共查询到20条相似文献,搜索用时 15 毫秒
1.
Kasuga J Yamasaki D Araya Y Nakagawa A Makishima M Doi T Hashimoto Y Miyachi H 《Bioorganic & medicinal chemistry》2006,14(24):8405-8414
A series of alpha-alkyl-substituted phenylpropanoic acids was prepared as dual agonists of peroxisome proliferator-activated receptors alpha and delta (PPARalpha/delta). Structure-activity relationship studies indicated that the shape of the linking group and the shape of the substituent at the distal benzene ring play key roles in determining the potency and the selectivity of PPAR subtype transactivation. Structure-activity relationships among the amide series (10) and the reversed amide series (13) are similar, but not identical, especially in the case of the compounds bearing a bulky hydrophobic substituent at the distal benzene ring, indicating that the hydrophobic tail part of the molecules in these two series binds at somewhat different positions in the large binding pocket of PPAR. alpha-Alkyl-substituted phenylpropanoic acids of (S)-configuration were identified as potent human PPARalpha/delta dual agonists. Representative compounds exhibited marked nuclear receptor selectivity for PPARalpha and PPARdelta. Subtype-selective PPAR activation was also examined by analysis of the mRNA expression of PPAR-regulated genes. 相似文献
2.
Marina Maggiora Manuela Oraldi Giuliana Muzio Rosa Angela Canuto 《Cell biochemistry and function》2010,28(7):571-577
Peroxisome proliferator‐activated receptors (PPARs) mediate the effects of various ligands, known as peroxisome proliferators, a heterogeneous class of compounds including industrial chemicals, pharmaceuticals, and biomolecules such as fatty acids and eicosanoids. Among peroxisome proliferators, fibrate derivatives are considered specific ligands for PPARα, whereas eicosanoids, such as PGJ2, for PPARγ. The study aimed to clarify the relation between PPARs and apoptosis or proliferation on the same type of cells, using clofibrate as specific ligand of PPARα and PGJ2 as specific ligand of PPARγ. The cells used were human hepatocarcinoma HepG2 cells. The results showed that PPARα protein content increased in HepG2 cells treated with clofibrate, causing apoptosis in a time‐ and concentration‐dependent way, as evidenced by the citofluorimetric assay and determination of BAD, myc and protein phosphatase 2A protein content. It also emerged that PPARγ increased in the same cells when treated with a specific ligand of this PPAR; in this case the increase of PPARγ did not cause an increase of apoptosis, but a time‐ and concentration‐dependent inhibition of cell proliferation, evidenced by decreased cell numbers and increased number of cells in the G0/G1 phase of the cycle. It may be concluded that PPARα is chiefly related to apoptosis and PPARγ to cell proliferation. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
3.
Ramsay TG Mitchell AD 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2008,149(4):562-571
The present study was designed to determine if dietary protein can alter uncoupling protein (UCP) expression in swine, as has been shown in rats, and attempt to identify the mechanism. Eight pigs (~ 50 kg body mass) were fed an 18% crude protein (CP) diet while another eight pigs were switched to a diet containing 12% crude protein (CP) and fed these diets until 110 kg body mass. The outer (OSQ) and middle (MSQ) subcutaneous adipose tissues, liver, leaf fat, longissimus (LM), red portion of the semitendinosus (STR) and the white portion of the ST (STW) were analyzed for gene expression by real-time PCR. Feeding of 12% CP did not alter growth or carcass composition, relative to 18% CP (P > 0.05). Serum growth hormone, non-esterified fatty acids, triglycerides and urea nitrogen were reduced with the feeding of 12% CP (P < 0.05). The UCP2 mRNA abundance was reduced in LM, STR, MSQ and OSQ with feeding of 12% CP (P < 0.05), as was UCP3 mRNA abundance in MSQ and STW (P < 0.01). Peroxisome proliferation activated receptor α (PPARα) and PPARγ were reduced in MSQ and STR (P < 0.05) with feeding 12% CP as was the PPARα regulated protein, acyl CoA oxidase (ACOX, P < 0.05). These data suggest that feeding 12% CP relative to 18% CP reduces serum NEFA, which reduces PPARα and PPARγ expression and consequently reduces UCP2 lipoperoxidation in OSQ and STR and also reduced UCP3 associated fatty acid transport in MSQ and STW. 相似文献
4.
