首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impairment of the activity of the brain is a major feature of aging, which coincides with a decrease in the function of neural stem cells. We have previously shown that an extra copy of regulated Ink4/Arf and p53 activity, in s‐Ink4/Arf/p53 mice, elongates lifespan and delays aging. In this work, we examined the physiology of the s‐Ink4/Arf/p53 brain with aging, focusing on the neural stem cell (NSC) population. We show that cells derived from old s‐Ink4/Arf/p53 mice display enhanced neurosphere formation and self‐renewal activity compared with wt controls. This correlates with augmented expression of Sox2, Sox9, Glast, Ascl1, and Ars2 NSC markers in the subventricular zone (SVZ) and in the subgranular zone of the dentate gyrus (DG) niches. Furthermore, aged s‐Ink4/Arf/p53 mice express higher levels of Doublecortin and PSA‐NCAM (neuroblasts) and NeuN (neurons) in the olfactory bulbs (OB) and DG, indicating increased neurogenesis in vivo. Finally, aged s‐Ink4/Arf/p53 mice present enhanced behavioral and neuromuscular coordination activity. Together, these findings demonstrate that increased but regulated Ink4/Arf and p53 activity ameliorates age‐related deterioration of the central nervous system activity required to maintain the stem cell pool, providing a mechanism not only for the extended lifespan but also for the health span of these mice.  相似文献   

2.
Mice lacking p63 cannot form skin, exhibit craniofacial and skeletal defects, and die soon after birth. The p63 gene regulates a complex network of target genes, and disruption of p63 has been shown to affect the maintenance of epithelial stem cells, the differentiation of keratinocytes, and the preservation of the adhesive properties of stratified epithelium. Here, we show that inactivation of p63 in mice is accompanied by aberrantly increased expression of the Ink4a and Arf tumour suppressor genes. In turn, anomalies of the p63‐null mouse affecting the skin and skeleton are partially ameliorated in mice lacking either Ink4a or Arf. Rescue of epithelialization is accompanied by restoration of keratinocyte proliferative capacity both in vivo and in vitro and by expression of markers of squamous differentiation. Thus, in the absence of p63, abnormal upregulation of Ink4a and Arf is incompatible with skin development.  相似文献   

3.
Recent genome‐wide association studies have linked type‐2 diabetes mellitus to a genomic region in chromosome 9p21 near the Ink4/Arf locus, which encodes tumor suppressors that are up‐regulated in a variety of mammalian organs during aging. However, it is unclear whether the susceptibility to type‐2 diabetes is associated with altered expression of the Ink4/Arf locus. In the present study, we investigated the role of Ink4/Arf in age‐dependent alterations of insulin and glucose homeostasis using Super‐Ink4/Arf mice which bear an extra copy of the entire Ink4/Arf locus. We find that, in contrast to age‐matched wild‐type controls, Super‐Ink4/Arf mice do not develop glucose intolerance with aging. Insulin tolerance tests demonstrated increased insulin sensitivity in Super‐Ink4/Arf compared with wild‐type mice, which was accompanied by higher activation of the insulin receptor substrate (IRS)‐PI3K‐AKT pathway in liver, skeletal muscle and heart. Glucose uptake studies in Super‐Ink4/Arf mice showed a tendency toward increased 18F‐fluorodeoxyglucose uptake in skeletal muscle compared with wild‐type mice (= 0.079). Furthermore, a positive correlation between glucose uptake and baseline glucose levels was observed in Super‐Ink4/Arf mice (P < 0.008) but not in wild‐type mice. Our studies reveal a protective role of the Ink4/Arf locus against the development of age‐dependent insulin resistance and glucose intolerance.  相似文献   

