated into macrophage and T-cell membrane microdomains, altering their structure and function. Within cell membranes, there are specific detergent-resistant domains in which key signal transduction proteins are localized. These regions are classified as “lipid rafts”. Rafts are composed mostly of cholesterol and sphingolipids and therefore do not integrate well into the fluid phospholipid bilayers causing them to form microdomains. Upon cell activation, rafts compartmentalize signal-transducing molecules, thus providing an environment conducive to signal transduction. In this review, we discuss recent novel data describing the effects of n−3 PUFA on alterations in the activation and functions of macrophages and T-cells. We believe that the modifications in these two disparate immune cell types are linked by fundamentally similar changes in membrane lipid composition and transmembrane signaling functions. We conclude that the outcomes of n−3 PUFA-mediated immune cell alterations may be beneficial (e.g., anti-inflammatory) or detrimental (e.g., loss of microbial immunity) depending upon the cell type interrogated.  相似文献   

12.
Liver plasma membranes isolated from rats with chronic dietary iron overload showed a large modification of their phospholipid fatty acid composition. Specifically, a significant decrease in polyunsaturated fatty acids and a parallel increase in saturated fatty acids was observed. This pattern was consistent with thein vivo occurrence of lipoperoxidative reactions in the liver plasma membranes. However, neither change in the cholesterol/phospholipid molar ratio nor in the lipid/protein ratio was detected. Direct measurement of the plasma membrane fluidity state by electron spin resonance spectrometry did not reveal any difference between control and iron-treated rats. These findings indicate that chronic dietary iron overload can induce lipid peroxidation of rat liver plasma membranes, but this event does not bring about modification in the physical state of the membrane.  相似文献   

13.
Anti-IgM or anti-IgD stimulates B cells to induce increases in inositol phospholipid metabolism and intracellular free calcium concentration [( Ca2+]i). Anti-IgM also causes increases in membrane fluidity that occur more promptly than those in [Ca2+]i in resting B cells as well as BAL17 B lymphoma cells. However, other B cell activators such as LPS or PMA did not induce the membrane fluidity changes. Furthermore, sodium fluoride, which is considered to be an activator of the guanine nucleotide-binding protein, caused increases in membrane fluidity as well as increased [Ca2+]i or inositol phospholipid metabolism. Anti-IgM- or sodium fluoride-induced increases in membrane fluidity were inhibited by 20-min pretreatment of cells with PMA, but not by 24-h pretreatment. These results indicate that membrane fluidity changes are closely associated with increased [Ca2+]i after cross-linkage of membrane Ig and are regulated by protein kinase C in B cells.  相似文献   

14.
Acetyl-l-carnitine (ALCAR) and myo-inositol are reported to enhance motor activity in animal models; modulate membrane phospholipid metabolism (ALCAR and myo-inositol) and high-energy phosphate metabolism (ALCAR) back to normal; and be effective treatments of major depression in humans. Fish in general and zebra fish in particular present unique animal models for the in vivo study of high-energy phosphate and membrane phospholipid metabolism by noninvasive in vivo 31P NMR. This 31P NMR study of free-swimming zebra fish showed that both ALCAR and myo-inositol decreased levels of phosphodiesters and inorganic orthophosphate and increased levels of PCr in the fish. These findings demonstrate both ALCAR and myo-inositol modulate membrane phospholipid and high-energy phosphate metabolism in free-swimming zebra fish.  相似文献   

15.
Plasma membranes were isolated from roots of bean (Phaseolus vulgaris L.) plants cultured on phosphate sufficient or phosphate deficient medium. The phospholipid composition of plasma membranes was analyzed and compared with that of the microsomal fraction. Phosphate deficiency had no influence on lipid/protein ratio in microsomal as well as plasma membrane fraction. In phosphate deficient roots phospholipid content was lower in the plasma membrane, but did not change in the microsomal fraction. Phosphatidylcholine and phosphatidylethanolamine were two major phospholipids in plasmalemma and microsomal membranes (80 % of the total). After two weeks of phosphate starvation a considerable decrease (about 50 %) in phosphatidylcholine and phosphatidylethanolamine in microsomal membranes was observed. The decline in two major phospholipids was accompanied by an increase in phosphatidic acid and lysophosphatidylcholine content. The effect of alterations in plasma membrane phospholipids on membrane function e.g. nitrate uptake is discussed.  相似文献   

16.
BACKGROUND: A long-standing problem in understanding the mechanism by which the phospholipid bilayer of biological membranes is assembled concerns how phospholipids flip back and forth between the two leaflets of the bilayer. This question is important because phospholipid biosynthetic enzymes typically face the cytosol and deposit newly synthesized phospholipids in the cytosolic leaflet of biogenic membranes such as the endoplasmic reticulum (ER). These lipids must be transported across the bilayer to populate the exoplasmic leaflet for membrane growth. Transport does not occur spontaneously and it is presumed that specific membrane proteins, flippases, are responsible for phospholipid flip-flop. No biogenic membrane flippases have been identified and there is controversy as to whether proteins are involved at all, whether any membrane protein is sufficient, or whether non-bilayer arrangements of lipids support flip-flop. RESULTS: To test the hypothesis that specific proteins facilitate phospholipid flip-flop in the ER, we reconstituted transport-active proteoliposomes from detergent-solubilized ER vesicles under conditions in which protein-free liposomes containing ER lipids were inactive. Transport was measured using a synthetic, water-soluble phosphatidylcholine and was found to be sensitive to proteolysis and associated with proteins or protein-containing complexes that sedimented operationally at 3.8S. Chromatographic analyses indicated the feasibility of identifying the transporter(s) by protein purification approaches, and raised the possibility that at least two different proteins are able to facilitate transport. Calculations based on a simple reconstitution scenario suggested that the transporters represent approximately 0.2% of ER membrane proteins. CONCLUSIONS: Our results clearly show that specific proteins are required to translocate a phosphatidylcholine analogue across the ER membrane. These proteins are likely to be the flippases, which are required to translocate natural phosphatidylcholine and other phospholipids across the ER membrane. The methodology that we describe paves the way for identification of a flippase.  相似文献   