5.
James T. Patterson Jonathan W. Day Vasily M. Gelfanov Richard D. DiMarchi 《Journal of peptide science》2011,17(10):659-666
GLP‐1 is an incretin peptide involved in the regulation of glucose metabolism and the glucose‐dependent stimulation of insulin secretion. Ex‐4 is a paralog of GLP‐1 that has comparable GLP‐1R potency but extended physiological action. GLP‐1 and Ex‐4 are helical peptides that share ~50% sequence homology but differ at several residues, notably the second amino acid which controls susceptibility to DPP‐IV cleavage. This single amino acid difference yields divergent receptor potency when studied in the context of the two hormone sequences. Ex‐4 uniquely tolerates Gly2 through select amino acid differences in the middle region of the peptide that are absent in GLP‐1. We report that substitution of Ex‐4 amino acids Glu16, Leu21, and Glu24 to the GLP‐1 sequence enabled Gly2 tolerance. The coordination of the N‐terminus with these central residues shows an interaction of substantial importance not only to DPP‐IV stability but also to receptor activation. Extension of this observation to glucagon‐based co‐agonist peptides showed different structural requirements for effective communication between the N‐terminus and the mid‐section of these peptides in achieving high potency agonism at the GLP‐1 and GCGRs. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
6.
7.
Chen Shen Wang Ma Lei Ding Songtao Li Xiaobing Dou Zhenyuan Song 《Journal of cellular and molecular medicine》2018,22(7):3572-3581
Lipotoxicity induced by saturated fatty acids (SFAs) plays a pathological role in the development of non‐alcoholic fatty liver disease (NAFLD); however, the exact mechanism(s) remain to be clearly elucidated. Toll‐like receptor (TLR) 4 plays a fundamental role in activating the innate immune system. Intriguingly, hepatocytes express TLR4 and machinery for TLR4 signalling pathway. That liver‐specific TLR4 knockout mice are protective against diet‐induced NAFLD suggests that hepatocyte TLR4 signalling pathway plays an important role in NAFLD pathogenesis. Herein, using cultured hepatocytes, we sought to directly examine the role of TLR4 signalling pathway in palmitate‐elicited hepatotoxicity and to elucidate underlying mechanism(s). Our data reveal that palmitate exposure up‐regulates TLR4 expression at both mRNA and protein levels in hepatocytes, which are associated with NF‐κB activation. The inhibition of TLR4 signalling pathway through both pharmacological and genetic approaches abolished palmitate‐induced cell death, suggesting that TLR4 signalling pathway activation contributes to palmitate‐induced hepatotoxicity. Mechanistic investigations demonstrate that inositol‐requiring enzyme 1α (IRE1α), one of three major signal transduction pathways activated during endoplasmic reticulum (ER) stress, is the downstream target of palmitate‐elicited TLR4 activation and mechanistically implicated in TLR4 activation‐triggered cell death in response to palmitate exposure. Collectively, our data identify that the TLR4‐IRE1α pathway activation contributes to palmitate‐elicited lipotoxicity in hepatocytes. Our findings suggest that targeting TLR4‐IRE1α pathway can be a potential therapeutic choice for the treatment of NAFLD as well as other metabolic disorders, with lipotoxicity being the principal pathomechanism. 相似文献
8.
Biao Zhu Yixiang Li Lingwei Xiang Jiajia Zhang Li Wang Bei Guo Minglu Liang Long Chen Lin Xiang Jing Dong Min Liu Wen Mei Huan Li Guangda Xiang 《Aging cell》2019,18(2)
Alogliptin is a commonly prescribed drug treating patients with type 2 diabetes. Here, we show that long‐term intervention with alogliptin (0.03% w/w in diet) improves survival and health of mice on a high‐fat diet. Alogliptin intervention takes beneficial effects associated with longevity, including increased insulin sensitivity, attenuated functionality decline, decreased organ pathology, preserved mitochondrial function, and reduced oxidative stress. Autophagy activation is proposed as an underlying mechanism of these beneficial effects. We conclude that alogliptin intervention could be considered as a potential strategy for extending lifespan and healthspan in obesity and overweight. 相似文献
9.
10.