4.
5.
6.
Senescent cells accumulate with age in vertebrates and promote aging largely through their senescence‐associated secretory phenotype (SASP). Many types of stress induce senescence, including genotoxic stress. ERCC1‐XPF is a DNA repair endonuclease required for multiple DNA repair mechanisms that protect the nuclear genome. Humans or mice with reduced expression of this enzyme age rapidly due to increased levels of spontaneous, genotoxic stress. Here, we asked whether this corresponds to an increased level of senescent cells. p16Ink4a and p21Cip1 mRNA were increased ~15‐fold in peripheral lymphocytes from 4‐ to 5‐month‐old Ercc1?/? and 2.5‐year‐old wild‐type (WT) mice, suggesting that these animals exhibit a similar biological age. p16Ink4a and p21Cip1 mRNA were elevated in 10 of 13 tissues analyzed from 4‐ to 5‐month‐old Ercc1?/? mice, indicating where endogenous DNA damage drives senescence in vivo. Aged WT mice had similar increases of p16Ink4a and p21Cip1 mRNA in the same 10 tissues as the mutant mice. Senescence‐associated β–galactosidase activity and p21Cip1 protein also were increased in tissues of the progeroid and aged mice, while Lamin B1 mRNA and protein levels were diminished. In Ercc1?/Δ mice with a p16Ink4a luciferase reporter, bioluminescence rose steadily with age, particularly in lung, thymus, and pancreas. These data illustrate where senescence occurs with natural and accelerated aging in mice and the relative extent of senescence among tissues. Interestingly, senescence was greater in male mice until the end of life. The similarities between Ercc1?/? and aged WT mice support the conclusion that the DNA repair‐deficient mice accurately model the age‐related accumulation of senescent cells, albeit six‐times faster.  相似文献   

7.
The blind mole rat (Spalax) is a wild, long‐lived rodent that has evolved mechanisms to tolerate hypoxia and resist cancer. Previously, we demonstrated high DNA repair capacity and low DNA damage in Spalax fibroblasts following genotoxic stress compared with rats. Since the acquisition of senescence‐associated secretory phenotype (SASP) is a consequence of persistent DNA damage, we investigated whether cellular senescence in Spalax is accompanied by an inflammatory response. Spalax fibroblasts undergo replicative senescence (RS) and etoposide‐induced senescence (EIS), evidenced by an increased activity of senescence‐associated beta‐galactosidase (SA‐β‐Gal), growth arrest, and overexpression of p21, p16, and p53 mRNAs. Yet, unlike mouse and human fibroblasts, RS and EIS Spalax cells showed undetectable or decreased expression of the well‐known SASP factors: interleukin‐6 (IL6), IL8, IL1α, growth‐related oncogene alpha (GROα), SerpinB2, and intercellular adhesion molecule (ICAM‐1). Apparently, due to the efficient DNA repair in Spalax, senescent cells did not accumulate the DNA damage necessary for SASP activation. Conversely, Spalax can maintain DNA integrity during replicative or moderate genotoxic stress and limit pro‐inflammatory secretion. However, exposure to the conditioned medium of breast cancer cells MDA‐MB‐231 resulted in an increase in DNA damage, activation of the nuclear factor κB (NF‐κB) through nuclear translocation, and expression of inflammatory mediators in RS Spalax cells. Evaluation of SASP in aging Spalax brain and intestine confirmed downregulation of inflammatory‐related genes. These findings suggest a natural mechanism for alleviating the inflammatory response during cellular senescence and aging in Spalax, which can prevent age‐related chronic inflammation supporting healthy aging and longevity.  相似文献   

8.
9.
We have developed a somatic cell gene delivery mouse model of melanoma that allows for the rapid validation of genetic alterations identified in this disease. A major advantage of this system is the ability to model the multi-step process of carcinogenesis in immune-competent mice without the generation and cross breeding of multiple strains. We have used this model to evaluate the role of RAS isoforms in melanoma initiation in the context of conditional Ink4a/Arf loss. Mice expressing the tumor virus A (TVA) receptor specifically in melanocytes under control of the dopachrome tautomerase (DCT) promoter were crossed to Ink4a/Arflox/lox mice and newborn DCT-TVA/Ink4a/Arflox/lox mice were injected with retroviruses containing activated KRAS, NRAS and/or Cre-recombinase. No mice injected with viruses containing KRAS and Cre or NRAS alone developed tumors; however, more than one-third of DCT-TVA/Ink4a/Arflox/lox mice injected with NRAS and Cre viruses developed melanoma and two-thirds developed melanoma when NRAS and Cre expression was linked.  相似文献   

