首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the involvement of both endogenous opioid and serotonergic systems in modulation of pain and emotion was suggested, the neurochemical interaction between these systems in the brain has not previously been studied directly. Herein, the effects of the local application of serotonin (5-HT) and fluoxetine (a 5-HT reuptake inhibitor) on extracellular levels of beta-endorphin in the arcuate nucleus and nucleus accumbens were assessed in freely moving rats using in vivo microdialysis. The mean basal concentrations of beta-endorphin in dialysates obtained from the arcuate nucleus and nucleus accumbens were 259.9 and 143.3 pM, respectively. Specific lesion of the serotonergic system by 5,7-dihydroxytryptamine (5,7-DHT) caused a significant decrease in these dialysate beta-endorphin levels. When 5-HT (0.25-5 microM) was added to the perfusion solution, the levels of beta-endorphin in the dialysate from the arcuate nucleus increased (186-296% of baseline), in a concentration-dependent manner. In the nucleus accumbens, 0.5 and 2 microM 5-HT in the perfusion fluid did not affect the levels of beta-endorphin in the dialysate, whereas 5 and 10 microM 5-HT caused an increase of approximately 190% of baseline. When fluoxetine (250 microM) was present in the perfusing solution, the levels of beta-endorphin in the dialysates from the arcuate nucleus and nucleus accumbens increased two- to threefold. This effect was not obtained in the 5,7-DHT-lesioned rats. Thus, 5-HT, either endogenously or exogenously delivered, appears to facilitate the release of beta-endorphin in the arcuate nucleus and nucleus accumbens. This indication of an interaction between serotonergic and endorphinic systems may be relevant for assessing pain and mood disorder circuits and the mode of action of antidepressant drugs.  相似文献   

2.
The mechanisms underlying predisposition to alcohol abuse and alcoholism are poorly understood. In this study, we evaluated the role of cannabinoid (CB1) receptors in (i) voluntary alcohol consumption, and (ii) acute alcohol-induced dopamine (DA) release in the nucleus accumbens, using mice that lack the CB1 receptor gene (CB1-/-). CB1-/- mice exhibited dramatically reduced voluntary alcohol consumption, and completely lacked alcohol-induced DA release in the nucleus accumbens, as compared to wild-type mice. The gender difference, with female mice consuming significantly more alcohol than wild-type male mice, was observed in wild-type mice, whereas this gender difference was nonexistent in CB1 mutant male and female mice. There was also a significant gender difference, with the wild-type, heterozygous, and mutant females consuming significantly more liquid and food than wild-type, heterozygous and mutant males. However, the total volume of fluid consumption and food intake did not differ between wild-type, heterozygous, and mutant mice. These results strongly suggest that the CB1 receptor system plays an important role in regulating the positive reinforcing properties of alcohol.  相似文献   

3.
Measurements of serotonin (5-HT), dopamine (DA), and noradrenaline, and of 5-HT and DA metabolites, were obtained by HPLC from 16 brain regions and the spinal cord of 5-HT(1A) or 5-HT(1B) knockout and wild-type mice of the 129/Sv strain. In 5-HT(1A) knockouts, 5-HT concentrations were unchanged throughout, but levels of 5-HT metabolites were higher than those of the wild type in dorsal/medial raphe nuclei, olfactory bulb, substantia nigra, and locus coeruleus. This was taken as an indication of increased 5-HT turnover, reflecting an augmented basal activity of midbrain raphe neurons and consequent increase in their somatodendritic and axon terminal release of 5-HT. It provided a likely explanation for the increased anxious-like behavior observed in 5-HT(1A) knockout mice. Concomitant increases in DA content and/or DA turnover were interpreted as the result of a disinhibition of DA, whereas increases in noradrenaline concentration in some territories of projection of the locus coeruleus could reflect a diminished activity of its neurons. In 5-HT(1B) knockouts, 5-HT concentrations were lower than those of the wild type in nucleus accumbens, locus coeruleus, spinal cord, and probably also several other territories of 5-HT innervation. A decrease in DA, associated with increased DA turnover, was measured in nucleus accumbens. These changes in 5-HT and DA metabolism were consistent with the increased aggressiveness and the supersensitivity to cocaine reported in 5-HT(1B) knockout mice. Thus, markedly different alterations in CNS monoamine metabolism may contribute to the opposite behavioral phenotypes of these two knockouts.  相似文献   

