首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhu X  Lee HG  Raina AK  Perry G  Smith MA 《Neuro-Signals》2002,11(5):270-281
Given the critical role of mitogen-activated protein kinase (MAPK) pathways in regulating cellular processes that are affected in Alzheimer's disease (AD), the importance of MAPKs in disease pathogenesis is being increasingly recognized. All MAPK pathways, i.e., the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 pathways, are activated in vulnerable neurons in patients with AD suggesting that MAPK pathways are involved in the pathophysiology and pathogenesis of AD. Here we review recent findings implicating the MAPK pathways in AD and discuss the relationship between these pathways and the prominent pathological processes, i.e., tau phosphorylation and amyloid-beta deposition, as well as the functional association to amyloid beta protein precursor. We suggest that regulation of these pathways may be a central facet to any potential treatment for the disease.  相似文献   

2.
Recently opposing effects of cysteine protease inhibitors, the human cystatins, on neurodegeneration have been reported. Human cystatin C is a risk factor for late‐onset Alzheimer's disease (AD), whereas human stefin B (cystatin B) has no direct involvement in AD. Conflicting data show that their target protease, cathepsin B, might be anti‐amyloidogenic, helping in amyloid‐beta (Aβ) clearance or, instead, might be involved in Aβ production. Some reports claim that cystatin C binds soluble Aβ, making transgenic animals healthier, others, in contrast, that deleting cystatins genes may contribute to amyloid pathology in animal models of AD.  相似文献   

3.
Increasing evidence has pointed to that dysregulation of the endo‐lysosomal system is an early cellular phenotype of pathogenesis for Alzheimer's disease (AD). Rab5, a small GTPase, plays a critical role in mediating these processes. Abnormal overactivation of Rab5 has been observed in post‐mortem brain samples of Alzheimer's patients as well as brain samples of mouse models of AD. Recent genome‐wide association studies of AD have identified RIN3 (Ras and Rab interactor 3) as a novel risk factor for the disease. RIN3 that functions as a guanine nucleotide exchange factor for Rab5 may serve as an important activator for Rab5 in AD pathogenesis. In this review, we present recent research highlights on the possible roles of dysregulation of Rab5‐mediated endocytic pathways in contributing to early pathogenesis of AD.   相似文献   

4.
5.
The ubiquitin related modifier Urm1 protein was firstly identified in the yeast Saccharomyces cerevisiae, and was later found to play important roles in different eukaryotes. By the assistance of an E1-like activation enzyme Uba4, Urm1 can function as a modifier to target proteins, called urmylation. The thioredoxin peroxidase Ahp1 was the only identified Urm1 target in the early time. Recently, many other Urm1 targets were identified, which is important for us to fully understand functions of urmylation. Urm1 can also function as a sulfur carrier to play a key role in tRNAs thiolation. Mechanisms of the Urm1 in protein and RNA modifications were finely revealed in the past few years. Biological and physiological functions of Urm1 were also found in different organisms. In this review, we will summarize these emerging progresses.  相似文献   

6.
7.
Membrane proteins are constantly being trafficked in cells and the relevant proteins in Alzheimer's disease (AD), such as the amyloid precursor protein (APP) and its processing enzymes, are not exempted from that. Molecular cell biologists have been endeavoring to ascertain a roadmap for APP processing and trafficking in various cell types including neurons. This has led to the identification of numerous regulatory sorting mechanisms, protein-protein interactions and lipidic microenvironments that largely define how and where the substrate APP meets its processing enzymes. However, the cell biology of tau, and the formation of neurofibrillary tangles, has long been regarded as a separate field. Nonetheless, recent progress is bringing both worlds together in a new paradigm on how Aβ toxicity and tau are physiologically connected. Here, we discuss an update of our current appraisal on how membrane trafficking may play an important role in the pathogenesis of the disease and how this could be exploited for effective therapy.  相似文献   

8.
Alzheimer's disease (AD) is considered one of the most common age-associated neurodegenerative disorders, affecting millions of senior people worldwide. Combination of protein-protein interaction (PPI) network analysis and gene expression studies provides a better insight into AD. A computational approach was developed in our work to identify protein signal pathways between amyloid precursor proteins and tau proteins, which are well known as important proteins for AD. First, a modified LA-SEN method, called the network-constrained regularisation analysis, was applied to microarray data from a transgenic mouse model and AD patients. Then protein pathways were constructed based on an integer linear programming model to integrate microarray data and the PPI database. Important pathways of AD, including some cancer-related pathways, were identified finally.  相似文献   

9.
The search for cell-surface markers that can distinguish T helper 1 (T(H)1) cells from T(H)2 cells has led to the identification of a new gene family, encoding the T-cell immunoglobulin mucin (TIM) proteins, some of which are differentially expressed by T(H)1 and T(H)2 cells. The role of the TIM-family proteins in immune regulation is just beginning to emerge. Here, we describe the various TIM-family members in mice and humans, and discuss the genetic and functional evidence for their role in regulating autoimmune and allergic diseases.  相似文献   

10.
11.
12.
13.
14.
Singlet oxygen (1O2) is a prime cause of photo‐damage of the photosynthetic apparatus. The chlorophyll molecules in the photosystem II reaction center and in the light‐harvesting antenna complex are major sources of 1O2 generation. It has been thought that the generation of 1O2 mainly takes place in the appressed regions of the thylakoid membranes, namely, the grana core, where most of the active photosystem II complexes are localized. Apart from being a toxic molecule, new evidence suggests that 1O2 significantly contributes to chloroplast‐to‐nucleus retrograde signalling that primes acclimation and cell death responses. Interestingly, recent studies reveal that chloroplasts operate two distinct 1O2‐triggered retrograde signalling pathways in which β‐carotene and a nuclear‐encoded chloroplast protein EXECUTER1 play essential roles as signalling mediators. The coexistence of these mediators raises several questions: their crosstalk, source(s) of 1O2, downstream signalling components, and the perception and reaction mechanism of these mediators towards 1O2. In this review, we mainly discuss the molecular genetic basis of the mode of action of these two putative 1O2 sensors and their corresponding retrograde signalling pathways. In addition, we also propose the possible existence of an alternative source of 1O2, which is spatially and functionally separated from the grana core.  相似文献   