10.
The Arf tumor suppressor gene product, p19Arf, regulates cell proliferation in incipient cancer cells and during embryo development. Beyond its commonly accepted p53-dependent actions, p19Arf also acts independently of p53 in both contexts. One such p53-independent effect with in vivo relevance includes its repression of Pdgfrβ, a process that is essential for vision in the mouse. We have utilized cell culture-based and mouse models to define a new role for miR-34a in this process. Ectopic expression of Arf in cultured cells enhanced the expression of several microRNAs predicted to target Pdgfrß synthesis, including the miR-34 family. Because miR-34a has been implicated as a p53-dependent effector, we investigated whether it also contributed to p53-independent effects of p19Arf. Indeed, in mouse embryo fibroblasts (MEFs) lacking p53, Arf-driven repression of Pdgfrβ and its blockade of Pdgf-B stimulated DNA synthesis were both completely interrupted by anti-microRNA against miR-34a. Ectopic miR-34a directly targeted Pdgfrβ and a plasmid reporter containing wild-type Pdgfrβ 3′UTR sequence, but not one in which the miR-34a target sequence was mutated. Although miR-34a expression has been linked to p53—a well-known effector of p19ArfArf expression and its knockdown correlated with miR-34a level in MEFs lacking p53. Finally, analysis of the mouse embryonic eye demonstrated that Arf controlled expression of miR-34a, and the related miR-34b and c, in vivo during normal mouse development. Our findings indicate that miR-34a provides an essential link between p19Arf and its p53-independent capacity to block cell proliferation driven by Pdgfrβ. This has ramifications for developmental and tumor suppressor roles of Arf.  相似文献   

11.
The tumor suppressor p53, and the cyclin-dependent kinase inhibitor Ink4c, have been both implicated in spermatogenesis control. Both p53-/- and Ink4c-/- single knockout male mice are fertile, despite testicular hypertrophy, Leydig cell differentiation defect, and increased sperm count in Ink4c-/- males. To investigate their collaborative roles, we studied p53-/- Ink4c-/- dual knockout animals, and found that male p53-/- Ink4c-/- mice have profoundly reduced fertility. Dual knockout male mice show a marked decrease in sperm count, abnormal sperm morphology and motility, prolongation of spermatozoa proliferation and delay of meiosis entry, and accumulation of DNA damage. Genetic studies showed that the effects of p53 loss on fertility are independent of its downstream effector Cdkn1a. Absence of p53 also partially reverses the hyperplasia seen upon Ink4c loss, and normalizes the Leydig cell differentiation defect. These results implicate p53 in mitigating both the delayed entry into meiosis and the secondary apoptotic response that occur in the absence of Ink4c. We conclude that the cell cycle genes p53 and Ink4c collaborate in sperm cell development and differentiation, and may be important candidates to investigate in human male infertility conditions.  相似文献   

12.
Senescence of cultured cells involves activation of the p19Arf-p53 and the p16Ink4a-Rb tumor suppressor pathways. This, together with the observation that p19Arf and p16Ink4a expression increases with age in many tissues of humans and rodents, led to the speculation that these pathways drive in vivo senescence and natural aging. However, it has been difficult to test this hypothesis using a mammalian model system because inactivation of either of these pathways results in early death from tumors. One approach to bypass this problem would be to inactivate these pathways in a murine segmental progeria model such as mice that express low amounts of the mitotic checkpoint protein BubR1 (BubR1 hypomorphic mice). These mice have a five-fold reduced lifespan and develop a variety of early-aging associated phenotypes including cachetic dwarfism, skeletal muscle degeneration, cataracts, arterial stiffening, (subcutaneous) fat loss, reduced stress tolerance and impaired wound healing. Importantly, BubR1 hypomorphism elevates both p16Ink4a and p19Arf expression in skeletal muscle and fat. Inactivation of p16Ink4a in BubR1 mutant mice delays both cellular senescence and aging specifically in these tissues. Surprisingly, however, inactivation of p19Arf has the opposite effect; it exacerbates in vivo senescence and aging in skeletal muscle and fat. These mouse studies suggest that p16Ink4a is indeed an effector of aging and in vivo senescence, but p19Arf an attenuator. Thus, the role of the p19Arf-p53 pathway in aging and in vivo senescence seems far more complex than previously anticipated.  相似文献   

13.
Bmi‐1 prevents stem cell aging, at least partly, by blocking expression of the cyclin‐dependent kinase inhibitor p16Ink4a. Therefore, dysregulation of the Bmi‐1/p16Ink4a pathway is considered key to the loss of tissue homeostasis and development of associated degenerative diseases during aging. However, because Bmi‐1 knockout (KO) mice die within 20 weeks after birth, it is difficult to determine exactly where and when dysregulation of the Bmi‐1/p16Ink4a pathway occurs during aging in vivo. Using real‐time in vivo imaging of p16Ink4a expression in Bmi‐1‐KO mice, we uncovered a novel function of the Bmi‐1/p16Ink4a pathway in controlling homeostasis of the submandibular glands (SMGs), which secrete saliva into the oral cavity. This pathway is dysregulated during aging in vivo, leading to induction of p16Ink4a expression and subsequent declined SMG function. These findings will advance our understanding of the molecular mechanisms underlying the aging‐related decline of SMG function and associated salivary gland hypofunction, which is particularly problematic among the elderly.  相似文献   