4.
Dopamine receptor D(2) (DRD2) has two splicing isoforms, a long form (D2L) and short form (D2S), which have distinct functions in the dopaminergic system. However, the regulatory mechanism of the alternative splicing of DRD2 is unknown. In this study, we examined which splicing factors regulate the expression of D2L and D2S by over-expressing several RNA-binding proteins in HEK293 cells. In a cellular splicing assay, the over-expression of polypyrimidine tract-binding protein 1 (PTBP1) reduced the expression of D2S, whereas the knockdown of PTBP1 increased the expression of D2S. We also identified the regions of DRD2 that are responsive to PTBP1 using heterologous minigenes and deletion mutants. Our results indicate that PTBP1 regulates the alternative splicing of DRD2. Considering that DRD2 inhibits cAMP-dependent protein kinase A, which modulates the intracellular localization of PTBP1, PTBP1 may contribute to the autoregulation of DRD2 by regulating the expression of its isoforms.  相似文献   

5.
In order to determine whether L-DOPA-derived extracellular dopamine (DA) in the striatum with dopaminergic denervation is affected by activation of serotonin autoreceptors (5-HT(1A) and 5-HT(1B) receptors), we applied in vivo brain microdialysis technique to 6-hydroxydopamine-lesioned rats and examined the effects of the selective 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and the selective 5-HT(1B) receptor agonist CGS-12066 A on L-DOPA-derived extracellular DA levels. Single L-DOPA injection (50 mg/kg i.p.) caused a rapid increase and a following decrease of extracellular DA, with a peak value at 100 min after L-DOPA injection. Pretreatment with both 0.3 mg/kg and 1 mg/kg 8-OH-DPAT (i.p.) significantly attenuated an increase in L-DOPA-derived extracellular DA and the times of peak DA levels were prolonged to 150 min and 225 min after L-DOPA injection, respectively. These 8-OH-DPAT-induced changes in L-DOPA-derived extracellular DA were antagonized by further pretreatment with WAY-100635, a selective 5-HT(1A) antagonist. In contrast, intrastriatal perfusion with the 5-HT(1B) agonist CGS-12066 A (10 nM and 100 nM) did not induce any changes in L-DOPA-derived extracellular DA. Thus, stimulation of 5-HT(1A) but not 5-HT(1B) receptors attenuated an increase in extracellular DA derived from exogenous L-DOPA. These results support the hypothesis that serotonergic neurons are primarily responsible for the storage and release of DA derived from exogenous L-DOPA in the absence of dopaminergic neurons.  相似文献   

6.
Mice lacking dopamine D2 receptors exhibit a significantly decreased agonist-promoted forebrain neocortical D1 receptor activation that occurs without changes in D1 receptor expression levels. This raises the possibility that, in brains of D2 mutants, a substantial portion of D1 receptors are uncoupled from their G protein, a phenomenon known as receptor desensitization. To test this, we examined D1-agonist-stimulated [35S]GTPgammaS binding (in the presence and absence of protein phosphatase inhibitors) and cAMP production (in the presence and absence of pertussis toxin) in forebrain neocortical tissues of wild-type mice and D2-receptor mutants. These studies revealed a decreased agonist-stimulated G-protein activation in D2 mutants. Moreover, whereas protein phosphatase 1/2A (PP1/2A) and 2B (PP2B) inhibitors decrease [35S]GTPgammaS binding in a concentration-dependent manner in wild type, they have either no (PP2B) or only partial (PP1/2A) effects in D2 mutants. Furthermore, for D2 mutants, immunoprecipitation experiments revealed increased basal and D1-agonist-stimulated phosphorylation of D1-receptor proteins at serine residues. Finally, D1 immunoprecipitates of both wild type and D2 mutants also contain protein kinase A (PKA) and PP2B immunoreactivities. In D2 mutants, however, the catalytic activity of the immunoprecipitated PP2B is abolished. These data indicate that neocortical D1 receptors are physically linked to PKA and PP2B and that the increased phosphorylation of D1 receptors in brains of D2 mutants is due to defective dephosphorylation of the receptor rather than increased kinase-mediated phosphorylation.  相似文献   