15.
The immunomodulatory and antimicrobial properties of zinc and copper have long been appreciated. In addition, these metal ions are also essential for microbial growth and survival. This presents opportunities for the host to either harness their antimicrobial properties or limit their availability as defence strategies. Recent studies have shed some light on mechanisms by which copper and zinc regulation contribute to host defence, but there remain many unanswered questions at the cellular and molecular levels. Here we review the roles of these two metal ions in providing protection against infectious diseases in vivo, and in regulating innate immune responses. In particular, we focus on studies implicating zinc and copper in macrophage antimicrobial pathways, as well as the specific host genes encoding zinc transporters (SLC30A, SLC39A family members) and CTRs (copper transporters, ATP7 family members) that may contribute to pathogen control by these cells.  相似文献   

16.
The pancreatic islets are one of the most vascularized organs of the body. This likely reflects the requirements of the organ for a rich supply of nutrients and oxygen to the tissue, as well as the need for rapid disposal of metabolites and secreted hormones. The islet endothelium is richly fenestrated to facilitate trans-endothelial transport of secreted hormones, has a unique expression of surface markers, and produces a number of vasoactive substances and growth factors. The islet endothelial cells play a critical role in the early phase of type 1 diabetes mellitus by increasing the expression of surface leucocyte-homing receptors, thereby enabling immune cells to enter the endocrine tissue and cause beta-cell destruction. Following transplantation, pancreatic islets lack a functional capillary system and need to be properly revascularized. Insufficient revascularization may severely affect the transport properties of the islet endothelial system, resulting in a dysfunctional islet graft.  相似文献   

17.
The pancreatic islets are one of the most vascularized organs of the body. This likely reflects the requirements of the organ for a rich supply of nutrients and oxygen to the tissue, as well as the need for rapid disposal of metabolites and secreted hormones. The islet endothelium is richly fenestrated to facilitate trans-endothelial transport of secreted hormones, has a unique expression of surface markers, and produces a number of vasoactive substances and growth factors. The islet endothelial cells play a critical role in the early phase of type 1 diabetes mellitus by increasing the expression of surface leucocyte-homing receptors, thereby enabling immune cells to enter the endocrine tissue and cause beta-cell destruction. Following transplantation, pancreatic islets lack a functional capillary system and need to be properly revascularized. Insufficient revascularization may severely affect the transport properties of the islet endothelial system, resulting in a dysfunctional islet graft.  相似文献   

18.
In the theater of cellular life, iron plays an ambiguous and yet undoubted lead role. Iron is a ubiquitous core element of the earth and plays a central role in countless biochemical pathways. It is integral to the catalysis of the redox reactions of oxidative phosphorylation in the respiratory chain, and it provides a specific binding site for oxygen in the heme binding moiety of hemoglobin, which allows oxygen transport in the blood. Its biological utility depends upon its ability to readily accept or donate electrons, interconverting between its ferric (Fe3+) and ferrous (Fe2+) forms. In contrast to these beneficial features, free iron can assume a dangerous aspect catalyzing the formation of highly reactive compounds such as cytotoxic hydroxyl radicals that cause damage to the macromolecular components of cells, including DNA and proteins, and thereby cellular destruction. The handling of iron in the body must therefore be very carefully regulated. Most environmental iron is in the Fe3+ state, which is almost insoluble at neutral pH. To overcome the virtual insolubility and potential toxicity of iron, a myriad of specialized transport systems and associated proteins have evolved to mediate regulated acquisition, transport, and storage of iron in a soluble, biologically useful, non-toxic form. We are gradually beginning to understand how these proteins individually and in concert serve to maintain cellular and whole body homeostasis of this crucial yet potentially harmful metal ion. Furthermore, studies are increasingly implicating iron and its associated transport in specific pathologies of many organs. Investigation of the transport proteins and their functions is beginning to unravel the detailed mechanisms underlying the diseases associated with iron deficiency, iron overload, and other dysfunctions of iron metabolism.  相似文献   

19.
Extracellular signals are transmitted to cells through two classes of cell-surface receptors: signaling receptors that directly transduce signals and signaling co-receptors that bind ligand but that, traditionally, have not been thought to signal directly. Signaling co-receptors modulate the ligand binding and signaling of their respective signaling receptors. In recent years, roles for co-receptors have expanded to include essential functions in morphogen gradient formation, localizing signaling, signaling independently, regulating cell adhesion and orchestrating the signaling of several pathways. The importance of signaling co-receptors is demonstrated by their ubiquitous expression, their conservation during evolution, their prominent role in signaling cascades, their indispensable role during development and their frequent mutation or altered expression in human disease.  相似文献   

20.
Plasma protein glycation in Alzheimer's disease   总被引:1,自引:0,他引:1  
Recent studies have suggested that formation of advanced glycation end-products (AGEs) in some brain proteins could be associated with Alzheimer's disease.These AGEs can be produced by various sugars (hexose, pentose, glyceraldehyde and oxidative products of vitamin C). In this study, we quantified plasma protein glycation specifically derived from glucose in patients with Alzheimer's disease with different grades of cognitive disorders.Two groups of Alzheimer patients were studied: a group with moderate Alzheimer's disease (n=6, 9相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号