14.
Age-related health decline has been attributed to the accumulation of senescent cells recognized in vivo by p16(Ink4a) expression. The pharmacological elimination of p16(Ink4a)-positive cells from the tissues of mice was shown to extend a healthy lifespan. Here, we describe a population of mesenchymal cells isolated from mice that are highly p16(INK4a)-positive are proficient in proliferation but lack other properties of cellular senescence. These data, along with earlier reports on p16(Ink4a)-positive macrophages, indicate that p16(Ink4a)-positive and senescent cell populations only partially intersect, therefore, extending the list of potential cellular targets for anti- aging therapies.  相似文献   

15.
Cellular senescence has been implicated in normal aging, tissue homeostasis, and tumor suppression. Although p53 has been shown to be a central mediator of cellular senescence, the signaling pathway by which it induces senescence remains incompletely understood. In this study, we have shown that both Akt and p21 are required to induce cellular senescence in response to p53 expression. In a p53‐induced senescence model, we found that Akt activation was essential for inducing a cellular senescence phenotype. Surprisingly, Akt inhibition did not abolish p53‐induced cell cycle arrest, but it suppressed the increase in intracellular reactive oxygen species (ROS) levels. The results of the cell cycle and morphological analysis suggest that p53 induced quiescence, not senescence, following Akt inhibition. Conversely, the inhibition of p21 induction abolished cell cycle arrest but did not affect the p53‐induced increase in ROS levels. Additionally, p21 and Akt separately controlled cell cycle arrest and ROS levels, respectively, during H‐Ras‐induced senescence in human normal fibroblasts. The mechanistic analysis revealed that Akt increased ROS levels through NOX4 induction, and increased Akt‐dependent NF‐κB binding to the NOX4 promoter is responsible for NOX4 induction upon p53 expression. We further showed that Akt activation upon p53 expression is mediated by mammalian target of rapamycin complex 2. In addition, p53‐mediated IL6 and IL8 induction was abrogated by Akt inhibition, suggesting that Akt activation is also required for the senescence‐associated secretory phenotype. Collectively, these results suggest that p53 simultaneously controls multiple pathways to induce cellular senescence through p21 and Akt.  相似文献   

16.
p53 is required for DNA damage‐induced apoptosis, which is central to its function as a tumour suppressor. Here, we show that the apoptotic defect of p53‐deficient cells is nearly completely rescued by inactivation of any of the three subunits of the DNA repair holoenzyme DNA‐dependent protein kinase (DNA‐PK). Intestinal crypt cells from p53 nullizygous mice were resistant to radiation‐induced apoptosis, whereas apoptosis in DNA‐PKcs/p53, Ku80/p53 and Ku70/p53 double‐null mice was quantitatively equivalent to that seen in wild‐type mice. This p53‐independent apoptotic response was specific to the loss of DNA‐PK, as it was not seen in ligase IV (Lig4)/p53 or ataxia telangiectasia mutated (Atm)/p53 double‐null mice. Furthermore, it was associated with an increase in phospho‐checkpoint kinase 2 (CHK2), and cleaved caspases 3 and 9, the latter indicating engagement of the intrinsic apoptotic pathway. This shows that there are two separate, but equally effective, apoptotic responses to DNA damage: one is p53 dependent and the other, engaged in the absence of DNA‐PK, does not require p53.  相似文献   

17.
Brain arteriovenous malformations (AVMs) which associate with angiogenesis due to local hypertension, chronic cerebral ischaemia and tissue hypoxia usually lead to haemorrhage, however, the therapeutic medicine for the disease is still lacking. 2‐methoxyestradiol (2‐ME) has been shown effective in the anti‐angiogenic treatment. This study was conducted to examine whether and how 2‐ME could improve the vascular malformations. Intracranial venous hypertension (VH) model produced in adult male Sprague‐Dawley rats and culture of human umbilical vein endothelial cells (HUVECs) at the anoxia condition were used to induce in vivo and in vitro angiogenesis, respectively. Lentiviral vectors of ID‐1 and p53 genes and of their siRNA were intracranially injected into rats and transfected into HUVECs to overexpress and down‐regulate these molecules. 2‐ME treatment not only reduced the in vivo progression of brain tissue angiogenesis in the intracranial VH rats and the in vitro increases in microvasculature formation, cellular migration and HIF‐1α expression induced by anoxia in HUVECs but also reversed the up‐regulation of ID‐1 and down‐regulation of p53 in both the in vivo and in vitro angiogenesis models. All of the anti‐angiogenesis effects of 2‐ME observed in VH rats and anoxic HUVECs were abrogated by ID‐1 overexpression and p53 knockdown. Our data collectively suggest that 2‐ME treatment inhibits hypoxia/anoxia‐induced angiogenesis dependently on ID‐1 down‐regulation and p53 up‐regulation, providing a potential alternative medical treatment for un‐ruptured AVM patients.  相似文献   