7.
The objective of the present study was to examine the involvement of serotonin 5-HT(2) receptors within the rat nucleus accumbens (Acc) in the regulation of dopamine (DA) release using in vivo microdialysis. Perfusion with the 5-HT(2) agonist (+)-1-(2, 5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), at concentrations of 25-250 microM, through microdialysis probes located in the posterior Acc increased extracellular DA levels to a maximum of 200% of baseline. DOI-induced increases in the extracellular levels of DA were Ca(2+) dependent and were inhibited by co-perfusion with the 5-HT(2) antagonist LY-53,857. DOI enhancement of the extracellular concentrations of DA was observed when probes were implanted in the Acc core and shell regions posterior to anteroposterior +1.2 mm from bregma, whereas a small reduction in the extracellular levels of DA was observed in the anterior Acc. There were no differences between core and shell subdivisions within either the anterior or the posterior Acc. These results suggest that activation of 5-HT(2) receptors within the posterior, but not anterior, Acc stimulates DA release, indicating rostral-caudal differences in the interactions of 5-HT with DA systems in the Acc.  相似文献   

8.
Trafficking of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors is an important determinant of synaptic strength. Our prior work suggests that D1 dopamine (DA) receptors regulate AMPA receptor trafficking. This is a possible mechanism by which amphetamine and cocaine, which indirectly stimulate D1 receptors, may alter synaptic strength in addiction-related neuronal circuits. Post-natal rat nucleus accumbens (NAc) cultures were used to study the role of protein kinase A (PKA) in D1 receptor regulation of the surface expression of the AMPA receptor subunit GluR1. Using an immunocytochemical assay that selectively detects newly externalized GluR1, we found that the rate of GluR1 externalization is enhanced by the D1 agonist SKF 81297 (100 nm-1 microm). This was blocked by a D1 receptor antagonist (SCH 23390; 10 microm) and by two different cell-permeable PKA inhibitors, KT5720 (2 and 10 microm) and RpcAMPS (10 microm). Conversely, the PKA activator SpcAMPS increased the rate of GluR1 externalization in a concentration-dependent manner. A maximally effective concentration of SpcAMPS (10 microm) occluded the effect of SKF 81297 (1 microm) on GluR1 externalization. Using similar cultures, we showed previously that D1 receptor stimulation increases GluR1 phosphorylation at the PKA site. Together, our findings suggest that PKA phosphorylation of GluR1 is required for GluR1 externalization in response to D1 receptor stimulation.  相似文献   

9.
Nociceptin/orphanin FQ (N/OFQ) has been reported to inhibit dopamine (DA) release in basal ganglia mainly by acting on NOP receptors in substantia nigra and ventral tegmental area. We investigated whether N/OFQ could affect DA transmission by acting at either DA nerve endings or DA-targeted post-synaptic neurons. In synaptosomes of rat nucleus accumbens and striatum N/OFQ inhibited DA synthesis and tyrosine hydroxylase (TH) phosphorylation at Ser40 via NOP receptors coupled to inhibition of the cAMP/protein kinase A pathway. Immunofluorescence studies showed that N/OFQ preferentially inhibited phospho-Ser40-TH in nucleus accumbens shell and that in this subregion NOP receptors partly colocalized with either TH or DA D(1) receptor positive structures. In accumbens and striatum N/OFQ inhibited DA D(1) receptor-stimulated cAMP formation, but failed to affect either adenosine A(2A) or DA D(2) receptor regulation of cAMP. In accumbens slices, N/OFQ inhibited DA D(1)-induced phosphorylation of NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate glutamate receptors, whereas in primary cultures of accumbal cells, which were found to coexpress NOP and DA D(1) receptors, N/OFQ curtailed DA D(1) receptor-induced cAMP-response element-binding protein phosphorylation. Thus, in accumbens and striatum N/OFQ exerts an inhibitory constraint on DA transmission by acting on either pre-synaptic NOP receptors inhibiting TH phosphorylation and DA synthesis or post-synaptic NOP receptors selectively down-regulating DA D(1) receptor signaling.  相似文献   

10.
A transgenic mouse model, deficient in kinin B1 receptor (B1−/−) was used to evaluate the role of B2 receptor in the smooth muscle stomach fundus. The results showed that the potency of bradykinin (BK) to induce contraction in the gastric tissue was maintained whereas the efficacy was markedly reduced. The angiotensin converting enzyme (ACE) inhibitor captopril potentiated BK-induced effect in wild type (WT) but not in B1−/− fundus. However, ACE activity detected by the convertion of Ang I to Ang II was inhibited by captopril in both types of gastric tissues. Taking into account the hypothesis that captopril and ACE bind to the B2 receptor, we suggest that this complex was not formed in the stomach deficient in B1 receptor. Therefore, our finding strongly support the hypothesis that in smooth muscles that constitutively express the kinin B1 and B2 receptors, an interaction between captopril and ACE, B1 and B2 receptors should occur forming a complex protein interaction for the potentiating effect of ACE on kinin receptors.  相似文献   