Jie Zhou Wei Zhang Bing Liang Mathew C. Casimiro Diana Whitaker-Menezes Min Wang Michael P. Lisanti Susan Lanza-Jacoby Richard G. Pestell Chenguang Wang 《The international journal of biochemistry & cell biology》2009,41(11):2334-2342
It has been previously shown that PPARγ ligands induce apoptotic cell death in a variety of cancer cells. Given the evidence that these ligands have a receptor-independent function, we further examined the specific role of PPARγ activation in this biological process. Surprisingly, we failed to demonstrate that MDA-MB-231 breast cancer cells undergo apoptosis when treated with sub-saturation doses of troglitazone and rosiglitazone, which are synthetic PPARγ ligands. Acridine orange (AO) staining showed acidic vesicular formation within ligand-treated cells, indicative of autophagic activity. This was confirmed by autophagosome formation as indicated by redistribution of LC3, an autophagy-specific protein, and the appearance of double-membrane autophagic vacuoles by electron microscopy following exposure to ligand. To determine the mechanism by which PPARγ induces autophagy, we transduced primary mammary epithelial cells with a constitutively active mutant of PPARγ and screened gene expression associated with PPARγ activation by genome-wide array analysis. HIF1α and BNIP3 were among 42 genes up-regulated by active PPARγ. Activation of PPARγ induced HIF1α and BNIP3 protein and mRNA abundance. HIF1α knockdown by shRNA abolished the autophagosome formation induced by PPARγ activation. In summary, our data shows a specific induction of autophagy by PPARγ activation in breast cancer cells providing an understanding of distinct roles of PPARγ in tumorigenesis. 相似文献
11.
12.
13.
14.
Junhui Chen Yong Xuan Yan Chen Ting Wu Lei Chen Haoxiang Guan Shuo Yang Jianqing He Dongliang Shi Yuhai Wang 《Journal of cellular and molecular medicine》2019,23(3):2256-2262
Netrin‐1 (NTN‐1) is a novel drug to alleviate early brain injury following subarachnoid haemorrhage (SAH). However the molecular mechanism of NTN‐1‐mediated protection against early brain injury following SAH remains largely elusive. This study aims to evaluate the effects and mechanisms of NTN‐1 in protecting SAH‐induced early brain injury. The endovascular perforation SAH model was constructed using male C57BL/6J mice, and recombinant NTN‐1 was administrated intravenously. Mortality rates, SAH grade, brain water content, neurological score and neuronal apoptosis were evaluated. The expression of PPARγ, Bcl‐2, Bax and nuclear factor‐kappa B (NF‐κB) were detected by Western blot. Small interfering RNA specific to NTN‐1 receptor, UNC5B, and a selective PPARγ antagonist, bisphenol A diglycidyl ether (BADGE), were applied in combination with NTN‐1. The results suggested that NTN‐1 improved the neurological deficits, reduced the brain water content and alleviated neuronal apoptosis. In addition, NTN‐1 enhanced PPARγ and Bcl‐2 expression and decreased the levels of Bax and NF‐κB. However, the neuroprotection of NTN‐1 was abolished by UNC5B and BADGE. In conclusion, our results demonstrated that NTN‐1 attenuates early brain injury following SAH via the UNC5B PPARγ/NF‐κB signalling pathway. 相似文献
15.
16.
Anna Roujeinikova Carsten Raasch Svetlana Sedelnikova Wolfgang Liebl David W. Rice 《Acta Crystallographica. Section D, Structural Biology》2001,57(7):1046-1047
Thermotoga maritima 4‐α‐glucanotransferase (GTase), a 52 kDa molecular‐weight amylolytic enzyme, has been crystallized by the hanging‐drop vapour‐diffusion method using PEG monomethylether 5000 as a precipitating agent. A complete data set has been collected to 2.6 Å resolution using cryocooling conditions and synchrotron radiation. The crystals belong to space group I222 or I212121, with unit‐cell parameters a = 92.6, b = 180.3, c = 199.2 Å. 相似文献
17.
Mengli You Jianhua Jin Qian Liu QingGang Xu Juanjuan Shi Yongzhong Hou 《Journal of cellular biochemistry》2017,118(6):1556-1562
18.
Hyunju Kim Yu‐Ran Na So Yeon Kim Eun Gyeong Yang 《Journal of cellular biochemistry》2016,117(3):647-658
19.
20.