17.
The mechanism by which calmodulin and troponin C influence phosphorylation of troponin I (TnI) by protein kinase C was investigated. The phosphorylation of TnI by protein kinase C requires the presence of acidic phospholipid, calcium and diacylglycerol. Light scattering intensity and fluorescence intensity experiments showed that TnI associated with the phospholipid membranes and caused extensive aggregation. In the presence of Ca2+, TnI-phospholipid interactions were prevented by approximately stoichiometric amounts of either troponin C or calmodulin. Troponin C was shown to completely inhibit phosphorylation of TnI by either protein kianse C or by phosphorylase b kinase. In contrast, calmodulin completely inhibited phosphorylation of TnI by protein kinase C, but had only little effect on TnI phosphorylation by phosphorylase b kinase. Inhibition by calmodulin did not appear to be due to interaction with PKC, since calmodulin mildly increased protein kinase C phosphorylation of histone III-S. The ratio of phosphoserine to phosphothreonine in protein kinase C-phosphorylated TnI remained approximately constant for reactions inhibited by up to 90% by clamodulin. TnI interactions with phospholipid and phosphorylation of TnI by PKC were also prevented by high salt concentrations. However, salt concentrations adequate to inhibit phosphorylation were sufficient to dissociate only TnI, but not protein kinase C from the membrane. These results suggest that the binding of TnI to phospholipid is required for phosphorylation by protein kinase C and that prevention of this binding by any means completely inhibited phosphorylation of TnI by protein kinase C.  相似文献   

18.
The structure and physical properties of model membranes formed from lipids and cytochromec oxidase have been examined. The lipid-depleted protein is in the form of 90 Å rods or globules. When phospholipid is added the rods swell and then. form sheets and concentric membrane vesicles. The protein is saturated with lipid at 65 g/atoms of phosphorus per mole of hemea. Electron microscope examination by negative staining, sectioning, and freeze etching indicates a 50 Å thick unit membrane with 50–60 Å protein globules in the lipid bilayer. Infrared, circular dichroism and fluorescence binding studies are consistent with globular protein units surrounded with lipid. Diolein will substitute for phospholipid but the membrane formed remains as sheets rather than vesicles. Saturated phospholipids will not interact with the oxidase to form membrane. The capacity to form membrane is specific to protein associated with the hemea, and other insoluble protein in the original oxidase preparation cannot form membrane.  相似文献   

19.
Plasma membrane blebs are observed in many types of apoptotic cells, but their physiological roles remain to be clarified. We examined whether there is a causative connection between membrane blebbing and other apoptotic changes in Jurkat cells induced to undergo apoptosis by doxorubicin in the presence or absence of Y-27632, an inhibitor of the Rho kinase ROCK-I. The inclusion of the drug made most membrane blebs disappear, while other changes, such as chromatin condensation, inactivation of mitochondrial enzymes, externalization of the membrane phospholipid phosphatidylserine, and removal of cell surface sialic acid, remained unaffected. Furthermore, these apoptotic cells were phagocytosed by macrophages as efficiently as normally apoptosing cells. These results indicate that blebbing of the plasma membrane occurs independently from other apoptotic changes and is not involved in the recognition and engulfment of apoptotic cells by macrophages.  相似文献   

20.
The membrane‐associated serine hydrolase, monoacylglycerol lipase (MGL), is a well‐recognized therapeutic target that regulates endocannabinoid signaling. Crystallographic studies, while providing structural information about static MGL states, offer no direct experimental insight into the impact of MGL's membrane association upon its structure–function landscape. We report application of phospholipid bilayer nanodiscs as biomembrane models with which to evaluate the effect of a membrane system on the catalytic properties and conformational dynamics of human MGL (hMGL). Anionic and charge‐neutral phospholipid bilayer nanodiscs enhanced hMGL's kinetic properties [apparent maximum velocity (Vmax) and substrate affinity (Km)]. Hydrogen exchange mass spectrometry (HX MS) was used as a conformational analysis method to profile experimentally the extent of hMGL–nanodisc interaction and its impact upon hMGL structure. We provide evidence that significant regions of hMGL lid‐domain helix α4 and neighboring helix α6 interact with the nanodisc phospholipid bilayer, anchoring hMGL in a more open conformation to facilitate ligand access to the enzyme's substrate‐binding channel. Covalent modification of membrane‐associated hMGL by the irreversible carbamate inhibitor, AM6580, shielded the active site region, but did not increase solvent exposure of the lid domain, suggesting that the inactive, carbamylated enzyme remains intact and membrane associated. Molecular dynamics simulations generated conformational models congruent with the open, membrane‐associated topology of active and inhibited, covalently‐modified hMGL. Our data indicate that hMGL interaction with a phospholipid membrane bilayer induces regional changes in the enzyme's conformation that favor its recruiting lipophilic substrate/inhibitor from membrane stores to the active site via the lid, resulting in enhanced hMGL catalytic activity and substrate affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号