11.
This study investigates, using in vivo microdialysis, the role of serotonin2A (5-HT2A) and 5-HT(2B/2C) receptors in the effect of dorsal raphe nucleus (DRN) electrical stimulation on dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) extracellular levels monitored in the nucleus accumbens (NAC) and the striatum of halothane-anesthetized rats. Following DRN stimulation (300 microA, 1 ms, 20 Hz, 15 min) DA release was enhanced in the NAC and reduced in the striatum. The 5-HT2A antagonist SR 46349B (0.5 mg/kg) and the mixed 5-HT(2A/2B/2C) antagonist ritanserin (0.63 mg/kg) significantly reduced the effect of DRN stimulation on DA release in the NAC but not in the striatum. DA responses to DRN stimulation were not affected by the 5-HT(2B/2C) antagonist SB 206553 (5 mg/kg) in either region. None of these compounds was able to modify the enhancement of DOPAC and 5-HIAA outflow induced by DRN stimulation in either the NAC or the striatum. Finally, in both brain regions basal DA release was significantly increased only by SB 206553. These results indicate that 5-HT2A but not 5-HT(2B/2C) receptors participate in the facilitatory control exerted by endogenous 5-HT on accumbal DA release. Conversely, 5-HT(2B/2C) receptors tonically inhibit basal DA release in both brain regions.  相似文献   

12.
We have previously reported a direct in vivo interaction between the activated insulin receptor and protein-tyrosine phosphatase-1B (PTP1B), which leads to an increase in PTP1B tyrosine phosphorylation. In order to determine if PTP1B is a substrate for the insulin receptor tyrosine kinase, the phosphorylation of the Cys 215 Ser, catalytically inactive mutant PTP1B (CS-PTP1B) was measured in the presence of partially purified and activated insulin receptor. In vitro, the insulin receptor tyrosine kinase catalyzed the tyrosine phosphorylation of PTP1B. 53% of the total cellular PTP1B became tyrosine phosphorylated in response to insulin in vivo. Tyrosine phosphorylation of PTP1B by the insulin receptor was absolutely dependent upon insulin-stimulated receptor autophosphorylation and required an intact kinase domain, containing insulin receptor tyrosines 1146, 1150 and 1151. Tyrosine phosphorylation of wild type PTP1B by the insulin receptor kinase increased phosphatase activity of the protein. Intermolecular transdephosphorylation was demonstrated both in vitro and in vivo, by dephosphorylation of phosphorylated CS-PTP1B by the active wild type enzyme either in a cell-free system or via expression of the wild type PTP1B into Hirc-M cell line, which constitutively overexpress the human insulin receptor and CS-PTP1B. These results suggest that PTP1B is a target protein for the insulin receptor tyrosine kinase and PTP1B can regulate its own phosphatase activity by maintaining the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state.  相似文献   

13.
Regulator of G protein signaling (RGS) proteins are GTPase-activating proteins for heterotrimeric G proteins. One of the best-studied RGS proteins, RGS4, accelerates the rate of GTP hydrolysis by all G(i) and G(q) alpha subunits yet has been shown to exhibit receptor selectivity. Although RGS4 is expressed primarily in brain, its effect on modulating the activity of serotonergic receptors has not yet been reported. In the present study, transfected BE(2)-C human neuroblastoma cells expressing human 5-HT(1B) receptors were used to demonstrate that RGS4 can inhibit the coupling of 5-HT(1B) receptors to cellular signals. Serotonin and sumatriptan were found to stimulate activation of extracellular signal-regulated kinase. This activation was attenuated, but not completely inhibited, by RGS4. Similar inhibition by RGS4 of the protein kinase Akt was also observed. As RGS4 is expressed at high levels in brain, these results suggest that it may play a role in regulating serotonergic pathways.  相似文献   