18.
Exposure to IR has been shown to induce the formation of senescence markers, a phenotype that coincides with lifelong delayed repair and regeneration of irradiated tissues. We hypothesized that IR‐induced senescence markers could persist long‐term in vivo, possibly contributing to the permanent reduction in tissue functionality. Here, we show that mouse tissues exposed to a sublethal dose of IR display persistent (up to 45 weeks, the maximum time analyzed) DNA damage foci and increased p16INK4a expression, two hallmarks of cellular senescence and aging. BrdU‐labeling experiments revealed that IR‐induced damaged cells are preferentially eliminated, at least partially, in a tissue‐dependent manner. Unexpectedly, the accumulation of damaged cells was found to occur independent from the DNA damage response modulator p53, and from an intact immune system, as their levels were similar in wild‐type and Rag2?/? γC?/? mice, the latter being deficient in T, B, and NK cells. Together, our results provide compelling evidence that exposure to IR induces long‐term expression of senescence markers in vivo, an effect that may contribute to the reduced tissue functionality observed in cancer survivors.  相似文献   

19.
Osteosarcoma becomes the second leading cause of cancer death in the younger population. Current outcomes of chemotherapy on osteosarcoma were unsatisfactory to date, demanding development of effective therapies. Tea is a commonly used beverage beneficial to human health. As a major component of tea, theabrownin has been reported to possess anti‐cancer activity. To evaluate its anti‐osteosarcoma effect, we established a xenograft model of zebrafish and employed U2OS cells for in vivo and in vitro assays. The animal data showed that TB significantly inhibited the tumour growth with stronger effect than that of chemotherapy. The cellular data confirmed that TB‐triggered DNA damage and induced apoptosis of U2OS cells by regulation of Mki67, PARP, caspase 3 and H2AX, and Western blot assay showed an activation of p53 signalling pathway. When P53 was knocked down by siRNA, the subsequent downstream signalling was blocked, indicating a p53‐dependent mechanism of TB on U2OS cells (p53 wt). Using osteosarcoma cell lines with p53 mutations (HOS, SAOS‐2 and MG63), we found that TB exerted stronger inhibitory effect on U2OS cells than that on p53‐mut cell lines, but it also exerted obvious effect on SAOS‐2 cells (p53 null), suggesting an activation of p53‐independent pathway in the p53‐null cells. Interestingly, theabrownin was found to have no toxicity on normal tissue in vivo and could even increase the viability of p53‐wt normal cells. In sum, theabrownin could trigger DNA damage and induce apoptosis on U2OS cells via a p53‐dependent mechanism, being a promising candidate for osteosarcoma therapy.  相似文献   

20.
Aging is associated with progressive telomere shortening, resulting in the formation of dysfunctional telomeres that compromise tissue proliferation. However, dysfunctional telomeres can limit tumorigenesis by activating p53‐dependent cellular senescence and apoptosis. While activation of both senescence and apoptosis is required for repress tumor formation, it is not clear which pathway is the major tumor suppressive pathway in vivo. In this study, we generated Eμ‐myc; Pot1b ?/? mouse to directly compare tumor formation under conditions in which either p53‐dependent apoptosis or senescence is activated by telomeres devoid of the shelterin component Pot1b. We found that activation of p53‐dependent apoptosis plays a more critical role in suppressing lymphoma formation than p53‐dependent senescence. In addition, we found that telomeres in Pot1b?/?; p53?/? mice activate an ATR‐Chk1‐dependent DNA damage response to initiate a robust p53‐independent, p73‐dependent apoptotic pathway that limited stem cell proliferation but suppressed B‐cell lymphomagenesis. Our results demonstrate that in mouse models, both p53‐dependent and p53‐independent apoptosis are important to suppressing tumor formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号