首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 791 毫秒
1.
2.
Aging is a risk factor for Alzheimer's disease (AD) and is associated with cognitive decline. However, underlying molecular mechanisms of brain aging are not clear. Recent studies suggest epigenetic influences on gene expression in AD, as DNA methylation levels influence protein and mRNA expression in postmortem AD brain. We hypothesized that some of these changes occur with normal aging. To test this hypothesis, we measured markers of the arachidonic acid (AA) cascade, neuroinflammation, pro‐ and anti‐apoptosis factors, and gene specific epigenetic modifications in postmortem frontal cortex from nine middle‐aged [41 ± 1 (SEM) years] and 10 aged subjects (70 ± 3 years). The aged compared with middle‐aged brain showed elevated levels of neuroinflammatory and AA cascade markers, altered pro and anti‐apoptosis factors and loss of synaptophysin. Some of these changes correlated with promoter hypermethylation of brain derived neurotrophic factor (BDNF), cyclic AMP responsive element binding protein (CREB), and synaptophysin and hypomethylation of BCL‐2 associated X protein (BAX). These molecular alterations in aging are different from or more subtle than changes associated with AD pathology. The degree to which they are related to changes in cognition or behavior during normal aging remains to be evaluated.  相似文献   

3.
Aging is a major worldwide medical challenge. Not surprisingly, identifying drugs and compounds that extend lifespan in model organisms is a growing research area. Here, we present DrugAge ( http://genomics.senescence.info/drugs/ ), a curated database of lifespan‐extending drugs and compounds. At the time of writing, DrugAge contains 1316 entries featuring 418 different compounds from studies across 27 model organisms, including worms, flies, yeast and mice. Data were manually curated from 324 publications. Using drug–gene interaction data, we also performed a functional enrichment analysis of targets of lifespan‐extending drugs. Enriched terms include various functional categories related to glutathione and antioxidant activity, ion transport and metabolic processes. In addition, we found a modest but significant overlap between targets of lifespan‐extending drugs and known aging‐related genes, suggesting that some but not most aging‐related pathways have been targeted pharmacologically in longevity studies. DrugAge is freely available online for the scientific community and will be an important resource for biogerontologists.  相似文献   

4.
5.
Despite great progress in antipsychotic drug research, the molecular mechanisms by which these drugs work have remained elusive. High-throughput gene profiling methods have advanced this field by allowing the simultaneous investigation of hundreds to thousands of genes. However, different methodologies, choice of brain region, and drugs studied have made comparisons across different studies difficult. Because of the complexity of gene expression changes caused by drugs, teasing out the most relevant expression differences is a challenging task. One approach is to focus on gene expression changes that converge on the same systems that were previously deemed important to the pathology of psychiatric disorders. From the microarray studies performed on human postmortem brain samples from schizophrenics, the systems most implicated to be dysfunctional are synaptic machinery, oligodendrocyte/myelin function, and mitochondrial/ubiquitin metabolism. Drugs may act directly or indirectly to compensate for underlying pathological deficits in schizophrenia or via other mechanisms that converge on these pathways. Side effects, consisting of motor and metabolic dysfunction (which occur with typical and atypical drugs, respectively), also may be mediated by gene expression changes that have been reported in these studies. This article surveys both the convergent antipsychotic mechanisms and the genes that may be responsible for other effects elicited by antipsychotic drugs.  相似文献   