14.
We have previously demonstrated that susceptibility of the Lewis rat to inflammatory disease, compared with the relatively resistant Fischer F344/N rat, is related to a hyporesponsive hypothalamopituitary-adrenal axis to inflammatory and other stress mediators. Because serotonin (5-HT) and the 5-HT1A receptor are important stimulators of this axis, we have investigated the levels of 8-[3H]-hydroxy-2,3-(di-n-propylamino)tetralin binding sites, 5-HT1A mRNA, 5-HT, and 5-hydroxyindoleacetic acid in various brain regions of Lewis, outbred Harlan Sprague Dawley, and Fischer F344/N rats. Lewis rats expressed significantly fewer hippocampal and frontal cortical 8-[3H]-hydroxy-2,3-(di-n-propylamino)tetralin binding sites and less 5-HT1A mRNA than Harlan Sprague Dawley and Fischer F344/N rats. Adrenalectomy increased the number of 8-[3H]hydroxy-2,3-(di-n-propylamino)tetralin binding sites and 5-HT1A mRNA expression in the hippocampus of all three strains. Levels of hippocampal 5-HT in Fischer F344/N rats were significantly greater than levels detected in the same regions from Lewis and Harlan Sprague Dawley rats. Hypothalamic 5-HT and 5-hydroxyindoleacetic acid levels in Harlan Sprague Dawley rats were higher than the same area from the other two strains. Adrenalectomy increased the levels of 5-hydroxyindoleacetic acid in the hypothalamus of all three strains. We conclude that hippocampal 5-HT1A receptor densities and 5-HT levels in the rat parallel the activity and responsiveness of the hypothalamopituitary-adrenal axis.  相似文献   

15.
Glycoprotein nonmelanoma protein B (GPNMB, alias osteoactivin), a type I transmembrane glycoprotein, is cleaved by extracellular proteases, resulting in release of an extracellular fragment (ECF). GPNMB is widely expressed by neurons within the CNS, including the hippocampus; however, its function in the brain remains unknown. Here, we investigated the role of GPNMB in memory and learning by using transgenic (Tg) mice over‐expressing GPNMB (Tg mice on a BDF‐1 background) and ECF‐treated mice. In the hippocampus of both wild‐type and Tg mice, GPNMB was highly expressed in neurons and astrocytes. Tg mice exhibited memory improvements in two types of learning tasks but were impaired in a passive‐avoidance test. In Tg mice, the hippocampus displayed increased levels of the α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate receptor subunit GluA1. Intracerebroventricular administration of ECF (50 ng) to Institute of Cancer Research (ICR) mice also improved memory in a passive‐avoidance test and increased hippocampal GluA1 levels 24 h after treatment. In Tg mice and ECF (0.25 μg/mL)‐treated hippocampal slices, long‐term potentiation was promoted. These findings suggest that GPNMB may be a novel target for research on higher order brain functions.

  相似文献   


16.
Atypical antipsychotic drugs (APDs), all of which are relatively more potent as serotonin (5-HT)(2A) than dopamine D(2) antagonists, may improve negative symptoms and cognitive dysfunction in schizophrenia, in part, via increasing cortical dopamine release. 5-HT(1A) agonism has been also suggested to contribute to the ability to increase cortical dopamine release. The present study tested the hypothesis that clozapine, olanzapine, risperidone, and perhaps other atypical APDs, increase dopamine release in rat medial prefrontal cortex (mPFC) via 5-HT(1A) receptor activation, as a result of the blockade of 5-HT(2A) and D(2) receptors. M100907 (0.1 mg/kg), a 5-HT(2A) antagonist, significantly increased the ability of both S:(-)-sulpiride (10 mg/kg), a D(2) antagonist devoid of 5-HT(1A) affinity, and R:(+)-8-OH-DPAT (0.05 mg/kg), a 5-HT(1A) agonist, to increase mPFC dopamine release. These effects of M100907 were abolished by WAY100635 (0.05 mg/kg), a 5-HT(1A) antagonist, which by itself has no effect on mPFC dopamine release. WAY100635 (0.2 mg/kg) also reversed the ability of clozapine (20 mg/kg), olanzapine (1 mg/kg), risperidone (1 mg/kg), and the R:(+)-8-OH-DPAT (0.2 mg/kg) to increase mPFC dopamine release. Clozapine is a direct acting 5-HT(1A) partial agonist, whereas olanzapine and risperidone are not. These results suggest that the atypical APDs via 5-HT(2A) and D(2) receptor blockade, regardless of intrinsic 5-HT(1A) affinity, may promote the ability of 5-HT(1A) receptor stimulation to increase mPFC DA release, and provide additional evidence that coadministration of 5-HT(2A) antagonists and typical APDs, which are D(2) antagonists, may facilitate 5-HT(1A) agonist activity.  相似文献   