6.
7.
生物信息技术加速开发旧药新用途   总被引:1,自引:1,他引:0  
传统的技术路线研发新药,不仅周期很长而且耗资巨大,开发已获批准药物新的治疗用途,又称为药物重定位,比传统的新药研发具有明显的优势.基于芯片的基因表达谱分析,已常规地广泛用于各种人类疾病的临床研究,提供了在全基因组水平描述疾病状态的特征信号.同时,基因芯片也广泛地用于对比药物处理前后细胞基因表达模式的变化,这也提供了反映药物效应的高质量信号.最近出版的Science Translational Medicine杂志同时发表了一个研究组的两篇论文,为我们展示了如何利用生物信息学手段重新解析和比较全基因组基因表达谱数据,以高效地预测药物的新用途.这两篇论文使用了公共数据库中的100种疾病基因表达谱数据,以及164种药物处理前后细胞基因表达谱数据,通过比较和配对疾病与药物基因表达谱,得到了一些可以逆转疾病异常表达基因的药物,其中证实了一些已知的药物-疾病组合,也预测了一些新的药物-疾病组合.最后通过实验验证了抗溃疡药可用于治疗肺癌,而抗癫痫药可治疗炎症性肠道疾病,进一步证实了他们所采用研究策略的正确性.于是,肺癌和炎性肠道疾病这两种临床上难治的疾病有了新的候选治疗药物,我们也有了一种挖掘已有数据快速发现药物新用途的思路和方法.  相似文献   

8.
Aging and age‐related pathology is a result of a still incompletely understood intricate web of molecular and cellular processes. We present a C57BL/6J female mice in vivo aging study of five organs (liver, kidney, spleen, lung, and brain), in which we compare genome‐wide gene expression profiles during chronological aging with pathological changes throughout the entire murine life span (13, 26, 52, 78, 104, and 130 weeks). Relating gene expression changes to chronological aging revealed many differentially expressed genes (DEGs), and altered gene sets (AGSs) were found in most organs, indicative of intraorgan generic aging processes. However, only ≤ 1% of these DEGs are found in all organs. For each organ, at least one of 18 tested pathological parameters showed a good age‐predictive value, albeit with much inter‐ and intraindividual (organ) variation. Relating gene expression changes to pathology‐related aging revealed correlated genes and gene sets, which made it possible to characterize the difference between biological and chronological aging. In liver, kidney, and brain, a limited number of overlapping pathology‐related AGSs were found. Immune responses appeared to be common, yet the changes were specific in most organs. Furthermore, changes were observed in energy homeostasis, reactive oxygen species, cell cycle, cell motility, and DNA damage. Comparison of chronological and pathology‐related AGSs revealed substantial overlap and interesting differences. For example, the presence of immune processes in liver pathology‐related AGSs that were not detected in chronological aging. The many cellular processes that are only found employing aging‐related pathology could provide important new insights into the progress of aging.  相似文献   

9.
10.
Valproic acid extends Caenorhabditis elegans lifespan   总被引:1,自引:0,他引:1  
Aging is an important biological phenomenon and a major contributor to human disease and disability, but no drugs have been demonstrated to delay human aging. Caenorhabditis elegans is a valuable model for studies of animal aging, and the analysis of drugs that extend the lifespan of this animal can elucidate mechanisms of aging and might lead to treatments for age-related disease. By testing drugs that are Food and Drug Administration approved for human use, we discovered that the mood stabilizer and anticonvulsant valproic acid (VA) extended C. elegans lifespan. VA also delayed age-related declines of body movement, indicating that VA delays aging. Valproic acid is a small carboxylic acid that is the most frequently prescribed anticonvulsant drug in humans. A structure-activity analysis demonstrated that the related compound valpromide also extends lifespan. Valproic acid treatment may modulate the insulin/IGF-1 growth factor signaling pathway, because VA promoted dauer larvae formation and DAF-16 nuclear localization. To investigate the mechanism of action of VA in delaying aging, we analyzed the effects of combining VA with other compounds that extend the lifespan of C. elegans. Combined treatment of animals with VA and the heterocyclic anticonvulsant trimethadione caused a lifespan extension that was significantly greater than treatment with either of these drugs alone. These data suggest that the mechanism of action of VA is distinct from that of trimethadione, and demonstrate that lifespan-extending drugs can be combined to produce additive effects.  相似文献   

11.
12.
13.
14.
15.
This study identified gene expression profiles that provided evidence for genomic mechanisms underlying the pathophysiology of aging lung. Aging lungs from C57BL/6 (B6) and DBA/2 (D2) mouse strains differ in physiology and morphometry. Lungs were harvested from B6 mice at 2, 18, and 26 mo and from D2 mice at 2 and 18 mo of age. Purified RNA was subjected to oligonucleotide microarray analyses, and differential expression analyses were performed for comparison of various data sets. A significant majority of differentially expressed genes were upregulated with aging in both strains. Aging D2 lungs uniquely exhibited upregulation in stress-response genes including xenobiotic detoxification cascades. In contrast, aging B6 lungs showed downregulation of heat shock-response genes. Age-dependent downregulation of genes common to both B6 and D2 strains included several collagen genes (e.g., Col1a1 and Col3a1). There was a greater elastin gene (Eln) expression in D2 mice at 2 mo, and Eln was uniquely downregulated with age in this strain. The matrix metalloproteinase 14 gene (Mmp14), critical to alveolar structural integrity, was also downregulated with aging in D2 mice only. Several polymorphisms in the regulatory and untranslated regions of Mmp14 were identified between strains, suggesting that variation in Mmp14 gene regulation contributes to accelerated aging of lungs in D2 mice. In summary, lungs of B6 and D2 mice age with variable rates at the gene expression level, and these quantifiable genomic differences provide a template for understanding the variability in age-dependent changes in lung structure and function.  相似文献   

16.
17.
Knowledge of the spectrum of cellular proteins targeted by experimental therapeutic agents would greatly facilitate drug development. However, identifying the targets of drugs is a daunting challenge. The yeast Saccharomyces cerevisiae is a valuable model organism for human diseases and pathways because it is genetically tractable and shares many functional homolog with humans. In yeast, it is possible to increase or decrease the expression level of essentially every gene and measure changes in drug sensitivity to uncover potential targets. It is also possible to infer mechanism of action from comparing the changes in mRNA expression elicited by drug treatment with those induced by gene deletions or by other drugs. Proteins that bind drugs directly can be identified using yeast protein chips. This review of the use of yeast for discovering targets of drugs discusses the advantages and drawbacks of each approach and how combining methods may reveal targets more efficiently.  相似文献   

18.
A key goal of aging research was to understand mechanisms underlying healthy aging and develop methods to promote the human healthspan. One approach is to identify gene regulations unique to healthy aging compared with aging in the general population (i.e., “common” aging). Here, we leveraged Genotype‐Tissue Expression (GTEx) project data to investigate “healthy” and “common” aging gene expression regulations at a tissue level in humans and their interconnection with diseases. Using GTEx donors' disease annotations, we defined a “healthy” aging cohort for each tissue. We then compared the age‐associated genes derived from this cohort with age‐associated genes from the “common” aging cohort which included all GTEx donors; we also compared the “healthy” and “common” aging gene expressions with various disease‐associated gene expressions to elucidate the relationships among “healthy,” “common” aging and disease. Our analyses showed that 1. GTEx “healthy” and “common” aging shared a large number of gene regulations; 2. Despite the substantial commonality, “healthy” and “common” aging genes also showed distinct function enrichment, and “common” aging genes had a higher enrichment for disease genes; 3. Disease‐associated gene regulations were overall different from aging gene regulations. However, for genes regulated by both, their regulation directions were largely consistent, implying some aging processes could increase the susceptibility to disease development; and 4. Possible protective mechanisms were associated with some “healthy” aging gene regulations. In summary, our work highlights several unique features of GTEx “healthy” aging program. This new knowledge could potentially be used to develop interventions to promote the human healthspan.  相似文献   

19.
Changes in gene expression in brain reward regions are thought to contribute to the pathogenesis and persistence of drug addiction. Recent studies have begun to focus on the molecular mechanisms by which drugs of abuse and related environmental stimuli, such as drug-associated cues or stress, converge on the genome to alter specific gene programs. Increasing evidence suggests that these stable gene expression changes in neurons are mediated in part by epigenetic mechanisms that alter chromatin structure on specific gene promoters. This review discusses recent findings from behavioral, molecular and bioinformatic approaches being used to understand the complex epigenetic regulation of gene expression by drugs of abuse. This novel mechanistic insight might open new avenues for improved treatments of drug addiction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号