17.
The central dopamine system plays significant roles in motor activity and drug-induced behavioural sensitization. Our goal was to determine the significance of dopamine D(3) receptors in the development of behavioural sensitization to methamphetamine, assessed with D(3) receptor mutant mice. The absence of D(3) receptors significantly increased the behavioural responses to acute methamphetamine and evoked a faster rate of behavioural sensitization to chronic methamphetamine. In addition, both D(3) receptor protein and mRNA levels in the limbic forebrain decreased in sensitized wild-type mice. Further analyses indicated that D(1)-dependent behavioural sensitization and the number of limbic D(1) receptors increased in sensitized D(3) mutants as compared with sensitized wild-type mice. Consistent with this finding, we observed higher levels of D(1) receptor-evoked cAMP accumulation and basal phosphoDARPP-32/Thr34 in the limbic forebrain of D(3) mutants than wild-type mice and the difference was more pronounced after chronic methamphetamine treatment. We also observed an increase in phospho-extracellular signal-regulated kinase 2 but a decrease in phosphoAkt/Ser473 and phosphoglycogen synthase kinase 3 (GSK3)-alpha/beta in the limbic forebrain of D(3) mutants compared with wild-type mice after methamphetamine treatment. The convergent results implicate D(3) receptors as a negative regulator of the development of methamphetamine sensitization. A compensatory up-regulation of D(1) receptor-mediated signals, in addition to an altered Akt/GSK3 pathway, could contribute to the accelerated development of behavioural sensitization.  相似文献   

18.
Abstract: In this study, we examined the influence of blockade of serotonin (5-HT)1A and/or 5-HT1B autoreceptors on the fluoxetine-induced increase in dialysate levels of 5-HT as compared with dopamine (DA) and noradrenaline (NAD) in single samples of the frontal cortex (FCx) of freely moving rats. Fluoxetine (10.0 mg/kg, s.c.) elicited a twofold increase in dialysate levels of 5-HT relative to baseline values. The selective 5-HT1A antagonist WAY 100,635 (0.16 mg/kg, s.c.) did not influence 5-HT release alone but doubled the influence of fluoxetine on basal levels. Similarly, the selective 5-HT1B/1D antagonist GR 127,935 (2.5 mg/kg, s.c.) did not alter basal 5-HT levels alone and doubled the fluoxetine-induced increase in 5-HT levels. Combined administration of WAY 100,635 and GR 127,935 elicited an (at least) additive rise in the fluoxetine-induced increase in 5-HT levels to eightfold basal values, without modifying resting 5-HT levels. These changes were selective for 5-HT inasmuch as the parallel (twofold) increase in DA and NAD levels provoked by fluoxetine was not potentiated. The present data demonstrate that combined blockade of 5-HT1A and 5-HT1B autoreceptors markedly and selectively potentiates the fluoxetine-induced increase in dialysate levels of 5-HT versus DA and NAD in the FCx of freely moving rats. These observations suggest that 5-HT1A/1B antagonism may represent a novel strategy for the improvement in the therapeutic profile of 5-HT reuptake inhibitor antidepressant agents and that 5-HT may be primarily involved in such interactions.  相似文献   

19.
Previous work has shown that the potent, selective metabotropic glutamate mGlu2/3 receptor agonist LY379268 acts like the atypical antipsychotic clozapine in behavioral assays. To investigate further the potential antipsychotic actions of this agent, we examined the effects of LY379268 using microdialysis in awake, freely moving rats, on extracellular levels of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindole-3-acetic acid (5-HIAA) in rat medial prefrontal cortex. Systemic LY379268 increased extracellular levels of dopamine, DOPAC, HVA, and 5-HIAA in a dose-dependent, somewhat delayed manner. LY379268 (3 mg/kg s.c. ) increased levels of dopamine, DOPAC, HVA, and 5-HIAA to 168, 170, 169, and 151% of basal, respectively. Clozapine (10 mg/kg) also increased dopamine, DOPAC, and HVA levels, with increases of 255, 262, and 173%, respectively, but was without effect on extracellular 5-HIAA levels by 3 mg/kg LY379268 were reversed by the selective mGlu2/3 receptor antagonist LY341495 (1 mg/kg). Furthermore, LY379268 (3 mg/kg)-evoked increases in DOPAC and HVA were partially blocked and the increase in 5-HIAA was completely blocked by local application of 3 microM tetrodotoxin. Therefore, we have demonstrated that mGlu2/3 receptor agonists activate dopaminergic and serotonergic brain pathways previously associated with the action of atypical antipsychotics such as clozapine and other psychiatric agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号